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Objective: To construct a noninvasive preoperative prediction model for WHO/
ISUP grading of renal clear cell carcinoma (ccRCC) using deep learning
combined with four-phase CT images, and to evaluate its efficacy.

Methods: A retrospective study was conducted on 158 ccRCC patients (124 low-
grade, 34 high-grade) from the Affiliated Hospital of Hebei University (January
2022-June 2024). Patients were randomly divided into training, validation, and
test sets at an 8:1:1 ratio. Four-phase CT images were preprocessed (rectangular
box annotation of tumor region of interest [ROI], image resizing to 224x224
pixels). The ResNet34 model was first built to predict ccRCC grading, with
performance evaluated by accuracy (ACC) and area under the receiver
operating characteristic curve (AUC). The model was then optimized by
integrating the SENet attention mechanism (forming the SE-ResNet34 model),
and performance before and after optimization was compared.

Results: ResNet34 models based on corticomedullary, parenchymal, and
excretory phase images achieved ACC >0.8, with the parenchymal phase
model showing the best performance (ACC = 0.867, low-grade AUC = 0.857,
high-grade AUC = 0.853). After adding the SENet attention mechanism, the SE-
ResNet34 model exhibited improved performance: ACC increased to 0.878, low-
grade AUC to 0.929, and high-grade AUC to 0.927.

Conclusion: The SE-ResNet34 model based on parenchymal phase CT images
has excellent ability to differentiate WHO/ISUP grades of ccRCC, providing an
effective noninvasive auxiliary tool for preoperative pathological grading
prediction in clinical practice. However, the model's robustness and multi-
center applicability need further validation before clinical use.”
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Introduction

Renal cell carcinoma (RCC) is the most common renal
malignancy with the highest mortality in the urinary system. RCC
is a heterogeneous disease divided generally into three major groups
according to histopathological grading: clear cells renal cell
carcinoma (ccRCC), papillary renal cell carcinoma (pRCC), and
chromophobe renal cell carcinoma (chRCC), of which ccRCC is the
most common accounting for about 70%-90%. Histopathological
grading has been widely demonstrated to be an independent
prognostic factor for RCC, with a higher grade indicating higher
tumor malignancy and worse prognosis (1, 2). In 2012, the
International Society of Urological Pathology (ISUP) reached a
consensus at the Vancouver Conference that the prominence of the
nucleolus should be emphasized when deciding on grading, and a
new grading system (ISUP grading system) was proposed, which is
also divided into grades I-IV. Grades I-III were discriminated only
by the prominence of the nucleoli, and grade IV was defined by
extreme nuclear pleomorphism, multinucleated giant cells,
rhabdoid or sarcomatoid differentiation. It is considered that this
grading system is only applicable to two histological types of ccRCC
and pRCC (3). The ISUP grading system was later recommended by
the World Health Organization (WHO) in 2016 with an emphasis
on the nucleus staining properties (basophilic nuclei in grade I and
eosinophilic nuclei in grades II and III), and was renamed the
WHO/ISUP grading system (4). The newly named system provides
a better assessment of the prognosis of ccRCC.

