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Introduction: Breast cancer (BC) remains the most prevalent malignant tumor in

women worldwide and a leading cause of cancer-related mortality. Early

screening is essential to improve prognosis, yet current diagnostic methods

are often invasive or lack sensitivity. Saliva is an accessible and non-invasive

biofluid containing various metabolites that reflect systemic physiological and

pathological changes. Thus, salivary metabolomics may provide novel insights

into breast cancer-associated metabolic alterations and support the

development of early diagnostic strategies.

Objectives: To explore the salivary metabolomic profile of breast cancer patients

and identify potential non-invasive biomarkers for early breast cancer screening.

Methods: Saliva samples were collected from a screening set consisting of 30 BC

patients and 20 normal controls (NC) volunteers. untargeted metabolomics

approach was performed using liquid chromatography–tandem mass

spectrometry (LC-MS/MS). Principal component analysis (PCA) and orthogonal

partial least squares-discriminant analysis (OPLS-DA), along with KEGG pathway

enrichment and receiver operating characteristic (ROC) curve analyses, were

employed to characterize metabolic differences and identify potential

biomarkers. Additionally, saliva samples from a validation set (52 BC patients

and 52 NC volunteers) were collected. Enzyme-linked immunosorbent assay

(ELISA) was used to quantify potential biomarkers, and their diagnostic

performance was evaluated through ROC curve analysis.

Results: A total of 101 differential metabolites were identified, including 81

upregulated and 20 downregulated compounds. Screening identified 2-

aminonicotinic acid and theobromine as potential diagnostic biomarkers.

Analysis of the validation set demonstrated that 2-aminonicotinic acid (AUC:

0.81, cut-off: 5.88 ng/mL) and theobromine (AUC: 0.75, cut-off: 5.27 ng/mL)

exhibit promising diagnostic potential.

Conclusion: The salivary metabolome of breast cancer patients displays distinct

changes compared to healthy individuals. Salivary 2-aminonicotinic acid and

theobromine emerge as promising non-invasive biomarkers for breast cancer

detection. Nevertheless, larger-scale validation studies are warranted to

substantiate their specificity and clinical utility.
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1 Introduction

Breast cancer (BC) is the most common malignant tumor

among women, ranking first in both incidence and mortality

among female malignancies. According to a report by the World

Health Organization (WHO), more than 2.3 million new breast

cancer cases were diagnosed globally in 2020, with approximately

685,000 related deaths (1). These figures not only underscore the

severe threat breast cancer poses to women’s health worldwide but

also highlight its significance and urgency in public health (2). The

high incidence and mortality rates of breast cancer make it one of

the major challenges to women’s health (3). There is an urgent need

to enhance research and application of early screening, diagnosis,

and treatment strategies. Currently, breast cancer detection

primarily relies on imaging techniques such as mammography,

ultrasound, and magnetic resonance imaging (MRI) (4), as well as

invasive procedures like tissue biopsy or minimally invasive blood

tests (5). Although these technologies play a crucial role in

diagnosis, they often fail to fully meet the need for non-invasive,

convenient, and efficient screening, particularly for the early

detection of breast cancer (6). Therefore, developing a novel non-

invasive diagnostic method is urgently needed.

Metabolomics, as a powerful analytical tool, has been widely used

to study the expression changes of metabolites in complex human

diseases. Its high specificity and sensitivity offer distinct advantages in

research across various diseases (7). By quantitatively analyzing the

overall metabolic profile changes of organisms under normal

physiological conditions, pathological processes, or external stimuli,

metabolomics provides an indispensable platform for discovering

potential biomarkers (8). This technology not only reveals disease-

related metabolic pathway abnormalities but also provides critical

scientific evidence for early diagnosis, prognosis assessment, and the

development of personalized treatment strategies. In recent years, the

application of metabolomics in cancer research has expanded

significantly. Untargeted metabolomics and lipidomics studies

using liquid chromatography-tandem mass spectrometry (LC-MS/

MS) have shown tremendous potential in discovering novel

biomarkers and uncovering metabolic changes (9). Mohit Jain et al.

