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Objective: To construct a noninvasive preoperative prediction model for WHO/

ISUP grading of renal clear cell carcinoma (ccRCC) using deep learning

combined with four-phase CT images, and to evaluate its efficacy.

Methods: A retrospective study was conducted on 158 ccRCC patients (124 low-

grade, 34 high-grade) from the Affiliated Hospital of Hebei University (January

2022-June 2024). Patients were randomly divided into training, validation, and

test sets at an 8:1:1 ratio. Four-phase CT images were preprocessed (rectangular

box annotation of tumor region of interest [ROI], image resizing to 224×224

pixels). The ResNet34 model was first built to predict ccRCC grading, with

performance evaluated by accuracy (ACC) and area under the receiver

operating characteristic curve (AUC). The model was then optimized by

integrating the SENet attention mechanism (forming the SE-ResNet34 model),

and performance before and after optimization was compared.

Results: ResNet34 models based on corticomedullary, parenchymal, and

excretory phase images achieved ACC >0.8, with the parenchymal phase

model showing the best performance (ACC = 0.867, low-grade AUC = 0.857,

high-grade AUC = 0.853). After adding the SENet attention mechanism, the SE-

ResNet34model exhibited improved performance: ACC increased to 0.878, low-

grade AUC to 0.929, and high-grade AUC to 0.927.

Conclusion: The SE-ResNet34 model based on parenchymal phase CT images

has excellent ability to differentiate WHO/ISUP grades of ccRCC, providing an

effective noninvasive auxiliary tool for preoperative pathological grading

prediction in clinical practice. However, the model’s robustness and multi-

center applicability need further validation before clinical use.”
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frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2025.1656244/full
https://www.frontiersin.org/articles/10.3389/fonc.2025.1656244/full
https://www.frontiersin.org/articles/10.3389/fonc.2025.1656244/full
https://www.frontiersin.org/articles/10.3389/fonc.2025.1656244/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2025.1656244&domain=pdf&date_stamp=2025-10-17
mailto:iqafjg@163.com
https://doi.org/10.3389/fonc.2025.1656244
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2025.1656244
https://www.frontiersin.org/journals/oncology


Cui et al. 10.3389/fonc.2025.1656244
Introduction

Renal cell carcinoma (RCC) is the most common renal

malignancy with the highest mortality in the urinary system. RCC

is a heterogeneous disease divided generally into three major groups

according to histopathological grading: clear cells renal cell

carcinoma (ccRCC), papillary renal cell carcinoma (pRCC), and

chromophobe renal cell carcinoma (chRCC), of which ccRCC is the

most common accounting for about 70%-90%. Histopathological

grading has been widely demonstrated to be an independent

prognostic factor for RCC, with a higher grade indicating higher

tumor malignancy and worse prognosis (1, 2). In 2012, the

International Society of Urological Pathology (ISUP) reached a

consensus at the Vancouver Conference that the prominence of the

nucleolus should be emphasized when deciding on grading, and a

new grading system (ISUP grading system) was proposed, which is

also divided into grades I-IV. Grades I-III were discriminated only

by the prominence of the nucleoli, and grade IV was defined by

extreme nuclear pleomorphism, multinucleated giant cells,

rhabdoid or sarcomatoid differentiation. It is considered that this

grading system is only applicable to two histological types of ccRCC

and pRCC (3). The ISUP grading system was later recommended by

the World Health Organization (WHO) in 2016 with an emphasis

on the nucleus staining properties (basophilic nuclei in grade I and

eosinophilic nuclei in grades II and III), and was renamed the

WHO/ISUP grading system (4). The newly named system provides

a better assessment of the prognosis of ccRCC.