With the rapid development of computer hardware and
artificial intelligence (AI) theory in recent years, machine learning
(ML) and deep learning (DL) have been widely applied in
radiological image processing (5). DL is a branch in the
development of ML technology that can mimic the human brain
in processing complex data through multiple layers of artificial
neurons. Specifically, it takes the original image as input and applies
multilayer transformation to calculate the output signal, which can
automatically develop the optimal model with the best
distinguishing features according to the input data for target
classification (6). Existing studies have validated the utility of DL
in various clinical settings, such as the differentiation of benign and
malignant renal tumors (7), differentiation of histological subtypes
of RCC (8), and prognosis prediction of RCC (9). However, fewer
studies have been conducted regarding the use of DL to predict the
pathological grading of ccRCC. In this study, a deep learning model
based on CT images was constructed for preoperative non-invasive
prediction of histopathological grading of ccRCC, so as to facilitate
clinicians to select more effective treatment options and judge the
prognosis of ccRCC. The main contributions of this study are as
follows: We are the first to combine the SE attention mechanism
with ResNet34 to construct a CT parenchymal-phase-based
prediction model for clear cell renal cell carcinoma (ccRCC)
pathological grading. This integration significantly enhances the
predictive performance for high-grade tumor. We systematically
compare the performance of models trained using four individual-
phase CT images (non-contrast phase, corticomedullary phase,
parenchymal phase, and excretory phase) as well as the combined
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four-phase images. The results confirm that the parenchymal phase
serves as the optimal input for the model, which provides practical
guidance for optimizing clinical CT scanning protocols in the
context of ccRCC diagnosis. Given the constraints of a small
dataset, we adopt standardized rectangular region of interest
(ROI) labeling and a class-weighted loss function, which
collectively enable stable training of the deep learning model. This
methodological approach offers a valuable reference for other
studies focused on developing medical artificial intelligence (AI)
models using limited sample sizes.

Materials and methods
General data

Patients who underwent surgical treatment in the Department
of Urology of Affiliated Hospital of Hebei University from January
2022 to June 2024 and had a pathologically confirmed diagnosis of
clear cell carcinoma in the postoperative kidney bulk specimen were
identified through the hospital medical record system and the
electronic pathology query system of the Department of
Pathology. The name, gender, age, hospitalization number,
pathology number, tumor side, body mass index (BMI),
hypertension, diabetes mellitus, and maximum tumor diameter of
these patients were recorded. Then, the general data of these
patients were entered into the picture archiving and
communication systems (PACS) of our hospital, and the query
was made based on name and hospitalization number to find out
whether they had a stage IV renal CT scan examination in our
imaging department. This study was approved by the ethics
committee of Affiliated Hospital of Hebei University (No.: HDFY-
LL-2022-087; date: February 28, 2022), and the data used were
analyzed retrospectively, informed consent was waived for
all patients.

Inclusion criteria: (1) Patients who had not received treatment
such as chemotherapy and surgery before CT scan; (2) Patients who
had preoperative CT scan images of four stages: plain phase,
corticomedullary phase, renal parenchymal phase and excretory
phase, and clear CT images without artifacts; (3) Patients with a
histopathological type of clear cell renal carcinoma (ccRCC) and
pathological grading according to WHO/ISUP grading criteria; (4)
Patients with complete clinical data. Exclusion criteria: (1) Patients
with incomplete or poor image quality and artifacts in preoperative
four-phase CT images; (2) Patients with a pathological type of non-
renal clear cell carcinoma; (3) Patients with tumor metastasis. After
a strict screening of inclusion and exclusion criteria, 158 patients
were finally enrolled in the study, including 124 patients of grades I-
IT and 34 patients of grades III-IV.

CT data

All patients underwent CT four-phase imaging examination
using our 64-row CT (GE Discovery CT750 HD) scanner and were
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instructed to fast for 6-8h before scanning. A non-ionic contrast
agent, ioversol, was used at a dose of 1.0-1.2 ml/kg body mass,
which was injected via the elbow vein by a double-barrel high-
pressure syringe at a flow rate of 3.0-3.5 ml/s. The four CT scans
were performed in the following order: plain phase,
corticomedullary phase, renal parenchymal phase and excretory
phase. The scanning time was before the injection of contrast agent
ioversol for the plain phase, 30-35s after the injection of contrast
agent for the corticomedullary phase, 50-60s for the renal
parenchymal phase, and 180s after the injection of contrast agent
for the excretory phase. All four-phase images obtained were
exported in the format of digital imaging and communications in
medicine (DICOM). Four-phase scanning parameters and
conditions: layer thickness 5 mm, pitch 0.984:1, scanning field of
view 36 cmx43 cm, matrix 512x512, tube voltage 100-120 kV, tube
current 134-409 mA, window width 290 HU, and window level
40 HU.