used LC-MS/MS technology to analyze the consumption and release

(CORE) curves of 219 metabolites in the culture media of the NCI-60

cancer cell lines, including breast cancer cells, revealing unique

metabolic characteristics of cancer cells (10). In further studies,

they employed RRLC-MS/MS to successfully differentiate between

BC patients and normal control (NC volunteers), identifying 12

potential breast cancer biomarkers in urine samples (11). It is

worth noting that, in addition to urinary metabolomics, salivary

metabolomics has gained increasing attention in recent years and has

shown promising diagnostic potential. Sugimoto et al. used CE-MS

technology to analyze saliva samples and identified 14 amino acids as

potential biomarkers for breast cancer diagnosis (12). Moreover,

researchers have used salivary biomarkers to diagnose diseases such

as oral cancer (13), pancreatic cancer (14), and lung cancer (15).

However, despite the growing body of research on salivary

metabolomics in other cancer types, its application in breast cancer
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remains relatively limited, with the associated metabolic

characteristics not yet systematically analyzed. Further in-depth

research is urgently needed to clarify its clinical application value.

Saliva, as a bodily fluid rich in various metabolites, offers

distinct advantages in disease screening and early diagnosis due

to its non-invasive collection, ease of use, and high reproducibility

(16). Existing studies have shown significant metabolic

abnormalities in breast cancer patients, including disruptions in

glucose metabolism, amino acid metabolism, and lipid metabolism

(17). These metabolic changes may be reflected in saliva through the

bloodstream or other pathways. Therefore, by integrating salivary

metabolomics, it is possible to identify new non-invasive

biomarkers for the early diagnosis of breast cancer, providing a

more convenient screening method for clinical use.

This study, by combining the non-invasive approach of salivary

metabolomics, aims to develop a more accurate, non-invasive, and

easily scalable breast cancer detection method. This approach not

only has the potential to improve early diagnosis rates but also reduce

patient suffering and healthcare costs, offering a new breakthrough in

BC prevention and control. Furthermore, emerging evidence has

suggested that salivary metabolomics may reflect systemic metabolic

changes associated with tumor progression through immune and

endocrine signaling pathways (12), thereby supporting its potential

use in early cancer detection. This theoretical foundation provides a

rationale for exploring salivary biomarkers as viable tools for breast

cancer screening, although further empirical studies are required to

establish their specificity and clinical utility (18).
2 Materials and methods

2.1 Clinical samples and ethical approval

All participants were recruited from the Department of

Integrative Oncology at Hunan Provincial Cancer Hospital

between December 2024 and August 2025, where saliva samples

were collected for subsequent analytical evaluation. Subjects were

enrolled based on stringent inclusion and exclusion criteria. Breast

cancer diagnoses were confirmed through established clinical and

histopathological standards. The control group comprised age- and

ethnicity-matched (all Han Chinese) women with no history of

malignancy or breast-related disorders. Inclusion criteria for breast

cancer patients encompassed histologically confirmed breast

cancer, absence of prior systemic therapy at the time of saliva

collection, and no concurrent malignancies. Exclusion criteria for

controls included a history of cancer, autoimmune disorders, or

recent infections. The screening set consisted of 30 BC patients and

20 NC volunteers (Table 1). The sample size for the validation set

was determined using MedCalc software based on area under the

curve (AUC) results from the screening set (a = 0.05, b = 0.2, null

hypothesis value = 0.7), yielding 52 BC patients and 52 NC

volunteers (Supplementary Table S1). All participants provided

written informed consent. This study was approved by the Ethics

Committee of Hunan Provincial Cancer Hospital (Approval No.
frontiersin.org
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2025-KY-KS-045) and conducted in accordance with the

Declaration of Helsinki.
2.2 Reagents and instruments

The reagents used in this study are listed in Table 2. The

instruments used in this study are summarized in Table 3.
2.3 Saliva collection and processing

Participants were instructed to abstain from consuming coffee,

chocolate, cakes, and other refined sweets for one week prior to

sample collection. Additionally, they were advised to avoid eating,

drinking, smoking, or using oral hygiene products for at least one

hour before the collection of samples. They rinsed their mouths

thoroughly with deionized water and expelled any residual saliva.

