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A lightweight CNN for colon
cancer tissue classification
and visualization

Jie Li*, Weiwei Goh* and Noor Zaman Jhanjhi

Digital Health and Medical Advancement Impact Lab, School of Computer Science, Taylor's
University, Subang Jaya, Malaysia

Introduction: Colon cancer (CC) image classification plays a key role in the
diagnostic process in clinical contexts, especially as computational medical
solutions become the trend for future radiology and pathology practices. This
study presents a novel lightweight Convolutional Neural Network (CNN) model
designed with effective data cleaning strategy for the classification and
visualization of histopathology images of various colon cancer tissues.
Methods: Addressing the critical need for efficient diagnostic tools in colon
cancer detection, the proposed model leverages a non-pretrained architecture
optimized for performance in resource-constrained environments. Utilizing the
NCT-CRC-HE-100K and CRC-VAL-HE-7K datasets, this model employs a
parametric Gaussian distribution-based data cleaning approach to enhance
data quality by removing outliers.

Results: With a total of 4,414,217 parameters and a total size of 16.9 megabytes,
the model achieves a test accuracy of 0.990 + 0.003 with 95% level of
confidence, which demonstrates high precision, recall, specificity, and F1
scores across various tissue classes.

Discussion: Comparative analysis with benchmark studies underscores the
model’s effectiveness, while discussions on underfitting and overfitting provide
insights into potential fine-tuning strategies. This research presents a robust,
lightweight solution for colon cancer histopathology image classification,
offering a foundation for future advancements in colon cancer diagnostics
with result visualization.

KEYWORDS

colon cancer, CNN, data cleaning, image processing, medical imaging, histopathology,
lightweight model

1 Introduction

Colon Cancer (CC) has become the second leading cause of cancer deaths worldwide in
the last decade. Meanwhile, the implementation of Artificial Intelligence (AI) in CC
diagnostic tools has significantly boosted its accuracy and speed. Histopathology images
have been widely used as a diagnostic tool to detect CC in clinical settings. Over the past
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years, the use of Al has boosted histopathological detections and
classification tasks in different types of cancers including breast (1,
2), brain (3), lung (4), and skin (5) etc. In this case, the use of Al in
histopathology image recognition has technologically
revolutionized cancer diagnostics in the medical industry.

Classifying CC tissue in the diagnostic process is crucial to
accurately identify and differentiate between various pathological
conditions (6). In histopathology, distinguishing the tissue types
such as ADI (Adipose), TUM (Tumor), MUC (Mucin), STR
(Stroma), and others enables clinicians to pinpoint abnormal
growth patterns, assess tumor aggressiveness, and make informed
decisions about treatment strategies. Al-based classification of
histopathology images could potentially be crucial for early cancer
detection with accurate diagnostics in clinical practices. By
automating tissue classification. Using a confusion matrix derived
from a sorting model’s predictions, medical professionals gain
statistical insights into both the accuracy of the diagnoses and the
areas prone to error (misclassifications) (6). Thus, a clear and
reliable classification solution helps refine diagnostic protocols,
reduces manual errors, and potentially accelerates the turnaround
time for pathology reports, ultimately leading to better patient
outcomes in later treatment and therapy processes.

Deep Learning (DL) excels at advanced image recognition
applications. In recent years, the field of medical image
classification, particularly for CC, has seen significant
advancements with the use of Convolutional Neural Networks
(CNNs) in DL. However, there is still potential to improve the
accuracy of Al-based medical image classification to ensure better
diagnostic precision. In recent years, Dense-Net (7), Res-Net (8),
and Inception V3 (9) were the most widely-used pretrained models
to classify NCT-CRC-HE-100K and CRC-VAL-HE-7K datasets.
While pretrained CNN models are preferred for the classification of
CC tissues for diagnostic purposes, non-pretrained models possess
better flexibility for task-specific goals. In addition to model
generalizability, previous studies on CC tissue image classification
only focused on a single dataset, yet without specification on data
cleaning method on training, validation, and testing process in their
CNN models. Furthermore, integration of result visualization
improves intepretability of results in clinical practices. The use of
lightweight models to classify CC tissues would benefit the
pathological decision in the diagnosis of CC. A lightweight model
solution would be more advantageous in terms of the deployment
and energy consumption of front-end diagnostic devices (10).