Pathological data

All renal tumor specimens were fixed in 10% formalin solution,
sent to the pathology laboratory, embedded in paraffin, and cut into
4um thick sections. After staining with hematoxylin and eosin, the
specimens were microscopically diagnosed as renal clear cell
carcinoma by two experienced pathologists and were
histopathologically graded according to WHO/ISUP grading
criteria as shown in Table 1, which were classified as grades I-IV.
In this study, nuclear grading of I-II was defined as low grade and
nuclear grading of III-IV as high grade (10).

Image preprocessing

All four-phase CT images exported from our hospital’s PACS
system were in DICOM format and opened using the software
Raniant DICOM viewer to convert to BMP format. The images in
BMP format are losslessly compressed and have good image quality.
All CT images were then screened and stored in a folder named after
the patient. The screening criteria are as follows: (1) inclusion of all
tumor dimensions; (2) clear visibility of the tumor without
volume effect.

TABLE 1 WHO/ISUP grading criteria.

Grading Definition

Grade I Absent or inconspicuous nucleoli under 400x microscope,
rade
presenting basophilia
Grade II Obvious nucleolus under 400x microscope, presenting basophilia;
T
visible but not prominent under 100x microscope
Grade IIT Obvious nucleolus under 400x microscope, presenting basophilia
Grade IV Extreme nuclear pleomorphism, multinucleated giant cells, and/or
rhabdoid and/or sarcomatoid differentiation
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All screened four-stage CT images were loaded into labelm (http://
labelme.csail. mit.edu/Release3.0/) and reviewed by two urologists
with more than 10 years of experience in urological tumor
diagnosis, followed by layer-by-layer rectangular box annotation
of the tumor region of interest (ROI), and finally, the generated json
file was saved. We opted for rectangular-box ROIs instead of tumor-
contour segmentation for reasons of efficiency and clinical
practicality. The dataset comprised 5,104 training, 382 validation
and 381 test images; using a standardized rule of “expand 1-2 mm
beyond the longest diameter”, two senior urologists completed all
rectangular annotations within one week with inter-rater reliability
ICC > 0.85. By contrast, pixel-level contouring takes 5-10 min per
image—more than a ten-fold increase in workload—and is prone to
greater inter-observer variability (ICC typically < 0.8). Rectangular
boxes can be drawn directly in the clinical PACS without complex
algorithms, making the approach easy for clinicians to adopt and
facilitating future integration of the model into routine workflow.
The criteria for the annotation are as follows: (1) The rectangular
box can be delineated by expanding 1-2mm outward with the
maximum tumor transverse and longitudinal diameters as the
reference. (2) The rectangular box should contain all tumors, and
the tumors should be clear; CT images that are unclear should be
discarded and not annotated. The images were cropped according
to the annotated rectangular box to remove the background
information from the non-tumor area to reduce interference
(Figure 1). The processed images were resized to 224 x 224
pixels. The consistency of the annotation results was verified by
the Intraclass Correlation Coefficient (ICC > 0.85), and consensus
was reached through negotiation for inconsistent regions.

Data set construction and data
enhancement

The patients recruited were randomly divided into training set,
validation set and test set at a ratio of 8:1:1. There were 99 patients
of low grade and 27 patients of high grade in the training set, 12
patients of low grade and 4 patients of high grade in the validation
set, and 12 patients of low grade and 4 patients of high grade in the
test set. Subsequently, the images of patients in each dataset were
placed in five opposite folders, corresponding to the plain phase,
corticomedullary phase, renal parenchyma phase, excretory phase,
and four-phase combined. Each folder has two subfolders under it,
corresponding to the low grade and high grade respectively.
Ultimately, the number of images corresponding to all folders
was: 1260 images in the training set for the plain phase, 1301
images in the corticomedullary phase, 1278 images in the
parenchymal phase, 1265 images in the excretory phase, and 5104
images in the four-phase combined; 103 images in the validation set
for the plain phase, 92 images in the corticomedullary phase, 92
images in the parenchymal phase, 95 images in the excretory phase,
and 382 images in the four-phase combined; 94 images in the test
set for the plain phase, 89 images in the corticomedullary phase, 98
images in the parenchymal phase, 100 images in the excretory stage,
and 381 images in the four-phase combined. These datasets will be
used for the construction of artificial intelligence models.
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FIGURE 1

