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Objective: To evaluate the feasibility and dosimetric benefits of Halcyon-based

coplanar dual-arc volumetric modulated arc therapy (VMAT) for hippocampal-

avoidance whole brain radiotherapy (HA-WBRT).

Methods: Twenty-one HA-WBRT patients were replanned using dual-arc VMAT

(collimator 23°/293°) on Halcyon and Truebeam. The planning target volume

(PTV) was segmented into three substructures and optimized with different

weight parameters. Dosimetric parameters of PTV, monitor units (MUs), does

to organs-at-risk(OARs), hippocampal normal tissue complication probability

(NTCP) and gamma passing rate were recorded.

Results: All plans met RTOG 0933 criteria. The Halcyon plans demonstrated

significantly better homogeneity index (HI) and V30Gy of the PTV (HI: 0.105 vs.

0.121, P<0.001; V30Gy: 97.1% vs. 96.3%, P<0.001), alongside reduced hippocampal

dose (D100%: 626.8 vs. 695.0cGy; Dmean: 850.0 vs. 898.4cGy; Dmax: 1348.1 vs.

1399.8 cGy; NTCP: 34.16% vs. 31.67%, P ≤ 0.001), OARs sparing improved for

Lens Dmax (495.0 vs. 525.8cGy, P = 0.001), Optic nerves Dmax(3047.7 vs.

3077.6cGy, P = 0.006), and eyes Dmean(927.1 vs. 937.9cGy, P = 0.009). The

average gamma passing rates were higher for Halcyon than Truebeam (3%/2mm:

99.96% vs. 99.85; 2%/2mm: 99.83% vs. 99.49%).

Conclusions: Under the innovative planning approach, redefined hippocampal-

sparing radiotherapy using Halcyon system, providing superior prescription dose

coverage, improved OAR sparing, and reduced hippocampal NTCP.
KEYWORDS

Halcyon, hippocampus, whole brain radiotherapy, volumetric modulated arc therapy,
treatment planning
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Introduction

The incidence of brain metastases has been steadily increasing

in recent years (1, 2). Despite advances in systemic therapies, the

efficacy of chemotherapy in controlling brain metastases remains

limited due to the restrictive nature of the blood-brain barrier (3).

Whole-brain radiotherapy (WBRT) has demonstrated efficacy in

improving local control and extending overall survival in patients

with brain metastases (4). However, the neurotoxic effects of WBRT

on the central nervous system have become a growing concern (5).

Studies have demonstrated that radiation-induced hippocampal

damage significantly impairs neurocognitive functions,

particularly those related to learning, memory, and spatial

processing (6). A multicenter phase II clinical trial (RTOG 0933)

revealed that hippocampal-avoidance WBRT (HA-WBRT)

effectively preserves patients’ neurocognitive functions and

improves their quality of life (7).

Over the past decades, HA-WBRT have been developed to use

intensity modulated radiation therapy (IMRT), volumetric

modulated arc therapy (VMAT), and tomotherapy (TOMO)

techniques as listed in Table 1 (8–22). Gondi et al. (8) found that

TOMO technology offers more advantages in HA-WBRT.

However, the high cost of TOMO equipment makes it

unaffordable for many small-scale hospitals. Wang et al. (9) have

reported that HA-WBRT based IMRT techniques takes a long time

for patients on the couch, which may cause patients discomposure.

Dosimetric performance of conventional VMAT for HA-WBRT

has been reported in previous studies following RTOG 0933 criteria,

suggesting that VMAT irradiations use non-coplanar multi-arc

irradiation. However, non-coplanar VMAT techniques increase

the risk of tumor movement and extend treatment time.

In recent years, the Halcyon has gained widespread adoption in

clinical practice due to its innovative design features. Unlike

conventional C-arm accelerators, the Halcyon employs a circular

ring gantry structure, eliminating the need for fixed jaws and

enabling a ring rotation speed of 24°/s/eedi times that of C-arm

LINACs. Additionally, the Halcyon is equipped with a dual-layer

multi-leaf collimator (MLC) featuring 29 proximal and 28 distal

leaves, which effectively minimizes leakage and transmission. The

Halcyon exclusively utilizes a 6 MV flattening filter-free (FFF)

photon beam, further enhancing its efficiency and precision in

delivering high-quality radiotherapy. To the best of our

knowledge, only a few studies have been reports of HA-WBRT

using Halcyon. The results from Yokoyama et al. (13) demonstrated

that three-arc Halcyon treatment plan was effective in handling

hippocampus sparing whole-brain radiotherapy. However, the

three-arc design prolonged prolong treatment time and increase

costs. Here, we propose a novel coplanar dual-arc VMAT technique

on the Halcyon platform that incorporates both target segmentation

and collimator angle optimization, and systematically evaluate the

dosimetric characteristics of HA-WBRT using coplanar dual-arc

VMAT on Halcyon and Truebeam platforms.
Frontiers in Oncology 02
Materials and methods