With the rapid development of computer hardware and

artificial intelligence (AI) theory in recent years, machine learning

(ML) and deep learning (DL) have been widely applied in

radiological image processing (5). DL is a branch in the

development of ML technology that can mimic the human brain

in processing complex data through multiple layers of artificial

neurons. Specifically, it takes the original image as input and applies

multilayer transformation to calculate the output signal, which can

automatically develop the optimal model with the best

distinguishing features according to the input data for target

classification (6). Existing studies have validated the utility of DL

in various clinical settings, such as the differentiation of benign and

malignant renal tumors (7), differentiation of histological subtypes

of RCC (8), and prognosis prediction of RCC (9). However, fewer

studies have been conducted regarding the use of DL to predict the

pathological grading of ccRCC. In this study, a deep learning model

based on CT images was constructed for preoperative non-invasive

prediction of histopathological grading of ccRCC, so as to facilitate

clinicians to select more effective treatment options and judge the

prognosis of ccRCC. The main contributions of this study are as

follows: We are the first to combine the SE attention mechanism

with ResNet34 to construct a CT parenchymal-phase-based

prediction model for clear cell renal cell carcinoma (ccRCC)

pathological grading. This integration significantly enhances the

predictive performance for high-grade tumor. We systematically

compare the performance of models trained using four individual-

phase CT images (non-contrast phase, corticomedullary phase,

parenchymal phase, and excretory phase) as well as the combined
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four-phase images. The results confirm that the parenchymal phase

serves as the optimal input for the model, which provides practical

guidance for optimizing clinical CT scanning protocols in the

context of ccRCC diagnosis. Given the constraints of a small

dataset, we adopt standardized rectangular region of interest

(ROI) labeling and a class-weighted loss function, which

collectively enable stable training of the deep learning model. This

methodological approach offers a valuable reference for other

studies focused on developing medical artificial intelligence (AI)

models using limited sample sizes.
Materials and methods

General data

Patients who underwent surgical treatment in the Department

of Urology of Affiliated Hospital of Hebei University from January

2022 to June 2024 and had a pathologically confirmed diagnosis of

clear cell carcinoma in the postoperative kidney bulk specimen were

identified through the hospital medical record system and the

electronic pathology query system of the Department of

Pathology. The name, gender, age, hospitalization number,

pathology number, tumor side, body mass index (BMI),

hypertension, diabetes mellitus, and maximum tumor diameter of

these patients were recorded. Then, the general data of these

patients were entered into the picture archiving and

communication systems (PACS) of our hospital, and the query

was made based on name and hospitalization number to find out

whether they had a stage IV renal CT scan examination in our

imaging department. This study was approved by the ethics

committee of Affiliated Hospital of Hebei University (No.: HDFY-

LL-2022-087; date: February 28, 2022), and the data used were

analyzed retrospectively, informed consent was waived for

all patients.

Inclusion criteria: (1) Patients who had not received treatment

such as chemotherapy and surgery before CT scan; (2) Patients who

had preoperative CT scan images of four stages: plain phase,

corticomedullary phase, renal parenchymal phase and excretory

phase, and clear CT images without artifacts; (3) Patients with a

histopathological type of clear cell renal carcinoma (ccRCC) and

pathological grading according to WHO/ISUP grading criteria; (4)

Patients with complete clinical data. Exclusion criteria: (1) Patients

with incomplete or poor image quality and artifacts in preoperative

four-phase CT images; (2) Patients with a pathological type of non-

renal clear cell carcinoma; (3) Patients with tumor metastasis. After

a strict screening of inclusion and exclusion criteria, 158 patients

were finally enrolled in the study, including 124 patients of grades I-

II and 34 patients of grades III-IV.
CT data

All patients underwent CT four-phase imaging examination

using our 64-row CT (GE Discovery CT750 HD) scanner and were
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instructed to fast for 6-8h before scanning. A non-ionic contrast