Annotation and cropping of four-phase CT images. (A) shows the four-phase CT images of the plain, corticomedullary, parenchymal, and excretory phases,
from top to bottom, respectively. (B) shows the corresponding four-stage CT images that have been annotated in the rectangular box. (C) shows images in
the center of (C) where the tumor area annotated in the rectangular box of (B) was cropped to remove the background and enlarged

Several enhancement methods were utilized to augment data
from the CT images in the training set, including 30° random
rotation, and random flipping, which makes one image into three
and triples the data augmentation. Data augmentation is a
technique to transform the data and expand the dataset without
changing the data label assignment, satisfying the requirement of
deep learning models with large sample sizes. Furthermore, each
level of CT images is considered as a training sample, and when one
of the images is augmented, the image heterogeneity is increased
while sharing the same imaging features. To mitigate the impact of
class imbalance between low-grade (n=124) and high-grade (n=34)
patients, a class-weighted cross-entropy loss function was
implemented during model training. This assigned a larger weight

Frontiers in Oncology

to the minority high-grade class, incentivizing the model to improve
its learning from the fewer available high-grade samples.

Selection of network model

A convolutional neural network, as a network commonly used
for processing images in deep learning, presents a structure of
multiple layers of complex neural network layers. Residual Neural
Network (ResNet) is a classical model of a convolutional neural
network. By adding residual connections to the structure, ResNet
effectively solves the problem of gradient disappearance and
network degradation caused by the increase of network depth of
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the convolutional neural network, thereby improving the network
performance. ResNet34 consists of multiple stacked residual units,
pooling layers and fully connected layers. The residual units are
composed of a convolutional (conv) layer, a batch normalization
(BN) layer, a rectified linear unit (Re LU) function, and a jump
connection. The convolution layer is used for feature extraction, the
pooling layer is mainly used for feature dimensionality reduction
and data concentration, while the fully connected layer plays the
role of classification.

Model training

Model training is divided into two stages: training and
validation, with the former using the training set data and the
latter using the validation set data. The validation set data is used to
adjust the hyperparameters of the model in order to obtain the best
model. In general, models are trained using traditional methods and
ResNet34 networks are pre-trained in ImageNet. The pre-trained
network strategy, also known as migration learning, boasts of
speeding up the network training and improving the model
accuracy. In this study, images of four different individual phases
and four-phase combined from the training set were input to a pre-
trained ResNet-34 network in order to train the ResNet-34-based
plain phase model, corticomedullary phase model, parenchymal
phase model, excretory phase model, and four-phase combined
model, respectively. All network training was performed using the
stochastic gradient descent (SGD) method with a loss function of
cross entropy. In each model training, each image input was
counted as a loss function, so as to find the gradient confidence
parameters. As the number of training sessions increased, the loss
function showed a decreasing trend and eventually leveled off. The
images from the validation set were then input to each model to
further adjust the hyperparameters of the model. The final
hyperparameters of the training models in this study are: learning
rate = 0.001, batch size = 32, and the number of optimizations = 50.

For all classification models in this study, the experimental
environment was under the training environment of Ubuntu 18.04
with an NVIDIA GeForce RTX 2070 GPU, the SE-ResNet34 model
takes approximately 45 minutes per epoch and about 37.5 hours for
the full 50-epoch training, while a single-image prediction takes
only 0.02 seconds. Memory usage is roughly 4.2 GB during training
and 1.8 GB during inference. A scalability test indicates that
expanding the dataset to 500 cases would increase training time
to around 120 hours, which can be reduced to under 30 hours
through multi-GPU parallel training.

Model testing

In the testing process, the test set data were input to the five
prediction models that had been constructed to predict the
probability of low-grade and high-grade ¢cRCC images,
respectively, and the sum of the two probabilities was 1. The
image with the higher probability was used as the output result of
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the model. The accuracy, sensitivity, and specificity of the model are
calculated based on the correctness of the output results to evaluate
the performance of the model, which results in the best model
constructed by ResNet-34 on the different contemporaneous
data sets.