Participants were seated comfortably with their eyes open, head

slightly tilted forward, and instructed to rest for 5 minutes to

minimize facial movements. Saliva was collected for 5 minutes

using expectoration: participants were asked to accumulate saliva at

the bottom of their mouths and expel it into a 50 mL centrifuge tube

every 60 seconds (with a reminder not to expectorate mucus). The

saliva samples were then centrifuged at 4°C, 2600 g for 15 minutes.

The supernatant was quenched in liquid nitrogen and stored at

-80°C.
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2.4 Experimental methods

2.4.1 Metabolite extraction
Samples were thawed on ice and subjected to metabolite

extraction using the Starlid™ automated workstation. A 100 μL

aliquot of each sample and 400 μL of extraction solvent (methanol:

acetonitrile = 1:1, v/v, containing isotopically labeled internal

standards) were transferred to a 96-well protein precipitation

plate. The mixture was vortexed at 750 rpm for 5 minutes, left to

stand for 5 minutes, filtered, and the filtrate was collected. An equal

volume of supernatant from all samples was mixed to create a

quality control (QC) sample for analysis.

2.4.2 Instrumental analysis
For polar metabolites, an ultra-high-performance liquid

chromatography (UHPLC) system, Vanquish (Thermo Fisher

Scientific), was used in conjunction with a Waters ACQUITY
TABLE 2 Reagents.

Name
CAS
Number

Purity Brand

Methanol 67-56-1
LC-MS
grade

CNW
Technologies

Acetonitrile 75-05-8
LC-MS
grade

CNW
Technologies

Ammonium acetate 631-61-8
LC-MS
grade

SIGMA-
ALDRICH

Ammonium hydroxide 1336-21-6
LC-MS
grade

CNW
Technologies

Ultrapure water
(ddH2O)

– – Watsons

Acetic acid 64-19-7
LC-MS
grade

SIGMA-
ALDRICH

2-Propanol 67-63-0
LC-MS
grade
TABLE 1 Clinic characteristics of the screening set.

Characteristic
BC Patients
(n=30)

Controls
(n = 20)

p-value

Ages 41 ± 10.5 40 ± 5.1 0.9

BMI (kg/mue 28.5 ± 3.2 27.4 ± 2.3 0.88

Ethnicity Chinese Chinese

Gender (Male/
Female)

0/30 0/20

Menopausal Status,
n (%)

0.594

- Premenopausal 3 (10%) 3 (15%)

- Postmenopausal 27 (90%) 17 (85%)

Clinical stage N/A

Early stage (I-II) 20 (I:6, II:14) N/A

Advanced stage
(III-IV)

10 (III:8, IV:2) N/A

TNM status N/A

Tumor status (T) T1:13, T2:16, T3:0, T4:1 N/A

Regional lymph
node status (N)

N0:16, N1:6, N2:6, N3:2 N/A

Distant metastasis
status (M)

M0:29, M1:1 N/A
p-value derived from t-test for continuous variables and Chi-square test for categorical
variables comparing BC patients vs. Healthy Controls. N/A, Not Applicable.
TABLE 3 Instruments.

Instrument Model Brand

Ultra-high performance liquid
chromatography (UHPLC)

Vanquish Thermo Fisher Scientific

High-resolution mass
spectrometer (HRMS)

Orbitrap Exploris
120

Thermo Fisher Scientific

Centrifuge Heraeus Fresco17 Thermo Fisher Scientific

Analytical balance BSA124S-CW Sartorius

Ultrasonic cleaner PS-60AL
Shenzhen Redbang
Electronics Co., Ltd.

Homogenizer JXFSTPRP-24
Shanghai Jingxin
Technology Co., Ltd.