Patient selection

We retrospectively studied twenty-one patients who underwent

HA-WBRT from June 2024 to December 2024. The cohort

consisted of six males and four females, with a median age of 49

years (range: 33 – 70 years). All patients were diagnosed with non-

hematologic malignancies confirmed through histopathological or

cytological examination, with magnetic resonance imaging (MRI)

showing brain metastases located at least 5 mm away from the

hippocampus. Local approval was granted, and written informed

consent was obtained.
Simulation

Patients were immobilized in the supine position using a

thermoplastic mask. CT images were acquired using a Brilliance

Big Bore CT scanner (Philips, Netherlands) with a slice thickness of

2.5 mm, covering the region from the scalp to the upper edge of the

second cervical vertebra. Additionally, contrast-enhanced T1-

weighted MRI scans with a slice thickness of 1 mm were

performed within two weeks before radiotherapy. CT and MRI

images were fused in the Eclipse v16.1 treatment planning system to

facilitate precise hippocampal delineation by radiation oncologists.
Target and organs at risk delineation

Following the Radiation Therapy Oncology Group (RTOG)

atlas, the hippocampus was manually delineated using fused CT and

contrast-enhanced T1-weighted MRI images. A 5-mm three-

dimensional margin around the hippocampus was designated as

the hippocampal avoidance region (HA). The clinical target volume

(CTV) was defined as the whole brain excluding the HA region. The

planning target volume (PTV) was created by expanding the CTV

by 3 mm while excluding the HA region. The prescription dose for

the PTV was 30Gy in 10 fractions, with at least 95% of the PTV

volume receiving the prescribed dose. Dose constraints for the PTV,

hippocampus, and other organs at risk (OARs) are listed in Table 2.
Equipment parameters

The Halcyon designed with a ring gantry from Varian

Corporation in the United States was employed, equipped with

dual-layer MLCs (29 proximal and 28 distal leaves with a 5-mm

resolution) and a 6 MV FFF photon beam with a maximum dose rate

of 800 MU/min. For comparison, the Truebeam linac featured a

single-layer MLC with 60 leaves (40 central leaves at 5-mmwidth and

20 peripheral leaves at 10-mmwidth), a dynamic jaw tracking system,
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TABLE 1 Summary of HA-WBRT in the literature.

Ref. Prescription Linac and tech. Plan quality Hippocampus

Krayenbuehl J,
et al. (2017) (10).

30Gy/10F

Trilogy Linac (Varian)
4Arcs_VMAT

(2Arcs coplanar and 2Arcs
non-coplanar)

V100%=92%
HI=0.24

D100%= 8.1Gy
Dmean=7.3Gy
Dmax=14.1Gy

Wang S, et al. (2017) (11). 30Gy/10F
Truebeam (Varian)
2 Arcs_VMAT

coplanar

V100%=91.49%
HI=0.28
CI=0.84

D100%=9.275Gy
Dmax=16.0Gy

Gondi V, et al. (2010) (8). 30Gy/10F
Varian linac

IMRT
Non-coplanar

V100%=93%
HI=0.3

Dmax=15.3Gy

Nevelsky A, et al. (2013) (12). 30Gy/10F
Infinity (Elekta)

IMRT
Non-coplanar

V100%=92%
HI=0.36

D100%=8.37Gy
Dmax=14.35Gy

Yokoyama K, et al.
(2022) (13).