Model optimization and testing

To assess the possibility of further improving the predictive
performance of the network model, the ResNet34 network was
optimized by introducing the SE attention mechanism module
based on its structure to obtain the SE-ResNet34 network. The
attention mechanism module is derived from the characteristics
that the human visual system will focus attention on important
areas in the scene. Its core point is to assign different weights and
computational resources to the convolutional network based on the
difference in importance of the feature maps so that the task can be
completed in an efficient and fast manner.

The optimized SE-ResNet34 network was also trained as
described above, and the test set data was then fed into the SE-
ResNet34 model for evaluation, using only images from the best
phase for both the training and test sets. The accuracy, sensitivity,
and specificity of the model were calculated based on the
correctness of the output results, and the predictive performance
of the model before and after optimization of the ResNet34 network
was compared.

Statistical analysis

All data in this study were statistically analyzed using SPSS
(version 26.0) as follows: Kolmogorov-Smimov was employed to
test the normality of the measures, and those conforming to a
normal distribution were expressed as mean + standard deviation;
count data conforming to a normal distribution were compared for
statistical differences between low and high grades using the
independent samples t test. Those that did not conform to a
normal distribution were expressed as median and interquartile
spacing, and independent samples nonparametric test - Mann-
Whitney U rank sum test was used to compare whether there was a
statistical difference between low and high grades. Categorical
variables were tested using the chi-square test. P<0.05 indicates a
statistically significant difference. Moreover, the receiver operating
characteristic (ROC) curve was used to assess the efficacy of the
model in predicting the low and high grades of ccRCC, and the
accuracy (ACC) of the test set classification results and the area
under curve (AUC) were calculated.

Results

One hundred and fifty-eight ccRCC patients were recruited in
this study, including 124 in the low-grade group and 34 in the high-
grade group. See the table below for a comparison of clinical
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characteristics between the two groups. The results showed that no
statistically significant difference was observed in the clinical
characteristics of patients such as gender, age, tumor side, BMI,
hypertension, and diabetes distribution between low-grade and
high-grade ¢cRCC (P>0.05). Furthermore, tumor size differed
among low and high grades of ccRCC, with renal tumors of high
pathological grade having a larger size than those of low
pathological grade (Table 2).

The models constructed by the ResNet34 network in the
corticomedullary, parenchymal and excretory phase images
presented preferable prediction validation, with a prediction
accuracy greater than 0.8, while those constructed in the
parenchymal phase data demonstrated optimal performance, with
a prediction accuracy of 0.867, 0.857 for AUC for patients of low
grade, and 0.853 for AUC for patients of high grade, see Table 3.
The accuracy and sensitivity of the five models constructed were
higher for predicting ccRCC at low grades than at high grades
(Table 2, 3).

It can be seen from the test results of the constructed model that
the model constructed by ResNet34 shows the best results in the
parenchymal images (Figure 2). Therefore, only the parenchymal
images in the dataset were used for training and testing the SE-
ResNet34 network. The accuracy of the SE-ResNet34 model in the
test set was 0.878, which was 0.929 for AUC for patients of low
grade, and 0.927 for AUC for patients of high grade, and the ROC
curve is shown in Figures 3, 4. After adding the SE attention
mechanism, the prediction accuracy of the model improved from
0.867 to 0.878, and that of AUC improved from 0.857 to 0.929 for
patients of low grade and from 0.853 to 0.927 for patients of high

TABLE 2 Clinical characteristics of 158 patients with low grade and high
grade ccRCC.

o Low grade High grade
Characteristics (n=1294) i 234% P
Gender 0.364

Male 81 25
Female 43 9
Age (years old) 57.52 + 8.95 58.94 + 10.36 0.431
Tumor side 0.194
Left 61 21
Right 63 13
BMI (Kg/m?) 25.84 + 3.50 25.40 + 3.63 0.514
Hypertension 0.312
Yes 72 23
No 52 11
Diabetes 0.635
Yes 28 9
No 96 25
Tumor size (cm) 4.30 +2.02 7.09 +9.79 0.003
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grade, as shown in Table 4, Figure 4.The observed higher sensitivity
for low-grade predictions may be partially influenced by the
inherent class imbalance in the dataset.

