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Background/Objectives: Little is known regarding the influence of circulating

plasma branched-chain amino acids (BCAAs) such as leucine, isoleucine, and

valine on acute skin toxicity (AST) after breast cancer (BC) radiotherapy. Hence,

this study examined the association between circulating plasma BCAAs and the

risk of ≥ grade 2 AST post-radiotherapy among BC patients.

Methods: An observational study was conducted among 161 BC patients treated

with radiotherapy within the ATHENA project in Italy. Plasma BCAAs were

measured at 2-time points: at baseline (T0) and at the end of radiotherapy (T1)

(after 3 or 5 weeks), and were ascertained using a validated method based on

tandem mass spectrometry. AST was measured at T1 and defined according to

the Radiation Therapy Oncology Group/EuropeanOrganization for Research and

Treatment Cancer (RTOG/EORTC) criteria. Analysis was conducted in two parts

with separate study designs using multivariable-adjusted logistic regression

models: 1) A cross-sectional analysis explored the association between plasma

BCAAs at T1 and odds of AST post-radiotherapy; 2) A prospective analysis

examined the association between plasma BCAAs at T0 and odds of AST

post-radiotherapy.

Results: AST post-radiotherapy was observed in 45 (28%) patients. In the cross-

sectional analysis, at T1, plasma isoleucine (1-SD increment) was associated with

43% reduced odds of ≥ grade 2 AST post-radiotherapy (OR = 0.57;95% CI 0.36 to

0.91). A similar trend was observed in the prospective analysis at T0 (OR =

0.65;95% CI 0.42 to 1.02). There was no evidence of an association between

plasma leucine and valine with AST post-radiotherapy, either at T0 or T1. Plasma
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isoleucine was associated with lower odds of AST post-radiotherapy in

BC patients.

Conclusions: The findings highlight that plasma isoleucine is associated with a

low risk of ≥ grade 2 AST post-radiotherapy among BC patients. However, further

studies such as isoleucine supplementation trials are needed to validate

these findings.
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1 Introduction

Breast cancer (BC) is the most commonly diagnosed type of cancer

in women, with an estimated 2.3 million new cases in 2022, thus posing

a major burden on public health (1). Surgery, chemotherapy, and

radiotherapy are the most common modalities for BC treatment.

Among these, radiotherapy remains a highly cost-effective single

mode of treatment, accounting for only 5% of the overall cancer care

costs. It is estimated that approximately 80% of BC patients must

receive radiotherapy at some point in their treatment, hence

highlighting its essential role in BC recovery (2, 3). Although widely

used, radiotherapy also damages healthy tissues in the irradiation field.

The patients mostly develop skin damage, and it is usually dependent

on patient-related factors (age, hemoglobin levels, smoking habits,

comorbidities including cardiovascular disease, diabetes mellitus,

obesity), and the location and duration of the breast organ area

exposed in the radiotherapy (4, 5).

Nearly 85-95% of patients with all types of cancer report

different degrees of skin damage induced by radiotherapy, known

as radiation-induced skin injury. These are of two types: (1) acute

skin toxicity (AST) involving dry and wet desquamation and skin

ulcers, and (2) chronic skin toxicity changes including chronic

ulcers, keratosis due to radiation and fibrosis (6). In the Athena

Study (N = 161), around 62% of patients experienced acute skin

toxicity, according to a recent publication (7). Plasma-free amino

acids are either ingested or endogenously synthesized, circulate

abundantly, and are metabolic regulators in humans (8). Among

them, branched-chain amino acids (BCAAs) such as leucine,

isoleucine, and valine are essential amino acids that the body

cannot synthesize and must be introduced through the diet to

support healthy protein synthesis. Studies have suggested that red

meat, fish, dairy products, and eggs are rich sources of BCAAs (9–

12). The key functions of BCAAs are as follows: (1) activate the

mammalian target of rapamycin (mTOR) signaling pathway
ain amino acids; AST,

logy Group; EORTC,
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required for protein synthesis, especially leucine; (2) enhance

immunity and glucose consumption, especially isoleucine; (3)

prevent cellular damage caused due to oxidative stress, especially

valine; (4) insufficient or excess BCAAs levels enhance lipolysis

(13–15).

Studies have suggested that both higher dietary and elevated

circulating BCAAs levels were associated with a lower severity of BC

(16, 17) by suppressing tumor growth and metastasis (17, 18).