agent, ioversol, was used at a dose of 1.0-1.2 ml/kg body mass,

which was injected via the elbow vein by a double-barrel high-

pressure syringe at a flow rate of 3.0-3.5 ml/s. The four CT scans

were performed in the following order: plain phase,

corticomedullary phase, renal parenchymal phase and excretory

phase. The scanning time was before the injection of contrast agent

ioversol for the plain phase, 30-35s after the injection of contrast

agent for the corticomedullary phase, 50-60s for the renal

parenchymal phase, and 180s after the injection of contrast agent

for the excretory phase. All four-phase images obtained were

exported in the format of digital imaging and communications in

medicine (DICOM). Four-phase scanning parameters and

conditions: layer thickness 5 mm, pitch 0.984:1, scanning field of

view 36 cm×43 cm, matrix 512×512, tube voltage 100–120 kV, tube

current 134–409 mA, window width 290 HU, and window level

40 HU.
Pathological data

All renal tumor specimens were fixed in 10% formalin solution,

sent to the pathology laboratory, embedded in paraffin, and cut into

4mm thick sections. After staining with hematoxylin and eosin, the

specimens were microscopically diagnosed as renal clear cell

carcinoma by two experienced pathologists and were

histopathologically graded according to WHO/ISUP grading

criteria as shown in Table 1, which were classified as grades I-IV.

In this study, nuclear grading of I-II was defined as low grade and

nuclear grading of III-IV as high grade (10).
Image preprocessing

All four-phase CT images exported from our hospital’s PACS

system were in DICOM format and opened using the software

Raniant DICOM viewer to convert to BMP format. The images in

BMP format are losslessly compressed and have good image quality.

All CT images were then screened and stored in a folder named after

the patient. The screening criteria are as follows: (1) inclusion of all

tumor dimensions; (2) clear visibility of the tumor without

volume effect.
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All screened four-stage CT images were loaded into labelm (http://

labelme.csail.mit.edu/Release3.0/) and reviewed by two urologists

with more than 10 years of experience in urological tumor

diagnosis, followed by layer-by-layer rectangular box annotation

of the tumor region of interest (ROI), and finally, the generated json

file was saved. We opted for rectangular-box ROIs instead of tumor-

contour segmentation for reasons of efficiency and clinical

practicality. The dataset comprised 5,104 training, 382 validation

and 381 test images; using a standardized rule of “expand 1–2 mm

beyond the longest diameter”, two senior urologists completed all

rectangular annotations within one week with inter-rater reliability

ICC > 0.85. By contrast, pixel-level contouring takes 5–10 min per

image—more than a ten-fold increase in workload—and is prone to

greater inter-observer variability (ICC typically < 0.8). Rectangular

boxes can be drawn directly in the clinical PACS without complex

algorithms, making the approach easy for clinicians to adopt and

facilitating future integration of the model into routine workflow.

The criteria for the annotation are as follows: (1) The rectangular

box can be delineated by expanding 1-2mm outward with the

maximum tumor transverse and longitudinal diameters as the

reference. (2) The rectangular box should contain all tumors, and

the tumors should be clear; CT images that are unclear should be

discarded and not annotated. The images were cropped according

to the annotated rectangular box to remove the background

information from the non-tumor area to reduce interference

(Figure 1). The processed images were resized to 224 × 224

pixels. The consistency of the annotation results was verified by

the Intraclass Correlation Coefficient (ICC > 0.85), and consensus

was reached through negotiation for inconsistent regions.
Data set construction and data
enhancement

The patients recruited were randomly divided into training set,

validation set and test set at a ratio of 8:1:1. There were 99 patients

of low grade and 27 patients of high grade in the training set, 12

patients of low grade and 4 patients of high grade in the validation

set, and 12 patients of low grade and 4 patients of high grade in the

test set. Subsequently, the images of patients in each dataset were

placed in five opposite folders, corresponding to the plain phase,

corticomedullary phase, renal parenchyma phase, excretory phase,

and four-phase combined. Each folder has two subfolders under it,

corresponding to the low grade and high grade respectively.

Ultimately, the number of images corresponding to all folders

was: 1260 images in the training set for the plain phase, 1301

images in the corticomedullary phase, 1278 images in the

parenchymal phase, 1265 images in the excretory phase, and 5104

images in the four-phase combined; 103 images in the validation set

for the plain phase, 92 images in the corticomedullary phase, 92

images in the parenchymal phase, 95 images in the excretory phase,

and 382 images in the four-phase combined; 94 images in the test

set for the plain phase, 89 images in the corticomedullary phase, 98

images in the parenchymal phase, 100 images in the excretory stage,

and 381 images in the four-phase combined. These datasets will be

used for the construction of artificial intelligence models.
TABLE 1 WHO/ISUP grading criteria.