30Gy/10F

Halcyon
2–4 Arcs_VMAT

Coplanar

V100%=95%
HI=0.19

D50%=7.89Gy
Dmax=14.32Gy

Tomotherapy
V100%=95%
HI=0.24

D50%=8.02Gy
Dmax=12.63Gy

Xue J, et al. (2023) (14). 30Gy/10F
Axesse (Elekta)
2 Arcs_VMAT
Non-coplanar

V100%=95%
HI=0.249
CI=0.821

D100%=8.03Gy
Dmean=11.71Gy
Dmax=16.81Gy

Zhang HW, et al. (2024) (15). 30Gy/10F

Truebeam
2 Arcs_VMAT

Coplanar

V100%=95%
HI=1.1
CI=0.84

Dmean=11.77Gy
Dmax=17.13Gy

Tomotherapy
V100%=95%
HI=1.05
CI=0.88

Dmean=9.23Gy
Dmax=15.42Gy

Yuen AHL, et al. (2020) (16). 30Gy/10F
Truebeam

4 Split-arcs partial_VMAT
Coplanar

V100%=94.79%
HI=0.23

D100%=7.86Gy
Dmean=9.16Gy
Dmax=13.23Gy

Yuen AHL, et al. (2022) (17). 30Gy/10F

Truebeam
4 Split-arc partial_VMAT+2 static

fields
Coplanar

V100%=94.69%
HI=0.24

D100%=7.92Gy
Dmean=9.21Gy
Dmax=13.31Gy

Li MH, et al. (2022) (18). 30Gy/10F

Tomotherapy
V100%=96.56%

HI=0.07
CI=0.815

Dmean=10.7Gy
Dmax=15.5Gy

Synergy
4 Arcs_VMAT

Coplanar

V100%=92.95%
HI=0.219
CI=0.823

Dmean=11.2Gy
Dmax=15.2Gy

Takaoka T, et al. (2021) (19). 30Gy/10F Tomotherapy
D95%=29.9Gy
HI=0.259
CI=1.30

D100%=9.3Gy
Dmean=11.1Gy
Dmax=14.7Gy

Wang BH, et al.
(2015) (9)

30Gy/10F
Varian IX

2 Arcs_VMAT
Coplanar

V95%=95%
HI=0.13
CI=0.88

Dmedian=10.30Gy
Dmax=13.92Gy

Fu Q, et al. (2021) (20). 25Gy/10F
VersaHD (Elekta)
4 Arcs_VMAT

V100%=91.2%
HI=0.084
CI=0.839

Dmean=6.35Gy
Dmax=7.90Gy

NCT01780675 Trial (21) 25Gy/10F –

V100%>95%
D98%>25Gy
D2%<37.5Gy

Dmean<8.5Gy

NRG CC001 Trial (22) 30Gy/10F –

V100%>95%
D98%>25Gy
D2%<37.5Gy

D100%<9Gy
Dmax<16Gy
F
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and a maximum dose rate of 1400MU/min. All treatment plans were

designed using the Eclipse v16.1 treatment planning system.
Plan design

To optimize PTV coverage while sparing the hippocampus, the

PTV was segmented into three sub-structures: zPTV_up (from the

upper PTV boundary to the superior edge of the HA region),

zPTV_mid (the PTV portion overlapping the HA region), and

zPTV_down (from the inferior edge of the HA region to the lower

PTV boundary). This segmentation strategy enhanced modulation

efficiency during treatment planning optimization (Figure 1A).

As illustrated in Figure 1B, to ensure a consistent and unbiased

comparative evaluation between the selected machine models under

identical clinical conditions, all treatment plans utilized coplanar

dual-arc VMAT with collimator angles set at 23° and 293°.

Optimization was performed using the photon optimization (PO)

algorithm, and dose calculations were conducted with the Acuros

XB algorithm at a grid resolution of 2.5 mm. Identical dose

constraints and optimization parameters were applied to both

Halcyon and Truebeam plans to ensure comparability (Figure 1C).
Plan evaluation

The plan quality was assessed using dose-volume histograms

(DVHs). PTV evaluation metrics included V30Gy (%), conformity

index (CI), and homogeneity index (HI), calculated using the

following Equation 1 (23):

CI =
V2
t,ref

Vt�Vref

HI = D2%−D98%
D50%

8<
: (1)

In the formulas, Vt,ref represents the volume receiving the

prescription dose, is the target volume, and is the volume of the

prescription dose within the target volume. D2%, D98% and D50%

represent the doses received by 2%, 98%, and 50% of the target

volume, respectively. The CIcloser to 1 indicates better dose

conformity to the target, while the HI closer to 0 reflects more

uniform dose distribution within the target.