Interestingly, there is sparse evidence on the influence of amino

acids, especially BCAAs, on the risk of radiation-induced skin

injury in cancer, specifically BC.

However, it is not known whether BCAAs such as leucine,

isoleucine, and valine influence the risk of AST after radiotherapy

among BC women. Therefore, the main objective of this study was

to examine the association between circulating plasma BCAA levels

and the risk of ≥ grade (G) 2 (moderate/severe) AST among 161 BC

patients’ post-radiotherapy within the ATHENA project in Italy.
2 Materials and methods

2.1 Trial design and participants

We used data from the ATHENA project for the current

observational study. The ATHENA project was a double-blind,

randomized, placebo-controlled trial designed to evaluate the

impact of anthocyanin supplementation derived from purple corn

cobs on radiation-induced skin toxicity in women with BC

undergoing radiotherapy.

For the purposes of the present analyses, data from 161 women

with BC who received radiotherapy were included. Comprehensive

methodological details regarding the ATHENA randomized

controlled trial (RCT) are available in previously published

reports (19). Participants’ flow chart is provided in Figure 1.
2.2 Eligibility criteria

Women aged 18 years or older with a confirmed diagnosis of

BC and deemed suitable for radiotherapy were considered for
frontiersin.org

https://doi.org/10.3389/fonc.2025.1653293
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Sharma et al. 10.3389/fonc.2025.1653293
inclusion in the current analysis. Participant screening and selection

were carried out by clinical staff based on inclusion and exclusion

criteria established by the ATHENA RCT protocol (19).

Inclusion criteria encompassed patients with invasive breast

carcinoma who had undergone breast-conserving surgery

(lumpectomy or quadrantectomy) along with axillary staging

procedures. Exclusion criteria included pregnancy or lactation at

the time of recruitment, documented psychiatric or substance use

disorders, as well as a history of non-invasive BC, synchronous

bilateral invasive disease, non-epithelial breast tumors, multicentric

carcinoma, or any prior radiotherapy to the breast or thoracic

region for any indication (19). The ATHENA RCT was performed

at the Gemelli Molise Hospital Radiotherapy Unit in Campobasso,

Italy, and was conducted according to the guidelines of the

Declaration of Helsinki.

Recruitment occurred between June 9, 2014, and June 26, 2017,

with study follow-up concluding on October 10, 2018. The study

received approval from the Ethics Committees of both the Catholic

University of Rome and the Regional Health Authority of Molise

(ASReM). All participants provided written informed consent. The

trial was registered on ClinicalTrials.gov (Identifier: NCT02195960)

and was conducted in compliance with Consolidated Standards of

Reporting Trials (CONSORT) reporting guidelines (20).
2.3 Radiotherapy treatment

Within the ATHENA RCT, radiotherapy protocols were

tailored based on individual recurrence risk profiles (low or

moderate to high).

Participants classified as low risk underwent a hypofractionated

radiotherapy regimen over a three-week period, receiving a total

dose of 40 Gray (Gy) to the remaining breast tissue, with a
Frontiers in Oncology 03
simultaneous integrated boost of 4 Gy directed to the tumor bed.

Those at moderate to high risk were administered a 5-week

treatment with standard doses of radiotherapy, consisting of 50

Gy to the residual breast and a 10 Gy boost to the tumor bed.

All patients (3- and 5-week schedules) were treated with

forward-planned intensity-modulated radiation therapy (IMRT)

and were instructed to apply a topical cream (Atonderma

Radiomed®) to the irradiated site approximately 2–3 hours before

and after each session, starting from the first day of treatment (19).

For the present analysis, data from the entire cohort receiving

radiotherapy were included, regardless of the specific treatment

schedule or risk stratification.
2.4 Study exposure

2.4.1 Determination of plasma branched-chain
amino acids

Plasma BCAAs (leucine, isoleucine, and valine) were extracted and

analyzed according to the protocol by Anesi et al. (21). Briefly, the

plasma samples stored in the Neuromed Biobanking Centre were

thawed on ice, and 25 µl aliquots were loaded onto Ostro plates

(Waters, Milan, Italy) together with 25 µl of deuterated internal

standards in methanol. Protein precipitation and metabolite

extraction were achieved by loading 75 µl of ice-cold acetonitrile

containing 1% formic acid; plates were covered and shaken on an

orbital shaker for 5 min at 600 rpm. Subsequently, plates were filtered

for 5 min using a positive pressure manifold with nitrogen at 4 psi.