Grading Definition

Grade I
Absent or inconspicuous nucleoli under 400× microscope,
presenting basophilia

Grade II
Obvious nucleolus under 400× microscope, presenting basophilia;
visible but not prominent under 100× microscope

Grade III Obvious nucleolus under 400× microscope, presenting basophilia

Grade IV
Extreme nuclear pleomorphism, multinucleated giant cells, and/or
rhabdoid and/or sarcomatoid differentiation
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Several enhancement methods were utilized to augment data

from the CT images in the training set, including 30° random

rotation, and random flipping, which makes one image into three

and triples the data augmentation. Data augmentation is a

technique to transform the data and expand the dataset without

changing the data label assignment, satisfying the requirement of

deep learning models with large sample sizes. Furthermore, each

level of CT images is considered as a training sample, and when one

of the images is augmented, the image heterogeneity is increased

while sharing the same imaging features. To mitigate the impact of

class imbalance between low-grade (n=124) and high-grade (n=34)

patients, a class-weighted cross-entropy loss function was

implemented during model training. This assigned a larger weight
Frontiers in Oncology 04
to the minority high-grade class, incentivizing the model to improve

its learning from the fewer available high-grade samples.
Selection of network model

A convolutional neural network, as a network commonly used

for processing images in deep learning, presents a structure of

multiple layers of complex neural network layers. Residual Neural

Network (ResNet) is a classical model of a convolutional neural

network. By adding residual connections to the structure, ResNet

effectively solves the problem of gradient disappearance and

network degradation caused by the increase of network depth of
FIGURE 1

Annotation and cropping of four-phase CT images. (A) shows the four-phase CT images of the plain, corticomedullary, parenchymal, and excretory phases,
from top to bottom, respectively. (B) shows the corresponding four-stage CT images that have been annotated in the rectangular box. (C) shows images in
the center of (C) where the tumor area annotated in the rectangular box of (B) was cropped to remove the background and enlarged.
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the convolutional neural network, thereby improving the network

performance. ResNet34 consists of multiple stacked residual units,

pooling layers and fully connected layers. The residual units are

composed of a convolutional (conv) layer, a batch normalization

(BN) layer, a rectified linear unit (Re LU) function, and a jump

connection. The convolution layer is used for feature extraction, the

pooling layer is mainly used for feature dimensionality reduction

and data concentration, while the fully connected layer plays the

role of classification.
Model training

Model training is divided into two stages: training and

validation, with the former using the training set data and the

latter using the validation set data. The validation set data is used to

adjust the hyperparameters of the model in order to obtain the best

model. In general, models are trained using traditional methods and

ResNet34 networks are pre-trained in ImageNet. The pre-trained

network strategy, also known as migration learning, boasts of

speeding up the network training and improving the model

accuracy. In this study, images of four different individual phases

and four-phase combined from the training set were input to a pre-

trained ResNet-34 network in order to train the ResNet-34-based

plain phase model, corticomedullary phase model, parenchymal

phase model, excretory phase model, and four-phase combined

model, respectively. All network training was performed using the

stochastic gradient descent (SGD) method with a loss function of

cross entropy. In each model training, each image input was

counted as a loss function, so as to find the gradient confidence

parameters. As the number of training sessions increased, the loss

function showed a decreasing trend and eventually leveled off. The

images from the validation set were then input to each model to

further adjust the hyperparameters of the model. The final

hyperparameters of the training models in this study are: learning

rate = 0.001, batch size = 32, and the number of optimizations = 50.