Microplate reader SpectraMax M5 Molecular Devices, LLC

Freeze dryer LGJ-10C
Sihuan Frey Technology
Development Co., Ltd.
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UPLC BEH Amide (2.1 mm × 50 mm, 1.7 mm) column for

chromatographic separation of target compounds. The mobile

phase consisted of A: water with 25 mmol/L ammonium acetate

and 25 mmol/L ammonia, and B: acetonitrile. The sample tray was

maintained at 4°C, and the injection volume was 2 μL. The Orbitrap

Exploris 120 mass spectrometer, controlled by Xcalibur software

(version 4.4, Thermo), was used for data acquisition in both full MS

and MS/MS modes. Detailed parameters are as follows: Sheath gas

flow rate: 50 Arb; Aux gas flow rate: 15 Arb; Capillary temperature:

320°C; Full MS resolution: 60,000; MS/MS resolution: 15,000;

Collision energy: SNCE 20/30/40; Spray voltage: 3.8 kV (positive)

or -3.4 kV (negative).
2.5 Detection of 2- aminonicotinic acid
and theobromine by ELISA

2-aminonicotinic acid and theobromine ELISA kits were

purchased by from Cloud-Clone Corp. (Wuhan, China). To

detect 2-aminonicotinic acid and theobromine in saliva using

ELISA, thaw samples stored at -80°C on ice and centrifuge at

2600g for 5 minutes at 4°C. Dilute supernatant 1:5 in PBS to reduce

matrix effects. Add 100 μL of diluted samples and standards to a 96-

well ELISA plate pre-coated with specific antibodies, then incubate

for 1–2 hours at room temperature. Wash plates, add biotinylated

detection antibodies, followed by streptavidin-HRP conjugate, and

develop with TMB substrate. Measure absorbance at 450 nm using a

microplate reader.
2.6 Data analysis

Principal component analysis (PCA) and orthogonal partial

least squares discriminant analysis (OPLS-DA) were performed

using R-4.1.1. The importance of variables in the OPLS-DA model

was assessed using the variable importance in projection (VIP)

scores, and differential metabolites were selected based on VIP > 1,

p < 0.05, and fold change (FC). The metabolites were annotated

using the KEGG compound database and mapped to KEGG

pathways for pathway analysis. Finally, the diagnostic potential of

significantly different metabolites was evaluated using ROC curves.

The software and analysis tools used in this study are summarized

in Table 4.
3 Results

3.1 Principal component analysis

The PCA score plot showed that the screening set samples were

primarily distributed within the 95% confidence interval, and the QC

samples exhibited good clustering, indicating the high stability and
Frontiers in Oncology 04
reliability of the experimental data (Supplementary Figure S1). PCA

of screening set samples from the BC group and the NC group is

presented in Figure 1A. To further distinguish the metabolic

differences between BC patients and NC volunteers, OPLS-DA was

performed. The OPLS-DA score plot (Figure 1B) revealed that the

model’s R²X, R²Y, and Q values were 0.312, 0.617, and 0.251,

respectively, with clear separability between the two groups. The

most significant metabolic features contributing to the group

differences were identified. To validate the model’s reliability, a

permutation test (n=200) was conducted, where the class variable

Y’s arrangement was randomly shuffled to generate random models

with R² and Q² values (Figure 1C). The results indicated that the

model was partial overfitted and showed high statistical significance.

Based on the screening criteria (VIP > 1 and P < 0.05), 101 differential

metabolites were selected from the preliminary analysis of metabolic

features, of which 81 were significantly upregulated and 20 were

significantly downregulated (Figure 1D). To further analyze the

distribution of these differential metabolites across groups, a Z-

score analysis was performed on the top 10 most significantly

upregulated and downregulated metabolites (Figure 1E). The

results revealed a clear difference in the distribution of metabolites

between the two groups. Notably, the most significantly upregulated

metabolites included 2-Aminonicotinic acid, N-Acetyl-D-

galactosamine 4-sulfate, and 6,8-Di-O-methylaverufin, while the

most significantly downregulated metabolites were Theophylline,

1,7-Dimethylxanthine, and 3-Hydroxyhept-4-enoylcarnitine. A

stick chart further confirmed that 2-Aminonicotinic acid

(upregulated) and Theophylline (downregulated) were the most

significantly different metabolites between the two groups
TABLE 4 Data analysis software.