Extraction was repeated by adding 75 µl of ice-cold acetonitrile

containing 1% formic acid. Filtrates were dried down using nitrogen

at 37 °C and re-constituted in 200 µl of water containing 0.5% formic

acid, and 1 mM ammonium formate. Samples were randomized prior

to extraction. Quality control (QC) samples were created by pooling
FIGURE 1

Flow chart of the ATHENA trial.
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together 10 µl of each plasma sample and were extracted as described

above. 2 µl of each sample were injected and analyzed by ultrahigh-

performance liquid chromatography-tandem mass spectrometry

(UHPLC-MS/MS) by using Multiple Reaction Monitoring (MRM)

on a ABSciex 6500+ triple quadrupole connected to a Shimadzu LC-30

pump (ABSciex, Milan, Italy). Metabolites were separated on a Waters

HSST3 column (100 x 2.1 mm, 1.8 µm) by using water 0.1% formic

acid (A) and acetonitrile 0.1% formic acid (B) as mobile phases.

Chromatographically resolved isoleucine (RT: 2.00 min) and leucine

(RT: 2.20 min) were quantified by using MRM 132.1>86.2 in positive

ionmode, valine (RT 1.20min) byMRM118.1>72.0. QC samples were

injected at the beginning of the analytical sequence to condition

UHPLC-MS/MS and at fixed intervals during the sequence to check

the performance of our methodology. We ran 400–500 samples in one

batch, each run lasting for approximately 10 minutes. QC was then

injected at specific time points during acquisition to ensure stable

instrument response (<20% indicated good stability throughout the

acquisition). All the QC were prepared by pooling together equal

amount of samples and were extracted in the same manner. Finally,

samples were randomized prior to extraction. However, T0 and T1

samples from the same subject were acquired consecutively or vice

versa to get the same MS response.

Finally, plasma BCAAs (leucine, isoleucine, and valine) were

measured twice, at T0 (baseline) and again at T1 (after 3 or 5 weeks

of undergoing radiotherapy).
2.5 Definition of study outcomes

The primary objective of this analysis was to assess the

likelihood of experiencing AST greater than Grade 2. Skin

reactions were evaluated by clinical staff during follow-up visits

after completion of radiotherapy, using the RTOG/EORTC criteria

for both acute and late toxicities (22).

AST was assessed at a follow-up time point (T1), corresponding

to either 3- or 5-weeks post-treatment, depending on the

radiotherapy schedule.

The irradiated area was examined for specific skin changes and

reactions. Skin toxicity was dichotomized for analysis: a score of ‘0’

included Grade 0 (no visible skin changes) and Grade 1 (symptoms

such as follicular, faint or dull erythema/epilation/dry

desquamation/decreased sweating), while a score of ‘1’ included

Grade 2 and above, indicating more pronounced effects such as

tender or bright erythema, patchy moist desquamation/moderate

edema (Grade 2); confluent, moist desquamation other than skin

folds, pitting edema (Grade 3); and ulceration, hemorrhage,

necrosis (Grade 4) (22, 23).
2.6 Assessment of covariates

At the baseline assessment (T0), data were collected on each

participant’s medical history, anthropometric and clinical

parameters, as well as dietary and lifestyle behaviors.
Frontiers in Oncology 04
The following variables were included as covariates in the

analysis: age (in years), body mass index (calculated as kilograms/

meters square), C-reactive protein (CRP) levels at T0, total energy

intake (calculated as kilocalorie [kcal] per day), education (0= none;

1= primary school diploma and secondary school diploma; 2= high

school diploma; 3= bachelor’s degree and master’s degree and

master/doctorate/post-doctorate), physical activity levels (0= no

activity or sedentary; 1= moderate intensity; 2=vigorous-

intensity), hypertension (systolic blood pressure [SBP] >140

mmHg and/or diastolic [DBP] >90 mmHg or anti-hypertensive

treatment), smoking habits (1=yes, 0=no or 2=former), treatment

classification (B=treatment [anthocyanin supplementation]/

A=placebo) recorded at baseline (T0), and weeks of radiotherapy

(3 or 5 weeks). The sensitivity analysis was adjusted for

chemotherapy treatment (1=yes or 0=no).