For all classification models in this study, the experimental

environment was under the training environment of Ubuntu 18.04

with an NVIDIA GeForce RTX 2070 GPU, the SE-ResNet34 model

takes approximately 45 minutes per epoch and about 37.5 hours for

the full 50-epoch training, while a single-image prediction takes

only 0.02 seconds. Memory usage is roughly 4.2 GB during training

and 1.8 GB during inference. A scalability test indicates that

expanding the dataset to 500 cases would increase training time

to around 120 hours, which can be reduced to under 30 hours

through multi-GPU parallel training.
Model testing

In the testing process, the test set data were input to the five

prediction models that had been constructed to predict the

probability of low-grade and high-grade ccRCC images,

respectively, and the sum of the two probabilities was 1. The

image with the higher probability was used as the output result of
Frontiers in Oncology 05
the model. The accuracy, sensitivity, and specificity of the model are

calculated based on the correctness of the output results to evaluate

the performance of the model, which results in the best model

constructed by ResNet-34 on the different contemporaneous

data sets.
Model optimization and testing

To assess the possibility of further improving the predictive

performance of the network model, the ResNet34 network was

optimized by introducing the SE attention mechanism module

based on its structure to obtain the SE-ResNet34 network. The

attention mechanism module is derived from the characteristics

that the human visual system will focus attention on important

areas in the scene. Its core point is to assign different weights and

computational resources to the convolutional network based on the

difference in importance of the feature maps so that the task can be

completed in an efficient and fast manner.

The optimized SE-ResNet34 network was also trained as

described above, and the test set data was then fed into the SE-

ResNet34 model for evaluation, using only images from the best

phase for both the training and test sets. The accuracy, sensitivity,

and specificity of the model were calculated based on the

correctness of the output results, and the predictive performance

of the model before and after optimization of the ResNet34 network

was compared.
Statistical analysis

All data in this study were statistically analyzed using SPSS

(version 26.0) as follows: Kolmogorov-Smimov was employed to

test the normality of the measures, and those conforming to a

normal distribution were expressed as mean ± standard deviation;

count data conforming to a normal distribution were compared for

statistical differences between low and high grades using the

independent samples t test. Those that did not conform to a

normal distribution were expressed as median and interquartile

spacing, and independent samples nonparametric test - Mann-

Whitney U rank sum test was used to compare whether there was a

statistical difference between low and high grades. Categorical

variables were tested using the chi-square test. P<0.05 indicates a

statistically significant difference. Moreover, the receiver operating

characteristic (ROC) curve was used to assess the efficacy of the

model in predicting the low and high grades of ccRCC, and the

accuracy (ACC) of the test set classification results and the area

under curve (AUC) were calculated.
Results

One hundred and fifty-eight ccRCC patients were recruited in

this study, including 124 in the low-grade group and 34 in the high-

grade group. See the table below for a comparison of clinical
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characteristics between the two groups. The results showed that no

statistically significant difference was observed in the clinical

characteristics of patients such as gender, age, tumor side, BMI,

hypertension, and diabetes distribution between low-grade and

high-grade ccRCC (P>0.05). Furthermore, tumor size differed

among low and high grades of ccRCC, with renal tumors of high

pathological grade having a larger size than those of low

pathological grade (Table 2).

The models constructed by the ResNet34 network in the

corticomedullary, parenchymal and excretory phase images

presented preferable prediction validation, with a prediction

accuracy greater than 0.8, while those constructed in the

parenchymal phase data demonstrated optimal performance, with

a prediction accuracy of 0.867, 0.857 for AUC for patients of low

grade, and 0.853 for AUC for patients of high grade, see Table 3.

The accuracy and sensitivity of the five models constructed were

higher for predicting ccRCC at low grades than at high grades

(Table 2, 3).

It can be seen from the test results of the constructed model that

the model constructed by ResNet34 shows the best results in the

parenchymal images (Figure 2). Therefore, only the parenchymal

images in the dataset were used for training and testing the SE-

ResNet34 network. The accuracy of the SE-ResNet34 model in the

test set was 0.878, which was 0.929 for AUC for patients of low

grade, and 0.927 for AUC for patients of high grade, and the ROC

curve is shown in Figures 3, 4. After adding the SE attention

mechanism, the prediction accuracy of the model improved from

0.867 to 0.878, and that of AUC improved from 0.857 to 0.929 for

patients of low grade and from 0.853 to 0.927 for patients of high
Frontiers in Oncology 06
grade, as shown in Table 4, Figure 4.The observed higher sensitivity

for low-grade predictions may be partially influenced by the

inherent class imbalance in the dataset.
Discussion

Nuclear grading is closely related to the aggressiveness and

prognosis of RCC, and if histopathological grading of RCC can be

predicted preoperatively, it can guide clinicians to formulate

appropriate clinical treatment strategies to a certain extent.