Analysis Software (Version)

PCA SIMCA (18.0.1)

OPLS-DA SIMCA (18.0.1)

OPLS-DA Permutation Test R (ggplot2) (3.3.5)

Volcano Plot R (ggplot2) (3.3.5)

Z-score Plot R (ggplot2) (3.3.5)

Stick Plot R (ggplot2) (3.3.5)

Correlation Heatmap R (corrplot) (0.89)

Chord Diagram R (ggraph) (2.0.5)

KEGG Annotation Plot R (base) (3.6.3)

KEGG Pathway Annotation
Classification

R (ggplot2) (3.3.5)

KEGG Enrichment Plot R (ggplot2) (3.3.5)

Metabolic Pathway Bubble Plot R (KEGGgraph, ggplot2) (1.46.0, 3.3.5)

Metabolic Pathway Tree Diagram R (KEGGgraph, treemap) (1.46.0, 2.4-2)

ROC Curve Plot R (plotROC, pROC) (2.2.1, 1.16.2)
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(Figure 1F). Correlation analysis of the differential metabolites

revealed a strong positive correlation between 2-Methyl-3-

hydroxybutyric acid and 2-Methylbutyric acid, with a correlation

coefficient close to 1 (Figures 1G, H), suggesting that these two
Frontiers in Oncology 05
metabolites may act synergistically in the same biological process or

be regulated by similar mechanisms. On the other hand, the

correlation coefficient between Theophylline and Caffeine

metabolism was negative and of substantial magnitude, indicating
FIGURE 1

Metabolomic analysis of saliva in the screening set. (A) PCA of BC group and NC group; (B) OPLS-DA analysis of BC group and NC group;
(C) Results of permutation test for OPLS-DA model; Ry(cum) represents the cumulative explained variance in the y-direction of the model;
Q(cum) represents the proportion of the predicted variance of the model; (D) Volcano plot for differential metabolite screening; (E) Z-score plot
for differential metabolites; (F) Stick diagram of differential metabolites; (G) Chord diagram for correlation analysis of differential metabolites;
(H) Heatmap for correlation analysis of differential metabolites.
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an inverse trend in their changes under experimental conditions. This

may reflect their roles in different biological pathways or opposing

regulatory influences under the experimental conditions.
3.2 Pathway analysis

To explore the metabolic changes between BC patients and NC

volunteers and their biological significance, this study performed

pathway annotation and enrichment analysis of the differential

metabolites based on the KEGG database. The KEGG enrichment
Frontiers in Oncology 06
classification plot (Figure 2A) revealed that the differential

metabolites were primarily enriched in pathways such as the

biosynthesis of other secondary metabolites, cancer overview, and

carbohydrate metabolism. These findings suggest that these

pathways may play a significant role in the metabolic

reprogramming of breast cancer. Additionally, the KEGG

heatmap (Figure 2B) displayed the expression level changes of

metabolites across the pathways, with color gradients from blue

to red indicating increasing metabolite abundance. This further

highlighted the metabolic differences between BC patients and

healthy controls. Further KEGG pathway enrichment analysis
FIGURE 2

Differential metabolite pathway analysis. (A) KEGG Enrichment Analysis Plot. (B) KEGG Heatmap. (C) Rectangular Tree Map of Differential Metabolite
Pathways. (D) Bubble Plot of Differential Metabolite Pathways.
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indicated significant differences in several metabolic pathways

between the experimental groups, with the highest proportions

observed in caffeine metabolism, sphingolipid metabolism, and

propanoate metabolism (Figure 2C). The KEGG enrichment

bubble plot (Figure 2D) visually depicted the enrichment of these

pathways, with caffeine metabolism and choline metabolism

showing higher Rich Factors and significant P-values (P < 0.05),

suggesting that these pathways may be significantly activated in BC.
3.3 ROC analysis of differential metabolites

ROC curves were constructed for each comparison based on a

series of binary classifications (defined by threshold values), with

the true positive rate (sensitivity) plotted on the vertical axis and the

false positive rate (1-specificity) on the horizontal axis. For each

clearly identified differential metabolite, we plotted its ROC curve

and calculated the AUC. The AUC value ranges between 0.5 and

1.0. An AUC closer to 1 indicates better diagnostic performance. An

AUC between 0.5 and 0.7 reflects low accuracy, between 0.7 and 0.9

indicates moderate accuracy, and above 0.9 suggests high accuracy.