In this case, the research objectives are: (1) to develop and
finetune a lightweight non-pre-trained CNN model to classify CC
histopathology images from the NCT-CRC-HE-100K and CRC-
VAL-HE-7K datasets (2) to evaluate its performance compared to
benchmark studies over the past 5 years, and (3) to visualize image
from result of different CC tissue classes. The motivation of this
research is to improve computational efficiency of AI model in
clinical settings via a lightweight CNN architecture configuration
with adoption of statistical data cleaning method. As a supportive
diagnostic tool, visualization of result could also benefit clinician
and pathologist on the final decision making to diagnosis.
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2 Literature review
2.1 CNNs in histopathology analysis

The DL approaches include hybrid learning, end-to-end
learning, transfer learning, explainable AI, and sampling-based
learning (11). Before the use of CNN classification, Toraman
et al. (12) proposed the use of an ANN model in 2019 to predict
the presence of colon cancer tissue using FTIR signals on 30 colon
cancer patients and 40 healthy humans, which managed to reach an
accuracy of 0.957. In recent years, most medical image processing
and imaging applications are powered by CNNs. Their architecture
includes data preprocessing and preparation, data augmentation,
feature extraction, and finally feature classification using linear or
nonlinear activation functions (e.g., ReLU, GeLU, etc). CNN’s
current contributions to histopathology analysis have had a
profound impact on the detection of cancers such as breast (13,
14), lung (15, 16), and brain (17, 18). The most commonly-used
models in the diagnosis process are based on Transformer-based
and hybrid CNN-Transformer architectures for classification task.

In Table 1, over the past 5 years, in 2020, a study proposed a
hybrid model (19) that adopted MFF-CNN with Shearlet transform
for the selection of histopathology images and reached a model
accuracy of 0.960 using National Cancer Center of Heidelberg and
Medical Center of Heidelberg University in Germany. Bukhari et al.
(20) applied ResNet 18, 30, and 50 to colonic tissue image
classification, and the models reach an accuracy of up to 0.939.
The accuracy of the prediction model showed a significant
improvement, as shown in research by Tasnim et al. (10), where
their MobileNetV2 model showed 0.997 accuracy in colon cell
image classification. In the same year, Hamida et al. (21) tested
AlexNet, Visual Geometry Group (VGG), and ResNet models on
colon cancer histopathology images, which reached the highest
accuracy of up to 0.970. Moreover, Ghosh et al. (22)designed and
developed an ensemble learning method CNN model to classify CC
histopathology images from the NCTCRC-HE-100K and/or the
CRC-VAL-HE-7K dataset in 2021 that was able to display a 0.961
diagnostic accuracy. In the same year, Shawesh and Chen (23)
applied the ResNet 50 model to classify colorectal cancer tissue
histopathology images that reached 0.977 accuracy. The model was
later improved by Tsai and Tao (24) to an accuracy of 0.993. Anju
and Vimala (9) achieved this in 2022 by applying the InceptionV3
model to classify images of colon cancer tissue and reached a model
accuracy of 0.974 using the same NCT-CRCHE-100K data set. Sakr
et al. (25) designed and developed a CNN model that improved the
model’s accuracy to 0.995, while a study (26) utilized a deep
convolutional neural network (DCNN) model to further improve
cancer recognition accuracy to 0.998. This is followed by an
innovative graph-based sparse principal component analysis (GS-
PCA) network model (27) detecting colon cancer tissues using
histopathology images with 0.909 accuracy.