The evaluation parameters of OARs include D100%, Dmean, and

Dmax for the hippocampus; Dmax for the lens and optic nerves; and

Dmean for the eyeball. Additionally, the total monitor units (MUs)

for all plans were recorded.
Normal tissue complication probability

The normal tissue complication probability (NTCP) is a

quantitative measurement of the probability that a dose of

radiation will have an undesirable effect on an organ. The

following mechanistic of formula is used to calculate the NTCP,

as shown in Equations 2, 3 (24):
Frontiers in Oncology 04
NTCP =
1

√ 2p

Z t

−∞
exp( −

x2

2
)dx (2)

t =
EQD2(D40) − TD50

m · TD50
(3)

EQD2(D40) was EQD2received by 40% of bilateral hippocampal

volume, TD50 was the EQD2(D40) valuecorresponding to a 50%

probability of neurocognitive decline, and m represented the slope

of the dose-response curve. Moreover, TD50 and m were estimated

to be 14.88 Gy and 0.54 by Gondi et al (24).

Biologically equivalent dose in 2-Gy fraction (EQD2) to 40% of

the bilateral hippocampi was evaluated according to the following

Equation 4 (25):

EQD2 = D ·
d + a=b
2 + a=b

(4)

Where D represented the total dose and d represented the dose per

fraction. An a=b ratio for the hippocampus was assumed to be 2 (25).
Dose verification

3D gamma passing rate analysis on dose images of all treatments

was performed using the Portal Dosimetry module in Varian Eclipse.

Halcyon plans were verified using its built-in digital megavolt imager,

with a pixel resolution of 1280 × 1280 (0.336 mm per pixel) and an

active detection area of 43 cm × 43 cm. Truebeam plans were verified

using the a-Si1000 electronic portal imaging device, with a pixel

resolution of 1024 × 768 (0.39 mm per pixel) and an active detection

area of 40 cm × 30 cm. The gamma analysis criteria were set as follows:

a dose threshold of 10%, dose tolerance/distance to agreement of 3%/2

mm and 2%/2 mm, respectively. The passing rates for all treatment

plans were recorded and analyzed.
Statistical analysis

Statistical analyses were performed using SPSS v25.0 and Origin

2022. The Shapiro-Wilk test was employed to assess data normality.

Normally distributed data were expressed as mean ± standard

deviation and analyzed using paired t-test, while non-normally

distributed data were expressed as median (interquartile range) and

analyzed using Wilcoxon test. A two-tailed a-level of 0.05 was

considered statistically significant.
Results

Dose distribution and DVH comparison

The Halcyon plan demonstrated superior PTV coverage and

hippocampal sparing compared to the Truebeam plan, as illustrated

in Figure 2. The DVHs for the same patient, shown in Figure 3, indicate
frontiersin.org
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that both plans met clinical requirements. Notably, the Halcyon plan

achieved OAR doses well below tolerance limits and demonstrated a

more favorable DVH profile compared to the Truebeam plan.
Dosimetric parameters and monitor unit
comparison

All plans achieved ≥ 95% PTV coverage at the prescription dose.

The Halcyon plan demonstrated superior coverage at 97.1%,

compared to 96.3% for the Truebeam plan (P< 0.001). In terms

of dose homogeneity, the Halcyon plan achieved a significantly

lower median HI value than the Truebeam plan (0.105 vs. 0.121, P<

0.001). Conversely, the CI was marginally better in the Truebeam

plan compared to the Halcyon plan (1.105 vs. 1.127, P< 0.001).

However, the Halcyon plan required significantly more MUs than

the Truebeam plan (1083.0 vs. 903.0, P< 0.001), as shown in Table 3.
Frontiers in Oncology 05
Dosimetric comparison for OARs

The average volume of the hippocampal avoidance region and

PTV were 5.4 cm3 (1.5 - 8.1 cm3) and 1542.4 cm3 (1298.3 - 1872.3

cm3), respectively. The volume of hippocampal avoidance region

was accounted for 0.35% of PTV. The Halcyon plan showed

superior dosimetric performance for hippocampal protection,

achieving significantly lower D100%, Dmean, Dmax and NTCP than

the Truebeam plan: 626.8 ± 35.8cGyvs. 695.0 ± 31.5cGy (P<0.001),

850.0(837.4, 883.9)cGyvs. 898.4 (880.1, 924.7) cGy (P = 0.001),

1348.1 ± 62.2cGyvs. 1399.8 ± 74.4cGy (P<0.001), and 34.16 ± 2.02%

vs. 31.67 ± 1.57% (p<0.001), as shown in Figure 4.