Currently, the gold standard for preoperative histopathologic

grading of RCC is renal tumor aspiration biopsy. However, this

technique is invasive and patients may be at risk of sampling bias

and complications, and the accuracy of assessing tissue grading is

relatively low. There have been several previous studies on

preoperative prediction of ccRCC WHO/ISUP grading using

traditional machine learning methods, in which features such as

histogram features and texture features are extracted by the region

of interest of the tumor outlined in the imaging image for analysis,

and the optimal features are extracted using statistical methods, and

then a prediction model is built based on the optimal features. Sun

X et al. (11) selected the largest cross-section of the tumor to map

the region of interest (ROI) based on the CT images of 227 ccRCC

patients in both dermal medullary and parenchymal stages, and the

support vector machine model constructed by using the optimal

features jointly screened in both stages could effectively distinguish

the WHO/ISUP grading of renal clear cell carcinoma with an AUC

of 0.91. Shu J et al. (12) extracted radiological features from the

outlined tumor volume of interest (VOI) and used LASSO to screen

the features to obtain the optimal features based on the optimal

features obtained from the corticomedullary images, parenchymal

images and their combined optimal features, based on 164 low-

grade and 107 high-grade ccRCC CT images in both phases. Three

machine learning models were constructed based on the optimal

features obtained from the dermatoglyphic and parenchymal

images and their combined optimal features. It was found that

the AUC of the combined corticomedullary + parenchymal model

was 0.822, which was higher than that of the corticomedullary and

parenchymal models alone. The above studies all used traditional

machine learning methods to construct prediction models,

indicating that the prediction of ccRCC WHO/ISUP classification

based on traditional machine learning methods is a feasible and

noninvasive method, and the performance of the machine learning

models constructed using multi-phase CT images may be better

than that of a single phase. In contrast, traditional machine learning

systems require careful engineering and considerable domain

expertise to extract features of the input data and thus use

statistical methods to combine or separate the data based on these

features, which will inevitably lead to a more subjective result with

the disadvantages of being time-consuming, labor-intensive, and

not fully demonstrating the features of the input data. But deep

learning methods can avoid these shortcomings. Deep learning

enables automatic extraction of pixel-level image features without

the need to design and select features by hand, and a classification
TABLE 2 Clinical characteristics of 158 patients with low grade and high
grade ccRCC.

Characteristics
Low grade
(n=124)

High grade
(n=34)

P

Gender 0.364

Male 81 25

Female 43 9

Age (years old) 57.52 ± 8.95 58.94 ± 10.36 0.431

Tumor side 0.194

Left 61 21

Right 63 13

BMI (Kg/m²) 25.84 ± 3.50 25.40 ± 3.63 0.514

Hypertension 0.312

Yes 72 23

No 52 11

Diabetes 0.635

Yes 28 9

No 96 25

Tumor size (cm) 4.30 ± 2.02 7.09 ± 9.79 0.003
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system based on deep learning can classify data better compared to

manually extracted features, which is the core advantage of the

model constructed in this study.