Among the upregulated metabolites in this study, 2-Aminonicotinic

acid exhibited the highest AUC value (Figure 3A), suggesting its

potential as a biomarker for breast cancer. Furthermore, among the

downregulated metabolites, Theobromine showed the highest AUC

value (Figure 3B), indicating its potential diagnostic value in

distinguishing between BC group and NC group in the

screening set.
3.4 Validation of caffeine and 2-
aminonicotinic acid as potential
biomarkers

To validate the diagnostic potential of theobromine and 2-

aminonicotinic acid, identified as significantly downregulated and

upregulated metabolites, respectively, in the screening set through

OPLS-DA analysis, we further quantified their concentrations in a

larger cohort comprising 52 BC patients and 52 NC volunteers. The

levels of theobromine and 2-aminonicotinic acid in saliva samples

were measured using ELISA. ROC analysis was performed to

evaluate the discriminative capacity of each metabolite and to

determine the optimal cutoff value for maximizing sensitivity and

specificity (Figure 4A). For theobromine, ROC analysis yielded an

AUC of 0.81 (95% CI: 0.72–0.88), indicating robust discriminative

ability between BC patients and NC volunteers. The optimal cutoff

value for theobromine concentration was 5.88 ng/mL, with a

sensitivity of 96.15% and a specificity of 59.62%. For 2-

aminonicotinic acid, ROC analysis revealed an AUC of 0.75 (95%

CI: 0.66–0.83), suggesting excellent discriminative performance.

The optimal cutoff value was 5.27 ng/mL, with a sensitivity of

73.08% and a specificity of 69.23%.

Box-plots of theobromine and 2-aminonicotinic acid

concentrations (Figure 4B) demonstrate a significant reduction in

theobromine levels in BC group compared to NC group. Conversely,
Frontiers in Oncology 07
2-aminonicotinic acid levels were significantly elevated in BC group

relative to controls. Scatter plots of individual sample concentrations

(Figure 4C) further confirm the distinct separation between the two

groups. The optimal cutoff values for theobromine and 2-

aminonicotinic acid effectively discriminated between the BC group

and NC group. These findings validate theobromine and 2-

aminonicotinic acid as reliable salivary biomarkers for distinguishing

BC patients from healthy controls, supporting their potential utility in

non-invasive breast cancer screening.
4 Discussion

This study employed LC-MS/MS non-targeted metabolomics to

deeply analyze the salivary metabolic profiles of BC patients and NC

volunteers, successfully identifying a range of potential biomarkers

with diagnostic value. We systematically identified differential

metabolites using PCA, OPLS-DA, and permutation testing. The

OPLS-DA model demonstrated potential overfitting. Given the

complexity of biological data in metabolomics studies, these

differential metabolites warrant further investigation. To mitigate

the risk of overfitting, stringent filtering criteria (VIP > 1 and p <

0.05) were applied. Theobromine and 2-aminonicotinic acid were

identified as significantly upregulated or downregulated in BC

patients, suggesting their potential roles in BC onset and

progression. Additionally, ROC analysis further validated the

diagnostic potential of theobromine and 2-aminonicotinic acid. In

the validation cohort, high AUC values for theobromine and 2-

aminonicotinic acid indicated their ability to effectively discriminate

BC patients from healthy individuals, exhibiting potential

diagnostic sensitivity and specificity. Theobromine, a key

intermediate in the caffeine metabolism pathway, was minimally

influenced by dietary factors due to pre-collection dietary

restrictions. Evidence suggests that alterations in theobromine

levels may be closely associated with changes in cytochrome P450

enzymes (e.g., CYP1A2) in BC patients.

This suggests that the altered caffeine metabolism pathway may

contribute to the metabolic reprogramming observed in breast cancer.