We used directed acyclic graphs (DAGs) (24, 25) to identify the

covariates to then include in the analyses as they provide a

straightforward and visual presentation for identifying and testing

assumptions about causal relationships between variables by

deducing an algorithm, thus providing an adjustment set of

covariates for estimating causal effects.
2.7 Statistical analyses

Analyses were performed in two parts: (1) a cross-sectional

analysis to study the association between plasma BCAAs at T1 and

the odds of ≥ G2 AST at T1 at the end of radiotherapy (3 or 5

weeks); (2) a prospective analysis for the association between

plasma BCAAs at T0 and the odds of ≥ G2 AST at T1 at the end

of radiotherapy (3 or 5 weeks).

Data for categorical variables are represented as numbers and

percentages, and for continuous variables represented as mean and

standard deviation (SD). For the association between plasma

BCAAs and the odds of ≥ G2 AST amongst post-radiation BC

patients, we used multivariable-adjusted logistic regression models

to derive odds ratios (ORs) and corresponding 95% confidence

intervals (CI).

For logistic regression, AST was coded as a binary outcome

variable (‘0’ denoted the absence of ≥ G2 AST, and ‘0’ denoted the

presence of ≥ G2 AST). Plasma BCAAs (leucine, isoleucine, and

valine) data were recorded as continuous variables, and for

interpretation, the ORs were computed for 1-SD increments in

plasma BCAAs.

Analyses were conducted constructing four models: (i) Model

1: unadjusted logistic regression presented for each plasma BCAA

and ≥ G2 AST; (ii) Model 2: ORs separately presented for

individual associations between each plasma BCAA and ≥ G2

AST, and minimally adjusted for age, BMI, weeks of radiotherapy

(3 or 5 weeks) and treatment group (treatment/placebo); (iii)

Model 3: Additionally adjusted for smoking habits, CRP-levels at

baseline, education, physical activity levels, hypertension, and

total energy intakes; (iv) Model 4: Mutually adjusted for other

plasma BCAAs in the model, and fully adjusted for age, body mass
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index, CRP levels at baseline, smoking habits, total energy intake

(kcal), education, physical activity level, hypertension, weeks of

radiotherapy (3 or 5 weeks) and treatment classification

(treatment/placebo).

In a sensitivity analysis, Model 4 was further adjusted for

chemotherapy treatment (yes or no) to examine the robustness

of associations.

Missing data on covariates are listed in Figure 1. To maximize

data availability, missing data were handled using single imputation

with the PROC MI procedure in SAS. A regression-based

imputation method was employed to estimate the missing values.

For analysis, we used two-sided statistical tests, and the

significance was set at 95% CI. We used STATA/SE software

version 18.0 (StataCorp, College Station, TX, USA) and SAS/

STAT software, Version 9.4.
3 Results

The sample size of the current study was 161 women with a

mean age of 57 years (SD ± 10.3). Refer to Table 1 for the

characteristics of the ATHENA participants. Around 28% (n=45)

of women reported AST ≥G2 of the total sample. 28.5% (n=46) were

hypertensive, and 98% (n=158) reportedly used prescribed

hormone therapy, particularly letrozole (42%, n=69). Further,

based on the BMI (kg/m2), 43.4% (n=70) participants were

overweight and 16.1% (n=26) as obese.

Finally, the plasma BCAAs (leucine, isoleucine, and valine)

measurements conducted at T0 and T1 remained mostly similar

before and after radiotherapy (T0 and T1).

In the fully adjusted multivariable logistic regression model

(Model 4) of the cross-sectional analysis (refer to Table 2), of the

three plasma BCAAs measured at T1, plasma isoleucine (1-SD
TABLE 1 Baseline characteristics of the participants in the ATHENA trial
(N = 161).