Deep learning-based convolutional neural networks use

multiple neural network layers to gradually extract higher-level

features from the original input data, reflecting the hierarchical

structure of the data, and can be enriched with features by the

number of stacked layers (depth). However, as the depth of the

neural network model increases to a certain level, the problem of

gradient disappearance or gradient explosion can occur, and the

model accuracy decreases dramatically without warning, a

phenomenon called Degradation, which is not caused by

overfitting but by the fact that adding more layers to a model of

appropriate depth leads to higher training error. The core of ResNet

is the residual units stacked in the network, and each residual unit

consists of 2 convolutional layers and a shortcut connection, and

the shortcut connection can make the deep network easier to

optimize and solve the degradation problem brought by the deep

network. ResNet has been widely used in the processing of medical

images due to its good network performance, and it has achieved

good results in diseases such as lung tumors (13), new coronary

pneumonia (14) and breast cancer (15). better results have been

achieved in auxiliary diagnosis. There have been attempts to

construct ResNet models for predicting the pathological grading

of ccRCC based on imaging images. Zhao Y et al. (16) developed a

low-level deep learning prediction model for stage I and II ccRCC

based on conventional MRI images, which was based on the

ResNet50 net structure and achieved an accuracy of 0.88 in the

Fuhrman test set and an accuracy of 0.5 in the WHO/ISUP testers

with an accuracy of 0.83. Lin F et al. (17) developed a CT-based

ResNet model for predicting WHO/ISUP classification of renal

clear cell carcinoma using a deep learning approach and found that

the use of migratory learning, no attention level settings, and images

containing less background information helped to improve the

accuracy of the model, with the best model having an accuracy of

77.9% and The AUC was 0.81, but the study chose the largest cross-

section of the tumor to map the region of interest (ROI) and did not

consider the volume of the tumor. Resnet convolutional neural
TABLE 3 Classification performance of the model constructed by ResNet-34 for images of different phases.

Phase Grade Accuracy AUC Precision Sensitivity Specificity F1

Plain phase
Low

0.777
0.808 0.853 0.865 0.450 0.859

High 0.776 0.474 0.450 0.865 0.462

Corticomedullary
phase

Low
0.809

0.846 0.908 0.843 0.684 0.874

High 0.843 0.542 0.684 0.843 0.605

Parenchymal phase
Low

0.867
0.857 0.910 0.922 0.67 0.916

High 0.853 0.700 0.67 0.922 0.683

Excretory phase
Low

0.863
0.808 0.86 0.988 0.316 0.920

High 0.776 0.857 0.316 0.988 0.462

Four-phase combined
Low

0.791
0.706 0.843 0.923 0.604 0.891

High 0.677 0.702 0.604 0.923 0.593
F
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FIGURE 2

ResNet34 confusion matrix.
FIGURE 3

ROC curve of the ResNet34 model built on the parenchymal image set.
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network mainly has several different complex structures of

Resnet18, Resnet34, Resnet50, Resnet101, Resnet150, and the

number represents the depth of the network. The larger the

number indicates a deeper and more complex network depth, this

study was selected to build a model with a relatively simple structure

Resnet34 in the Resnet convolutional neural network, and the

prediction model constructed achieved good prediction results.

Lin F et al. (17). concluded that the model constructed with a

simpler network of Resnet layers has better performance in

predicting ccRCC WHO/ISUP classification, and the possible The

reason is that more complex models require a larger amount of data

and relatively small training samples cannot take full advantage of

the complex models. In addition, this study was based on layer-by-

layer outlining on CT images into 3D VOI, which was different

from the 2D ROI of a single sheet selected in some previous studies.

3D outlining can reflect more realistic tumor volume, is more

sensitive to the internal heterogeneity of the tumor, and can

present the internal characteristics of the tumor more

comprehensively, which may be the reason why the accuracy and

AUC of the model constructed in this study were higher than those

of the model constructed by Lin F et al. (17).

This study also compared the performance of each model for

ccRCC disparate CT images. Previously, some researchers used
Frontiers in Oncology 08
conventional machine learning algorithms to construct prediction

models using only plain-phase or single-phase enhanced CT images

(18, 19), and although they achieved certain results, the constructed

models could not fully utilize the features of the disparate images.