Additionally, 2-Aminonicotinic acid, a derivative of nicotinic acid,

could be implicated in the altered nicotinamide metabolism observed

in cancer cells. Given that these metabolic pathways are known to be

involved in energy metabolism, oxidative stress, and cell signaling,

these findings point to the significant role of these metabolites in cancer

pathophysiology. Studies have shown that the inhibition of CYP1A2

activity has been reported in various cancers, which may result in

abnormal accumulation or excessive consumption of caffeine and its

metabolites, such as theobromine (19). Additionally, dysregulation of

theobromine metabolism may reflect an increase in oxidative stress

levels within the tumormicroenvironment, which plays a crucial role in

the metabolic adaptation and survival strategies of breast cancer cells

(20). Additionally, 2-Aminonicotinic acid, a key product of nicotinic

acid metabolism, may serve as an indicator of abnormal nicotinic acid

metabolic pathways in breast cancer patients (21). Nicotinic acid and

its derivatives play vital roles in cellular energy metabolism and DNA

repair, and their metabolic imbalance may impact the proliferation and
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survival of tumor cells (22, 23). Notably, the abnormal levels of 2-

Aminonicotinic acid may be associated with dysregulation of

nicotinamide adenine dinucleotide (NAD+) metabolism, which is

widely recognized as one of the key mechanisms in cancer metabolic

reprogramming (24). These metabolic alterations may be driven by

systemic immune and endocrine signaling pathway changes induced

by the tumor, as previously reported in salivary metabolomics studies

(14). The interplay between purine and nicotinic acid metabolism

underscores their potential as diagnostic biomarkers, warranting
Frontiers in Oncology 08
further investigation to elucidate their mechanistic roles in breast

cancer progression (25).

In pathway analysis, significant differences were observed

between the salivary metabolomes of breast cancer patients and

healthy individuals, particularly in key metabolic pathways such as

caffeine metabolism, sphingolipid metabolism, and propanoate

metabolism. This study found that the caffeine metabolism,

sphingolipid metabolism, and propanoate metabolism pathways

contributed the most to the metabolic differences, which aligns with
FIGURE 3

(A) represents the upregulated metabolites, while (B) represents the downregulated metabolites.
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the phenomenon of metabolic reprogramming in breast cancer. The

caffeine metabolism pathway also showed significant changes in

breast cancer patients. Caffeine is primarily metabolized by

cytochrome P450 enzymes, particularly CYP1A2, whose activity is

suppressed in various cancers. Caffeine metabolism is not only

closely linked to energy metabolism but also plays a role in other

biological processes (26). Additionally, caffeine metabolism is not

only closely related to energy metabolism, but its metabolites may
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also be linked to increased oxidative stress levels in the tumor

microenvironment. Previous studies have shown that breast cancer

cells can promote their survival and proliferation by regulating their

redox state, and further influence cancer cell proliferation and drug

resistance through the modulation of cell signaling pathways (27).

Specifically, caffeine and its metabolites can inhibit cancer cell

proliferation and induce apoptosis by suppressing the PI3K/AKT/

mTOR signaling pathway (28). Additionally, caffeine metabolism
FIGURE 4

ROC analysis and biomarker distribution in the validation set. (A) ROC curve illustrating the AUC, sensitivity, and specificity of the Theobromine and
2-Aminonicotinic acid in the validation set (52 NC vs. 52 BC) based on saliva concentrations. (B) Box-plot showing Theobromine and 2-
Aminonicotinic acid levels in validation set. (C) Scatter plot showing the relationship between Theobromine and 2-Aminonicotinic acid levels in the
validation set, with the optimal cut-off value determined for diagnostic classification.
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regulates the AMPK signaling pathway, affecting energy

metabolism and autophagy in cancer cells (29).