Variables Mean or frequency

N of participants (%) 161 (100)

Age, years (mean, SD) 57.0 (10.3)

Educational level, n (%)

None 3 (1.8)

Up to lower secondary 34 (21.1)

High school 45 (28)

Upto postgraduate 27 (16.8)

Do not know 52 (32.3)

Body mass index, kg/m2 (mean, SD) 26.4 (4.4)

Body mass index (BMI) (kg/m2), n (%)

18.5-24.9 (normal) 65 (40.3)

25-30 (overweight) 70 (43.6)

>30 (obese) 26 (16.1)

Co-morbidities, yes, n (%)

Hypertension 46 (28.5)

Diabetes Mellitus 8 (5)

Physical activity levels, yes, n (%)

Moderate intensity 21 (13)

Vigorous intensity 7 (4)

Smoking status, n (%)

Yes 28 (17)

No 106 (66)

Former 27 (17)

Use of Hormone therapy, yes, n (%) 158 (98)

Use of letrozole, yes, n (%) 69 (42)

Chemotherapy, yes, n (%) 77 (48)

Antocyanin treatment, yes, n (%) 83 (52)

Acute skin toxicity, n (%)

Grade 0 49 (30)

Grade 1 67 (42)

Grade 2 43 (27)

Grade 3 2 (1)

Duration of radiotherapy, n (%)

3 weeks 56 (35)

5 Weeks 105 (65)

Menopause, yes, n (%) 100 (62)

(Continued)
TABLE 1 Continued

Variables Mean or frequency

Plasma branch-chained amino acids (BCAA) (µmol/mL),
(mean, SD) (observed range: minimum-maximum)

Baseline (T0)

Valine (ref range: 150 to 310 µM) 351.9 (80.6) (167-627)

Isoleucine (ref range: 42 to 100 µM) 102.5 (25.7) (47-233)

Leucine (ref range: 66 to 170 µM) 175.1 (34.3) (97-320)

First visit (T1)

Valine (ref rangea: 150 to 310 µM) 370.2 (86.4) (157-600)

Isoleucine (ref range: 42 to 100 µM) 105.6 (26.0) (38-214)

Leucine (ref range: 66 to 170 µM) 182.2 (34.4) (85-287)
aThe reference range for plasma BCAAs in a general population is from https://
www.ucsfhealth.org/ (the University of California San Francisco).
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increment) was associated with 43% reduced odds of ≥ G2 AST

post-radiotherapy (OR = 0.57; 95% CI 0.36 to 0.91; p = 0.01).

Further, in Model 4 of the prospective analysis, an inverse

association was observed between plasma isoleucine (1-SD

increment) and the odds of ≥G2 AST post-radiotherapy (OR =

0.65; 95% CI: 0.42 to 1.02; p = 0.06), although the estimate did not

reach conventional levels of statistical significance and should be

interpreted with caution due to limited precision. However, when

valine and leucine BCAA were individually or together analyzed

along with other covariates in the models, there was no evidence of

an association with ≥G2 AST post-radiotherapy (refer to Models 1–

4 in Table 2). Finally, in a sensitivity analysis, the association

between plasma isoleucine and odds of ≥ G2 AST post-

radiotherapy resulted statistically significant after an additional

adjustment for chemotherapy treatment (refer to Table 3).
4 Discussion

The current study examined the influence of plasma BCAAs

(leucine, isoleucine, and valine) on post-radiation ≥G2 AST in a BC

cohort. Findings in the cross-sectional analysis indicated that

among plasma BCAAs measured at T1, plasma isoleucine was

associated with lower odds of ≥ G2 AST post-radiotherapy.

Meanwhile, the prospective analysis findings suggested similar

trend in the statistical significance for the results between plasma

isoleucine measured at baseline (T0) and the odds of ≥ G2 AST

post-radiotherapy. To the best of our knowledge, this is the first

study investigating the association between circulating plasma

BCAAs (leucine, isoleucine, and valine) and the odds of ≥ G2

AST amongst BC patients who underwent radiotherapy.

The association of isoleucine levels with lower odds of ≥ G2

AST after the radiotherapy at T1 could indicate the protective short-

term effects of isoleucine after radiotherapy in BC patients. Indeed,

radiotherapy triggers a series of inflammatory responses in the

normal tissue. Oxidative stress causes cell injury, producing a

reaction of lymphocytes and macrophages, subsequently releasing

pro-inflammatory cytokines and fibroblast stimulation, releasing

reactive oxygen species (ROS) (4).

A study explored isoleucine’s immunological response in relation

to immunotherapy for tuberculosis and suggested that isoleucine was

strongly correlated with beta-defensin, predominantly secreted from

leukocytes and epithelial cells (26). To elaborate, beta-defensin are

small peptides (15–20 residues) that have antimicrobial defense

properties by penetrating the microbe’s cell membrane and causing

microbial death in a method similar to antibiotics. Therefore, this

mechanism could potentially be postulated in the context of AST

post-radiotherapy in BC. However, further studies are warranted to

precisely identify this effect.