Then, in 2023, Jiang et al. (28) designed a CNN model using a
multi-scale gradient generative adversarial network and recorded a
result accuracy of 0.869. Later in the same year, a CRCCN-Net
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TABLE 1 Summary of recent deep learning models for colorectal cancer
histopathology image classification (2020-2025).

Benchmark Model/method | Dataset ACC
MFE-CNN Shearlet
Liang et al. (19) CNN Shearle NCCH/CHU 0.960
Transform
Bukhari et al. (20) ResNet-18/30/50 CRAG 0.939
Tasnim et al. (10) MobileNetV2 LC25000 0.997
Al 1
Hamida et al. (21). AlexNet, VGG, ResNet drtnotated ws 0.970
ata
NCT-100K,
Ghosh et al. (22) Ensemble CNN C ! 0.961
CRC-7K
Shawesh and Chen ResNet-50 NCT-100K/ 0977
(23) € CRC-7K :
Tsai and Tao (24) Improved ResNet-50 NCT-100K 0.993
Anju and Vimala (9) InceptionV3 NCT-100K 0.974
Sakr et al. (25) Custom CNN LC25000 0.995
Hasan et al. (26) Deep CNN (DCNN) LC25000 0.998
fani |
Ram et al. (27) GS-PCA Network itian‘e Galban ", 909
al
Multi-scale Gradient
i t al. (28 NCT-100K 0.869
Jiang e (28) GAN
Kumar et al. (29) CRCCN-Net NCT-100K 0.992
Fadafen and Rezaee (8) = dResNet NCT-100K 0.997
Reis and Turk (7) DenseNet-169 MNIST 0.950
im Transform,
Azar et al. (30) Swim Transiorm NCT-100K 0.993
Color-CADx
Hagq et al. (31) ResNet-18/50 Not Specified 0.987
Alzubaidi et al. (32) ResNet-110 Warwick-QU 0.996
MLP imT T-100K,
Pacal and Attallah (33) = ReMLP+SwimTran NCT-100K/ 0.991
+Xception Kather-5K
Venkatachalam and
ResNet-based LC25000 0.989
Shah (34)
Hybrid Res-Net &
Hosny et al. (35) yone Bes-e LC25000 0.997

Inception

architecture (29) using the same dataset, which obtained a high
classification accuracy of 0.992. Following that, the use of the
dResNet and DeepSVM methods (8) in the classification of
colorectal cancer histology images. Their results suggested that
the dResNet model that was trained on NCT-CRC-HE-100K had
an accuracy approaching 0.997. Subsequently, Reis and Turk (7)
applied DenseNet 169 architecture on the colorectal histology
MNIST dataset and managed to reach a 0.950 validation
accuracy. The CNN model (30) was optimised using colon cancer
datasets, which improved the model accuracy up to 0.996. In 2024, a
study by Sharkas and Attallah (36) applied the Swim Transform and
Color-CADx approaches to their CNN models, and their results
showed 0.993 accuracy in model performance. Haq et al. (31)
proposed Res-Net 18 and 50 achieved 0.987 and 0.967 accuracy.
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Alzubaidi et al. (32) came up with the solution based on 110 variant
of Res-Net architecture and achieved 0.996 accuracy. In 2025, Pacal
and Attallah (33) implemented hybrid architecture and achieved
(0.991 - 0.999) accuracy. Venkatachalam and Shah (34) proposed
another Res-Net based architecture and gained 0.989 accuracy in a
classification task. Hosny et al. (35) proposed a hybrid Res-Net and
Inception based learning model for the CC classification task with
0.997 accuracy.