In this study, the significant changes in caffeine metabolism

suggest that breast cancer cells may adapt to their energy demands

and drug resistance by regulating caffeine metabolism. This finding

provides new insights into the metabolic regulatory mechanisms of

breast cancer and indicates that the caffeine metabolism pathway

could serve as a potential therapeutic target. The importance of

changes in sphingolipid metabolism in breast cancer has been

widely recognized. Sphingolipid molecules, such as sphingosine-1-

phosphate (S1P), play a key role in regulating cell proliferation,

apoptosis, and migration (30). Studies have shown that

sphingosine-1-phosphate (S1P) promotes the invasion and

metastasis of breast cancer cells by activating its receptors (31).

Furthermore, sphingolipid metabolism is closely linked to immune

regulation in the tumor microenvironment. For example,

overexpression of sphingosine kinase 1 (SPHK1) can suppress the

antitumor activity of immune cells (32). The abnormal sphingolipid

metabolism observed in this study may indicate the activation of

sphingolipid signaling pathways in breast cancer patients, providing

potential grounds for targeted therapeutic strategies aimed at

sphingolipid metabolism. The disruption of propionate

metabolism may reflect an imbalance in short-chain fatty acid

metabolism in breast cancer patients. Propionate, a key

intermediate in energy metabolism, can be converted into

propionyl-CoA and further enter the tricarboxylic acid (TCA)

cycle to provide energy for the cells (33). However, in breast

cancer, mitochondrial function is often impaired, leading to a

reprogramming of energy metabolism pathways (34). Abnormal

propionate metabolism may weaken the energy supply to breast

cancer cells and impair their metabolic adaptation, thereby

promoting tumor progression. Additionally, short-chain fatty

acids (such as propionate) have been shown to play a crucial role

in immune regulation, and their metabolic imbalance may affect

immune responses in the tumor microenvironment, thereby

influencing the initiation and progression of breast cancer (35).

Notably, this study utilized saliva as a sample for early non-invasive

breast cancer diagnosis. Compared to traditional methods like blood

and tissue biopsies, saliva collection is more convenient, non-invasive,

and better suited for large-scale screening. Additionally, saliva

collection does not require specialized medical personnel, reducing

patient compliance issues and healthcare costs, and improving the

efficiency of early breast cancer screening. The results further confirm

the potential of saliva metabolomics in breast cancer diagnosis. By

conducting LC-MS/MS untargeted metabolomics analysis of saliva

from breast cancer patients and healthy controls, we successfully

identified a series of key metabolites closely associated with breast

cancer, supporting saliva as a potential carrier for early detection

biomarkers. Furthermore, it provides important scientific evidence

for future non-invasive cancer screening. Future studies could

combine multi-omics analysis (e.g., proteomics, transcriptomics) to

explore the saliva metabolomic features of breast cancer subtypes,

enhancing diagnostic accuracy and clinical translation value.
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This study is subject to certain limitations. Firstly, the relatively

small sample size may limit the generalizability of the findings.

Consequently, future research is planned to include larger-scale,

multicenter cohort studies to validate these results, ensuring their

robustness and broader applicability. Secondly, although various

statistical methods were employed for metabolite screening and

pathway analysis, cell or animal experiments were not conducted to

further validate the functions of these metabolites. Future studies

could combine molecular biology experiments to further explore

the mechanisms through which key metabolites influence the

development of breast cancer. Additionally, this study did not

differentiate between breast cancer subtypes, and metabolic

characteristics may vary significantly across subtypes. Therefore,

future research should explore the application value of saliva

metabolomics in different breast cancer subtypes. In conclusion,

this study demonstrates that LC-MS/MS-based untargeted saliva

metabolomics analysis effectively identifies breast cancer-related

metabolic features and selects a series of potential biomarkers.

KEGG pathway analysis revealed the potential roles of metabolic

pathways such as fatty acid biosynthesis, caffeine metabolism, and

choline metabolism in breast cancer, providing new research

directions for exploring the metabolic mechanisms of breast

cancer. Furthermore, this study is the first to validate the

feasibility of saliva metabolomics in non-invasive breast cancer

screening, offering a new approach for future clinical testing. Future

studies could expand the sample size, integrate molecular biology

experiments, and explore the metabolic characteristics of different

breast cancer subtypes to further advance early diagnosis and the

optimization of personalized treatment strategies.
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