Additionally, the Halcyon plan achieved a significantly lower

Dmax for the lens and optic nerves and lower Dmean for the eyes

compared to the Truebeam plan, as shown in Table 4.
Gamma passing rate comparison

All plans successfully passed the quality assurance test under the

3%/2 mm and 2%/2 mm gamma criteria, with passing rates

exceeding 97%. As shown in Figure 5, the Halcyon plan

demonstrated superior gamma passing rates compared to the

Truebeam plan under both criteria: 99.96% ± 0.07% vs. 99.85% ±

0.08% for 3%/2 mm (z=16.5, P = 0.008) and 99.83% ± 0.24% vs.

99.49% ± 0.17% for 2%/2 mm (z=11, P = 0.003).
TABLE 2 Dosimetric compliance criteria for hippocampal avoidance.

Parameter Dose constraints

PTV V30Gy≥95% D2%≤37.5Gy D98%≥25Gy

Hippocampus Dmax ≤ 16Gy D100%≤9Gy

Optic nerves Dmax ≤ 33Gy

Lens Dmax ≤ 7Gy
FIGURE 1

Schematic representation of the radiotherapy plan design and key target structure optimization parameters. (A) Logical segmentation of the PTV
structure; (B) Gantry angle settings for dual-arc VMAT; (C) Key optimization parameters for target structures in the treatment plan.
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Comparison with other studies in
hippocampal-avoidance whole-brain
radiotherapy

Compared to previous studies, the Halcyon plan achieved

notable milestones in HA-WBRT. The Halcyon plan delivered
Frontiers in Oncology 06
higher prescription dose coverage (D98%, 29.5 Gy; D2%, 32.8 Gy;

V95%, 98.7%; V100%, 97.1%), superior dose homogeneity (HI, 0.105),

and excellent hippocampal protection (D100%, 6.27Gy; Dmean,

8.50Gy; Dmax, 13.48Gy). These results are comparable or superior

to outcomes reported for Tomotherapy and non-coplanar

VMAT techniques.
FIGURE 2

The dose distribution of Truebeam and Halcyon applying double arc coplanar VMAT for a representative patient. (A-C) Dose distribution at the axial,
sagittal and coronal views. The top and bottom figures are the Truebeam and Halcyon plans, respectively.
FIGURE 3

DVHs comparison for PTV and OARs between Truebeam and Halcyon applying VMAT. The yellow, green and red line represents the physical dose
exposure to the lens, hippocampus and PTV, respectively.
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Discussion

HA-WBRT has been shown to be superior to standard WBRT

in preserving neurocognitive function and improving patients’

quality of life (26), and it has gradually become a widely adopted

therapy for brain metastases. In medical centers equipped with both

conventional linear accelerators and Halcyon platforms, selecting

the optimal radiotherapy device is a critical step in treatment
Frontiers in Oncology 07
planning. In this study, HA-WBRT plans were generated for both

Halcyon and Truebeam accelerators, and differences in dose

distributions for target volumes and OARs were analyzed. Both

plans met the RTOG 0933 protocol and clinical requirements. The

Halcyon plans demonstrated significant advantages in HI and

V30Gyfor the PTV, as well as hippocampal, lens, optic nerves, and

eyes. Conversely, Truebeam plans showed a slight advantage in

PTV CI, with a marginal 2.0% difference. The Halcyon plans
TABLE 3 Comparison of dosimetric parameters and MUs for PTV ½n = 21,  x ± s=M(Q1,Q3)�.