Many other researchers have used two- or three-phase CT images to

construct machine learning prediction models, and they agree that

the performance of the models created by combining multi-phase

CT images is better than that of the models created by single-phase

images (20). In this study, Resnet34 models were constructed using

the scanned, dermatomedullary, parenchymal, excretory, and four-

phase combinations, and it was found that the model constructed

using the parenchymal CT images had the highest accuracy and

AUC, and the performance was even better than that of the model

constructed using the four-phase combination, and the worst

performance was that of the model constructed in the scanned

phase, which was inconsistent with most of the previous results,

probably because the previous studies used They manually

extracted the optimal features from the CT images of each phase

and then fused these optimal features together to build the model,

and the performance of the constructed model was largely better

than that of the model constructed based on the optimal features

extracted from the images of a single phase only. In contrast, this

study uses a deep learning algorithm to build the model. Although

the deep learning-based Resnet has good performance of

automatically extracting image features, it is impossible to avoid

automatically extracting the image dominant features while also

extracting the image inferior features, and when Resnet extracts the

four-phase joint image features, it also extracts some of the inferior

features such as the flat-scan phase, thus lowering the overall

diagnostic performance of the model. the overall diagnostic

performance. The results of this study may be useful for scholars

who want to conduct similar studies in the future. In addition, since

the model constructed in this study predicts the pathological

grading of ccRCC, and the level of pathological grading

represents the strength of the aggressiveness of the tumor,

clinicians can pay more attention to the CT images of the

parenchymal stage when judging the malignancy of ccRCC.

After testing the performance of the Resnet34 model on

different CT images, it was found that the performance of the

Resnet34 model constructed based on parenchymal stage images

was optimal. To explore whether the performance of the model

could be further improved, the Resnet34 structure was optimized on

the basis of the attention mechanism module SE-Net (Squeeze and
TABLE 4 Comparison of accuracy and AUC of ResNet34 model before and after optimization.

Model Grade Accuracy AUC Precision Sensitivity Specificity

ResNet34
Low

0.867
0.857 0.914 0.961 0.667

High 0.853 0.824 0.667 0.961

SE-ResNet34
Low

0.878
0.929 0.882 0.974 0.524

High 0.927 0.846 0.524 0.974
FIGURE 4

ROC curve of the SE-ResNet34 model built on the parenchymal
image set.
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Excitation), and the SE- Resnet34 model was formed. The SE-

Resnet34 model was then retrained and tested on the CT images of

the substantive period, and it was found that the SE- Resnet34

model had an accuracy of 0.878, a low-level AUC of 0.929, and a

high-level AUC of 0.927 in the test set, which was a certain

improvement in performance compared with that before the

improvement. This study is a single-center retrospective study

and there may be bias in data selection, so the generalization

performance of the model needs to be further validated.

This study has several limitations. Firstly, its retrospective,

single-center design and relatively limited sample size (especially

for high-grade [WHO/ISUP III-IV] ccRCC cases) collectively

constrain the research. On the one hand, the retrospective and

single-center nature introduces potential selection bias. The model

was developed and validated based on data from a single institution

with specific CT protocols, meaning its performance may not be

directly transferable to other centers, which severely limits the

generalizability of our findings. On the other hand, despite using

data augmentation and class-weighted loss functions to mitigate

class imbalance, the small absolute number of high-grade tumors

remains unresolved. This not only contributes to the observed

performance difference between low-grade and high-grade cases

but also further impacts the model’s generalizability. Secondly, the

lack of an external validation cohort is a significant limitation.

Given the constraints of single-center data and limited sample size,

the reliability of the model’s performance cannot be fully confirmed.

Therefore, future multi-institutional, prospective external

validation is essential to verify the robustness and clinical utility

of the proposed model, and our findings need to be validated in

such a larger cohort. In future work, we will replace the rectangular

ROI with a “semi-automatic tumor-contour segmentation” pipeline

that comprises three steps:(1) A U-Net model pretrained on our in-

house cohort of 158 patients will first generate an initial tumor

outline.(2) One senior radiologist will manually refine the auto-

segmentation (adjusting only deviating borders); this keeps non-

tissue inclusion below 5% while limiting annotation time to 1–2 min

per image.(3) We will retrain the SE-ResNet34 classifier with the

new precise ROIs and compare its performance with the rectangle-

ROI version; we expect the sensitivity for high-grade ccRCC to rise

from 0.67 to ≥ 0.80.

The SE-Resnet34 model based on parenchymal CT boasts a

preferable differentiation of WHO/ISUP grade of clear cell renal

carcinoma, providing an effective auxiliary means for noninvasive

preoperative prediction of pathological grading of renal clear cell

carcinoma in clinical practice. Future multi-center validation (≥500

cases, GE/Siemens/Philips CT) and prospective trials are required

before clinical discussion.
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