Discussion

Nuclear grading is closely related to the aggressiveness and
prognosis of RCC, and if histopathological grading of RCC can be
predicted preoperatively, it can guide clinicians to formulate
appropriate clinical treatment strategies to a certain extent.
Currently, the gold standard for preoperative histopathologic
grading of RCC is renal tumor aspiration biopsy. However, this
technique is invasive and patients may be at risk of sampling bias
and complications, and the accuracy of assessing tissue grading is
relatively low. There have been several previous studies on
preoperative prediction of ccRCC WHO/ISUP grading using
traditional machine learning methods, in which features such as
histogram features and texture features are extracted by the region
of interest of the tumor outlined in the imaging image for analysis,
and the optimal features are extracted using statistical methods, and
then a prediction model is built based on the optimal features. Sun
X et al. (11) selected the largest cross-section of the tumor to map
the region of interest (ROI) based on the CT images of 227 ccRCC
patients in both dermal medullary and parenchymal stages, and the
support vector machine model constructed by using the optimal
features jointly screened in both stages could effectively distinguish
the WHO/ISUP grading of renal clear cell carcinoma with an AUC
of 0.91. Shu J et al. (12) extracted radiological features from the
outlined tumor volume of interest (VOI) and used LASSO to screen
the features to obtain the optimal features based on the optimal
features obtained from the corticomedullary images, parenchymal
images and their combined optimal features, based on 164 low-
grade and 107 high-grade ccRCC CT images in both phases. Three
machine learning models were constructed based on the optimal
features obtained from the dermatoglyphic and parenchymal
images and their combined optimal features. It was found that
the AUC of the combined corticomedullary + parenchymal model
was 0.822, which was higher than that of the corticomedullary and
parenchymal models alone. The above studies all used traditional
machine learning methods to construct prediction models,
indicating that the prediction of ccRCC WHO/ISUP classification
based on traditional machine learning methods is a feasible and
noninvasive method, and the performance of the machine learning
models constructed using multi-phase CT images may be better
than that of a single phase. In contrast, traditional machine learning
systems require careful engineering and considerable domain
expertise to extract features of the input data and thus use
statistical methods to combine or separate the data based on these
features, which will inevitably lead to a more subjective result with
the disadvantages of being time-consuming, labor-intensive, and
not fully demonstrating the features of the input data. But deep
learning methods can avoid these shortcomings. Deep learning
enables automatic extraction of pixel-level image features without
the need to design and select features by hand, and a classification
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TABLE 3 Classification performance of the model constructed by ResNet-34 for images of different phases.

Grade Accuracy Precision Sensitivity Specificity
Low 0.808 0.853 0.865 0.450 0.859
Plain phase 0.777
High 0.776 0.474 0.450 0.865 0.462
. Low 0.846 0.908 0.843 0.684 0.874
Corticomedullary 0.809
phase High 0.843 0542 0.684 0.843 0.605
Low 0.857 0.910 0.922 0.67 0.916
Parenchymal phase 0.867
High 0.853 0.700 0.67 0.922 0.683
Low 0.808 0.86 0.988 0.316 0.920
Excretory phase e — 0.863
High 0.776 0.857 0.316 0.988 0.462
Low 0.706 0.843 0.923 0.604 0.891
Four-phase combined 0.791
High 0.677 0.702 0.604 0.923 0.593

system based on deep learning can classify data better compared to
manually extracted features, which is the core advantage of the Confusion matrix

model constructed in this study. 5

Deep learning-based convolutional neural networks use

multiple neural network layers to gradually extract higher-level 60

features from the original input data, reflecting the hierarchical

structure of the data, and can be enriched with features by the 20

number of stacked layers (depth). However, as the depth of the
40

neural network model increases to a certain level, the problem of

Predicted Labels

gradient disappearance or gradient explosion can occur, and the | 55
model accuracy decreases dramatically without warning, a
phenomenon called Degradation, which is not caused by Gao - 3 14 L 20
overfitting but by the fact that adding more layers to a model of