Parameters Truebeam Halcyon t/z value P value

CI 1.105 ± 0.051 1.127 ± 0.059 -7.069 <0.001

HI 0.121 (0.113, 0.125) 0.105 (0.099, 0.108) -4.015 <0.001

V30Gy/% 96.3 ± 0.3 97.1 ± 0.3 -11.118 <0.001

MU 903.0 (884.5, 918.5) 1083.0 (1053.4, 1140.1) -4.015 <0.001
FIGURE 4

Comparison of hippocampus dosimetric parameters. The results are shown for the (A) D100%, (B) Dmean, (C) Dmax and (D) NTCP of hippocampus,
respectively.
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achieved a 15.2% improvement in HI, reflecting superior dose

uniformity. Although the Halcyon plans required 16.6% more

MUs than Truebeam, the Halcyon’s gantry rotation speed is four

times faster, significantly reducing treatment delivery time (27). It

should be noted that the higher MU requirements of Halcyon

systems may exacerbate several potential problems: (i) increased

scatter dose, (ii) accelerated machine wear, and (iii) higher

treatment costs.

In terms of hippocampal protection, the Halcyon plans

demonstrated a significant reduction in D100% (626.8cGy),

achieving a 10.9% decrease compared to the Truebeam plans. The

reductions in Dmean (850.0cGy vs. 898.4cGy) and Dmax (1348.1cGy

vs. 1399.8cGy) were more modest, at approximately 4.8%. While

statistically significant differences were observed in plan

comparisons, the clinical implications of these variations warrant

further investigation. To address this issue to some extent, we

employed NTCP modeling - a validated quantitative measure for

assessing radiation-induced tissue damage severity. Our analysis

revealed that Halcyon treatment plans demonstrated the most

favorable neurocognitive protection profile, as evidenced by

significantly lower NTCP values (p<0.001).These findings suggests

that the Halcyon system offers superior protection for normal

tissues surrounding by the target volume, particularly in low-dose

regions. Several factors may account for this advantage:

1. Jawless Design:

The Halcyon accelerator’s jawless configuration positions the

MLC leaves closer to the source. Although the leaf tips are rounded,

their longer radius and straighter edges minimize the dosimetric

leaf gap (DLG) to just 0.1mm (28), significantly reducing the

penumbra compared to the 1.8mm DLG observed with

Truebeam’s MLC design.

2. Dual-Layer MLC:

Halcyon utilizes a dual-layer, staggered MLC configuration with

a transmission factor of only 0.47% (29), markedly lower than

Truebeam’s average transmission of 1.5% for 6 MV beams (30).

This design effectively reduces dose leakage and improves the

protection of surrounding tissues.

3. Faster Leaf Motion:

The MLC leaves on the Halcyon achieve a maximum speed of

5cm/s, double Truebeam’s maximum leaf speed of 2.5cm/s.

Previous studies have demonstrated that faster leaf motion

enhances the sparing of OARs outside the target region (31),

consistent with the findings of this study.

4. Enhanced Modulation Capabilities:

In traditional accelerators, achieving optimal modulation often

requires fixing the jaw position due to the limitations of MLC

movement when dealing with large target diameters and fields (32).
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In contrast, the Halcyon’s MLC design eliminates this restriction,

allowing full extension of the leaves without carriages and enabling

seamless modulation across the entire field. Truebeam, by

comparison, is limited by a maximum leaf extension of 15 cm

beyond the central carriage, which restricts modulation in VMAT

plans for larger fields. To address these challenges, techniques such

as partial arcs and smaller field sizes have been employed on

Truebeam, as reported by Yuen et al. (16), achieving a target HI

of 0.23 and a hippocampal Dmean of 9.16 Gy. However, the Halcyon

platform inherently overcomes these limitations due to its

innovative MLC design and superior modulation capabilities.

Rong et al. (33) compared IMRT, VMAT, and TOMO for HA-

WBRT, concluding that TOMO provides superior dosimetric

distribution, particularly in terms of dose uniformity. In studies

conducted by Takaoka et al. (19) and Li et al. (18), TOMO

achieved 95% PTV coverage with V30Gy, CI values of 1.3 and 0.815,

and hippocampal Dmax and Dmean of 14.7 Gy/11.1 Gy and 15.5 Gy/

10.7 Gy, respectively. Hippocampal volume had a large effect on the

planning parameters, as shown in Table 4. The treatment planning

with the small hippocampal volume resulted in the better dose

distribution of target and lower Dmax values of hippocampus. For

instance, the volume of hippocampi was 5.4 cm3 in our study,

whereas the value was 3.95 cm3 described by Takaoka et al. (19). In

our study, Halcyon plans demonstrated better hippocampal sparing

(Dmax of 13.48 Gy, Dmean of 8.50 Gy) and achieved exceptional PTV

coverage and homogeneity. These findings underscore Halcyon’s

competitive performance in HA-WBRT and its potential as an

effective alternative to TOMO. Yokoyama et al. (13) investigated
TABLE 4 Comparison of OARs dosimetric parameters ½n = 21,  x ± s=M(Q1,Q3)�.