In the past, few studies only suggested the use of glutamine (in

enteral form) to improve wound matrix formation in patients with
Frontiers in Oncology 06
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and its side effects, such as mucositis and radiodermitis (27–29).

Further, in relation to radiation-induced skin injury in BC,

glutamine-treated BC patients post-radiotherapy demonstrated a

lower rate of AST as compared to the corresponding placebo group

(9% developed grade I AST vs. 80% developed grade II AST)—

based on the RTOG/EORTC criteria (22) for AST (29).

Additionally, previous nutritional studies evidenced that high-

protein diets might lower the risk of AST but not the protective

effect of circulating plasma BCAAs in the context of radiotherapy

treatment-related skin injuries (6). In recent years, the potential role

of dietary BCAAs has been explored in relation to the risk of BC. To

elaborate, one animal model study explored the impact of BCAAs in

their dietary form on the risk of breast metastasis among mice. The

findings demonstrated that high BCAA concentration impaired the

ability of tumor cells to invade and migrate due to the

downregulation of N-cadherin (18). In contrast, another study

examined the long-term dietary intakes of BCAA and reported no

evidence of an association with invasive BC risk (30). However,

interestingly, there is a dearth of evidence for BCAAs in relation to

radiotherapy treatment-related side effects, such as AST affecting

BC patients.

Our findings showed that plasma leucine and valine were not

associated with lower odds of post-radiotherapy ≥ G2 AST in BC

patients. This is despite leucine being the most abundant amino acid

responsible for muscle repair and maintaining energy homeostasis.

This could elucidate the complex interplay between isoleucine and

leucine in mammalian epithelial cells, ultimately promoting healthy

growth and proliferation of breast cells and increasing longevity.

Moreover, in animal studies, both leucine and isoleucine are

suggested to improve the fractional protein synthesis rates in

bovine mammary glandular cells with phosphorylation of mTOR,

a protein kinase responsible for immune response, autophagy, and

maintenance of health cellular metabolism—protein degradation is

lowered. However, the pathways involving valine are so far

unknown (31–33).

From an oncology nutrition standpoint, the current findings

could provide the groundwork for dietary BCAA administration for

BC patients undergoing radiotherapy. BCAAs account for 30-40%

of the essential amino acids and cannot be synthesized in the body.

Therefore, they need to be supplied through the diet (34, 35).

Moreover, BCAAs are suggested to act as a fuel source to slower

protein degradation during catabolic diseases (9, 36). In addition,

further studies including isoleucine supplementation trials could

validate our study’s findings to increase overall clinical significance.

To compensate for the protein losses the following BCAAs-

related clinical strategies could be considered: (1) the time of

administration, especially BCAA supply (before or immediately

after radiotherapy); and (2) the form of protein (a) BCAA-rich

animal or vegetable sources (for example, fish, meat, eggs, and

pulses and cereals such as soybean meal, wheat germ, rye, barley,
frontiersin.org
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TABLE 2 Association between plasma branch chain amino acids (BCAA) levels and the odds of post-radiation ≥G2 acute skin toxicity in cross-sectional (T1) and longitudinal analysis (T0) in ATHENA project.

Plasma BCAA (1SD increment) N = 161 Odds of skin toxicity, Model 1 Odds of skin toxicity, Model 2 Odds of skin toxicity, Model 3 Odds of skin toxicity, Model 4

p value ORb 95% CI p value ORc 95% CI p value ORd 95% CI p value

0.30 0.88 0.75 to 1.02 0.11 0.89 0.76 to 1.04 0.16 0.57 0.36 to 0.91 0.01

0.84 0.96 0.86 to 1.07 0.51 0.96 0.86 to 1.08 0.59 1.36 0.89 to 2.08 0.14

0.82 0.98 0.93 to 1.02 0.42 0.98 0.94 to 1.03 0.60 1.01 0.89 to 1.15 0.84

ity, Model 1 Odds of skin toxicity, Model 2 Odds of skin toxicity, Model 3 Odds of skin toxicity, Model 4

p value ORb 95% CI p value ORc 95% CI p value ORd 95% CI p value

0.75 0.95 0.82 to 1.09 0.50 0.94 0.79 to 1.10 0.47 0.65 0.42 to 1.02 0.06

0.89 0.99 0.89 to 1.10 0.87 0.99 0.88 to 1.11 0.91 1.08 0.73 to 1.58 0.69

0.65 0.99 0.95 to 1.04 0.98 1.00 0.95 to 1.05 0.81 1.10 0.95 to 1.26 0.18

skin toxicity, and minimally adjusted for age, body mass index,

levels, hypertension, total energy intake (kcal),

ss index, CRP levels at baseline, smoking habits,
or no), radiotherapy duration (3 or 5 weeks) and

Sh
arm

a
e
t
al.