appropriate depth leads to higher training error. The core of ResNet - 10

is the residual units stacked in the network, and each residual unit « : L
consists of 2 convolutional layers and a shortcut connection, and > &
the shortcut connection can make the deep network easier to True Labels
optimize and solve the degradation problem brought by the deep FIGURE 2

network. ResNet has been widely used in the processing of medical reshietss confusion matrix
images due to its good network performance, and it has achieved
good results in diseases such as lung tumors (13), new coronary

pneumonia (14) and breast cancer (15). better results have been
ROC

achieved in auxiliary diagnosis. There have been attempts to
construct ResNet models for predicting the pathological grading
of ccRCC based on imaging images. Zhao Y et al. (16) developed a
low-level deep learning prediction model for stage I and II ccRCC
based on conventional MRI images, which was based on the
ResNet50 net structure and achieved an accuracy of 0.88 in the
Fuhrman test set and an accuracy of 0.5 in the WHO/ISUP testers
with an accuracy of 0.83. Lin F et al. (17) developed a CT-based
ResNet model for predicting WHO/ISUP classification of renal
clear cell carcinoma using a deep learning approach and found that

True Positive Rate

the use of migratory learning, no attention level settings, and images e ISUP di (AUC = 0.8565)

. . . . . —— ISUP gao (AUC = 0.8528
containing less background information helped to improve the 0.0 &2 . g2 : J
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accuracy of the model, with the best model having an accuracy of
77.9% and The AUC was 0.81, but the study chose the largest cross- CCURE S

section of the tumor to map the region of interest (ROI) and did not ROC curve of the ResNet34 model built on the parenchymal image set.
consider the volume of the tumor. Resnet convolutional neural
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TABLE 4 Comparison of accuracy and AUC of ResNet34 model before and after optimization.

Grade Accuracy Precision Sensitivity Specificity
Low 0.857 0.914 0.961 0.667
ResNet34 0.867
High 0.853 0.824 0.667 0.961
Low 0.929 0.882 0.974 0.524
SE-ResNet34 0.878
High 0.927 0.846 0.524 0.974

network mainly has several different complex structures of
Resnetl8, Resnet34, Resnet50, Resnetl01, Resnetl50, and the
number represents the depth of the network. The larger the
number indicates a deeper and more complex network depth, this
study was selected to build a model with a relatively simple structure
Resnet34 in the Resnet convolutional neural network, and the
prediction model constructed achieved good prediction results.
Lin F et al. (17). concluded that the model constructed with a
simpler network of Resnet layers has better performance in
predicting ccRCC WHO/ISUP classification, and the possible The
reason is that more complex models require a larger amount of data
and relatively small training samples cannot take full advantage of
the complex models. In addition, this study was based on layer-by-
layer outlining on CT images into 3D VOI, which was different
from the 2D ROI of a single sheet selected in some previous studies.
3D outlining can reflect more realistic tumor volume, is more
sensitive to the internal heterogeneity of the tumor, and can
present the internal characteristics of the tumor more
comprehensively, which may be the reason why the accuracy and
AUC of the model constructed in this study were higher than those
of the model constructed by Lin F et al. (17).