OARs Parameters Truebeam Halcyon t/z value P value

Lens Dmax (cGy) 525.8 (487.9, 554.4) 495.0 (458.5, 521.3) -3.285 0.001

Optic nerves Dmax (cGy) 3077.6 ± 44.7 3047.7 ± 64.7 3.080 0.006

Eyes Dmean (cGy) 937.9 (916.7, 967.6) 927.1 (906.7, 947.4) -2.624 0.009
FIGURE 5

Global gamma passing rates of the VMAT plans using Truebeam and
Halcyon.
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the impact of arc number (2 – 4 arcs) in Halcyon-based VMAT plans,

and recommended 3 arcs for HA-WBRT, reporting a hippocampal

Dmax of 14.32 Gy. In our study, the dual-arc VMAT plan achieved a

lower hippocampal Dmax (13.48 Gy vs. 14.32 Gy). We attribute this

improvement to two innovations in our coplanar dual-arc technique:

(i) Target structure segmentation with differential weighting during

optimization, enhancing the plan’s modulation capability. (ii) The

orthogonal collimator angle design facilitates more conformal

subfield shapes and better protection of OARs, particularly in

complex spatial relationships between the target and OARs.

Non-coplanar IMRT and VMAT techniques have been

explored to improve hippocampal sparing. For example, Nevelsky

et al. (12) achieved hippocampal Dmax and Dmean of 14.1 Gy and 7.3

Gy, respectively, using nine-field non-coplanar IMRT, though the

PTV coverage (92% for V30Gy) was suboptimal. Subsequently, Xue

et al. (14) employed a non-coplanar VMAT approach improving

the V30Gy coverage to 95%. and achieving a HI and CI values of

0.249 and 0.821, respectively, with hippocampal D100%, Dmax, and

Dmean values of 8.03 Gy, 16.81 Gy, and 11.71 Gy. Although Halcyon

does not currently support non-coplanar delivery, its HA-WBRT

plan quality in our study remains competitive with these reported

techniques, demonstrating comparable hippocampal sparing and

robust target coverage.

It is worth noting that due to the complexity of HA-WBRT,

plan quality is of paramount importance, and selecting appropriate

collimator angles is a critical factor for achieving an optimal dose

distribution. In this study, the collimator angles for Arc 1 (293°) and

Arc 2 (23°) were set with an inter-arc angle of 90°, consistent with

previous studies (34). To address the high complexity of the target

structure, the zPTV_mid module, which posed greater challenges in

meeting planning objectives, was assigned higher optimization

weights. This segmentation and weighting strategy improved

modulation efficiency during plan optimization, aligning with the

modified VMAT techniques reported by Fu et al. (20). Compared to

previously published data (as shown in Table 1), the HA-WBRT

plans only using coplanar dual-arc technology in our study

demonstrated superior prescription dose coverage and dose

uniformity. The PTV coverage reached 97.1%, with hotspots

(D2%) controlled within 108% of the prescription dose. In terms

of hippocampal sparing, the plans achieved groundbreaking results,

maintaining an average hippocampal dose below 9 Gy and reducing

the lens Dmax to less than 5 Gy.

Several limitations should be acknowledged in this study. First,

this is a retrospective single-center study that lacks validation of

long-term clinical outcomes. Second, although our study

demonstrated favorable clinical outcomes, the small sample size

(n=21) may limit the extrapolation of the results. Third, the

potential impact of brain metastasis locations on plan quality was

not evaluated. Future longitudinal, multicenter prospective studies

will evaluate both cognitive outcomes and survival endpoints in

patients with HA-WBRT.
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Conclusion

This study demonstrates that the Halcyon accelerator is a viable

and efficient platform for HA-WBRT, with excellent PTV dose

coverage, superior dose homogeneity, and effective hippocampal

sparing while reducing treatment times. These findings provide a

robust basis for further exploration and clinical adoption of the

Halcyon platform in hippocampal-avoidance radiotherapy.
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