10
.3
3
8
9
/fo

n
c.2

0
2
5
.16

5
3
2
9
3

Fro
n
tie

rs
in

O
n
co

lo
g
y

fro
n
tie

rsin
.o
rg

0
7

Cross-sectional (T1) ORa 95% C

Isoleucine 0.92 0.80 to 1.06

Leucine 0.98 0.89 to 1.09

Valine 0.99 0.95 to 1.03

Odds of skin toxic

Longitudinal (T0) ORa 95% C

Isoleucine 0.97 0.85 to 1.12

Leucine 1.00 0.91 to 1.11

Valine 1.00 0.96 to 1.05
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and sorghum) (9–12, 37) and (b) dietary supplementation rich in

BCAAs [commercial supplement formulations comprised of

protein-rich substrates such as soybean or chicken breast] (38, 39).

Finally, the sensitivity analysis adjusted for chemotherapy

resulted statistically significant for BC patients; both those who

underwent radiotherapy and those who underwent chemotherapy

coupled with radiotherapy (40).
4.1 Strengths and limitations

Our study had some strengths to be considered. The study

design and the analysis used in the methodology optimized the

study findings. We had the available data on the BC patients’

circulating plasma BCAAs and repeated post-radiation ≥ G2 AST

measures recorded over different time points during the follow-up

period. Plasma BCAAs were ascertained using a validated method

based on tandem mass spectrometry, providing accurate

measurements in plasma samples. The AST readings were

classified according to the international guidelines (RTOG

grading) to make the findings widely applicable and replicable in

clinical settings. We note that the clinicians assessing AST were

completely blinded to BCAA levels and study hypotheses, since

plasma BCAAs were measured retrospectively from samples

collected during routine care. This blinding supports the

objectivity and strengthens the credibility of our findings. The

regression models were carefully adjusted for covariates with

possible clinical significance (24, 25). The analyses were adjusted

for radiotherapy duration (3 or 5 weeks) and anthocyanin

treatment/placebo, thus accounting for the original study design

(19) and commonly used cancer treatments, such as chemotherapy,

to test their robustness.
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There were some limitations to be considered. First, the study

had a modest sample size (N = 161), which could justify the lack of

statistical associations, and part of the analysis was cross-sectional.

Second, the cross-sectional findings captured relatively shorter time

points. However, plasma BCAAs represent the real-time status of

the BCAA circulation. They are available in abundant quantities

sufficient to exhibit any immediate changes in the metabolism post-

radiotherapy among women with BC. Therefore, tracking the

plasma BCAAs status after each patient’s radiotherapy visit

during radiotherapy treatment might assist the doctors in making

clinical decisions, such as dietary supplementation. Third, there

were no recommendations/guidelines for plasma BCAA reference

ranges available for a population with breast cancer. Hence, it was

challenging to compare the differences in plasma BCAAs during

baseline and post-radiotherapy and make appropriate clinical

conclusions. Fourth, we did not apply correction for multiple

comparisons. This choice was motivated by the exploratory

nature of the study and the relatively small sample size, which

may limit statistical power. However, we acknowledge this as a

limitation that could increase the likelihood of false-positive

findings. Finally, we could not examine the association between

dietary BCAAs and radiation-induced AST in BC patients because

of the lack of available data. Perhaps future studies could explore the

longitudinal associations between dietary BCAAs and the risk of

AST in women with BC.
5 Conclusions

Among circulating plasma BCAAs, high plasma isoleucine was

associated with lower odds of ≥ G2 AST among BC women who

underwent radiotherapy. However, further studies such as isoleucine

supplementation trials are needed to validate the protective role of

isoleucine thus contributing to evidence-based clinical management

strategies for BC women undergoing radiotherapy.
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