This study also compared the performance of each model for
ccRCC disparate CT images. Previously, some researchers used
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FIGURE 4
ROC curve of the SE-ResNet34 model built on the parenchymal
image set.
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conventional machine learning algorithms to construct prediction
models using only plain-phase or single-phase enhanced CT images
(18, 19), and although they achieved certain results, the constructed
models could not fully utilize the features of the disparate images.
Many other researchers have used two- or three-phase CT images to
construct machine learning prediction models, and they agree that
the performance of the models created by combining multi-phase
CT images is better than that of the models created by single-phase
images (20). In this study, Resnet34 models were constructed using
the scanned, dermatomedullary, parenchymal, excretory, and four-
phase combinations, and it was found that the model constructed
using the parenchymal CT images had the highest accuracy and
AUC, and the performance was even better than that of the model
constructed using the four-phase combination, and the worst
performance was that of the model constructed in the scanned
phase, which was inconsistent with most of the previous results,
probably because the previous studies used They manually
extracted the optimal features from the CT images of each phase
and then fused these optimal features together to build the model,
and the performance of the constructed model was largely better
than that of the model constructed based on the optimal features
extracted from the images of a single phase only. In contrast, this
study uses a deep learning algorithm to build the model. Although
the deep learning-based Resnet has good performance of
automatically extracting image features, it is impossible to avoid
automatically extracting the image dominant features while also
extracting the image inferior features, and when Resnet extracts the
four-phase joint image features, it also extracts some of the inferior
features such as the flat-scan phase, thus lowering the overall
diagnostic performance of the model. the overall diagnostic
performance. The results of this study may be useful for scholars
who want to conduct similar studies in the future. In addition, since
the model constructed in this study predicts the pathological
grading of ¢ccRCC, and the level of pathological grading
represents the strength of the aggressiveness of the tumor,
clinicians can pay more attention to the CT images of the
parenchymal stage when judging the malignancy of ccRCC.

After testing the performance of the Resnet34 model on
different CT images, it was found that the performance of the
Resnet34 model constructed based on parenchymal stage images
was optimal. To explore whether the performance of the model
could be further improved, the Resnet34 structure was optimized on
the basis of the attention mechanism module SE-Net (Squeeze and
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Excitation), and the SE- Resnet34 model was formed. The SE-
Resnet34 model was then retrained and tested on the CT images of
the substantive period, and it was found that the SE- Resnet34
model had an accuracy of 0.878, a low-level AUC of 0.929, and a
high-level AUC of 0.927 in the test set, which was a certain
improvement in performance compared with that before the
improvement. This study is a single-center retrospective study
and there may be bias in data selection, so the generalization
performance of the model needs to be further validated.

This study has several limitations. Firstly, its retrospective,
single-center design and relatively limited sample size (especially
for high-grade [WHO/ISUP III-IV] ccRCC cases) collectively
constrain the research. On the one hand, the retrospective and
single-center nature introduces potential selection bias. The model
was developed and validated based on data from a single institution
with specific CT protocols, meaning its performance may not be
directly transferable to other centers, which severely limits the
generalizability of our findings. On the other hand, despite using
data augmentation and class-weighted loss functions to mitigate
class imbalance, the small absolute number of high-grade tumors
remains unresolved. This not only contributes to the observed
performance difference between low-grade and high-grade cases
but also further impacts the model’s generalizability. Secondly, the
lack of an external validation cohort is a significant limitation.
Given the constraints of single-center data and limited sample size,
the reliability of the model’s performance cannot be fully confirmed.
Therefore, future multi-institutional, prospective external
validation is essential to verify the robustness and clinical utility
of the proposed model, and our findings need to be validated in
such a larger cohort. In future work, we will replace the rectangular
ROI with a “semi-automatic tumor-contour segmentation” pipeline
that comprises three steps:(1) A U-Net model pretrained on our in-
house cohort of 158 patients will first generate an initial tumor
outline.(2) One senior radiologist will manually refine the auto-
segmentation (adjusting only deviating borders); this keeps non-
tissue inclusion below 5% while limiting annotation time to 1-2 min
per image.(3) We will retrain the SE-ResNet34 classifier with the
new precise ROIs and compare its performance with the rectangle-
ROI version; we expect the sensitivity for high-grade ccRCC to rise
from 0.67 to > 0.80.

The SE-Resnet34 model based on parenchymal CT boasts a
preferable differentiation of WHO/ISUP grade of clear cell renal
carcinoma, providing an effective auxiliary means for noninvasive
preoperative prediction of pathological grading of renal clear cell
carcinoma in clinical practice. Future multi-center validation (=500
cases, GE/Siemens/Philips CT) and prospective trials are required
before clinical discussion.
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