2.2 Advantages of lightweight CNN
architecture

A lightweight nature is crucial for a CNN model that is
developed for medical diagnoses utilizing histopathology images
(10). Real-time prediction is required when it comes to medical
applications using the model, particularly in situations where
pathologists require a prompt and precise diagnosis (37).
Lightweight CNN models exhibit computational efficiency and
yield expedited predictions, being capable of operating on low-
powered hardware commonly seen in medical equipment or
systems such as mobile health applications and embedded devices
Reddy and Dhuli (38). The size of the lightweight model restricts
lightweight CNNs to have fewer model parameters and be under 20
megabytes. This is crucial for democratizing healthcare, as not all
medical facilities have access to medical equipment or systems with
advanced GPUs Momin et al. (39). Lightweight CNN models can be
utilized in remote locations or resource-limited settings where
access to extensive computing hardware is restricted (40). In low-
resource environments, healthcare professionals can utilize mobile
or portable diagnostic instruments equipped with lightweight
convolutional neural network models to identify colon cancer
(10). Lightweight models, due to their diminished parameter
count, have a lower susceptibility to overfitting, particularly when
trained on fewer datasets, which is a common scenario in medical
picture analysis (41). histopathology image datasets for colon
cancer may not be as extensive as those for general image
classification, hence lightweight models facilitate improved
generalization without overfitting to the training data under a
limited resource.

3 Method
3.1 Data collection and preprocessing

The CRC-VAL-HE-7K (in Figure 1A), NCT-CRC-HE-100K (in
Figure 1B), and their merged (in Figure 1C) datasets were used to
train, validate, and test the proposed model. The data-splitting
strategy followed the 80-20 distribution rule. In these datasets, the
classified categories are ADI (adipose tissue, consisting of
adipocytes), BACK (background of histopathology images), DEB
(debris, useful for diagnosis of cancer), LYM (lymphocytes, cells of
lymphatic system), MUC (mucus, protective layer on tissue), MUS
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FIGURE 1

Sample distribution (A) CRC-VAL-HE-7K; (B) NCT-CRC-HE-100K; (C) Merged dataset.

(smooth muscle), NORM (normal tissue of colon), STR (stroma
tissue associated with cancer), and TUM (epithelium tissues
of adenocarcinoma).

The Figure 1 exhibited the data distribution of the
histopathology image classes in the VAL-HE-7K, NCT-CRC-HE-
100K, and the merged datasets. In VAL-HE-7K, there were a total of
7,180 images where ADI has the highest number of samples (n =
1,338: 18.6%) followed by the TUM category (n = 1,233: 17.2%).
This is followed by the MUC category, which has (n = 1,035; 14.4%)
images. These 3 categories made up more than 50% of the dataset,
and the rest of the categories — DEB, STR, MUS, LYM, NORM, and
BACK— covered 4.7%, 5.9%, 8.2%, 8.8%, 10.3%, and 11.6% of the
dataset, respectively. There were 100,000 histopathology images in
NCT-CRC-HE100K, where TUM has the highest number of
samples (n = 14,317: 14.3%), followed by MUS at n =13,536;
13.5%. LYM and DEB covered n = 11,557 (11.6%) and n =
11,512 (11.5%) of the dataset, respectively. These 4 categories
made up for over 50% of the sample size, while the rest of the
classes, including BACK, STR, ADI, MUC, and NORM, covered
10.6%, 10.4%, 10.4%, 8.9%, and 6.6% of the total sample size,
respectively. In the combined dataset, TUM has the highest
number of samples (n = 15,550: 14.5%), followed by MUS at n =
14,128: 13.2%. This is followed by the LYM and DEB categories at
n =12191 (11.4%) and n = 11,851 (11.1%). These 4 categories take
up more than 50% of the total sample, and the rest of the categories,
including BACK, STR, ADI, MUC, and NORM, make up 10.6%,
10.1%, 11.0%, 9.3%, and 8.9% of the total sample size, respectively.
After merging NCT-CRCHE-100K and VAL-HE-7K, both the
quantity and variety of the merged dataset increased.

The descriptive result in Figure 1 detailed the class imbalance
inherent in the original datasets. This research adopted strategy
using weighted loss functions and data augmentation during
training, rather than aggressive pre-balancing which could discard
valuable data. The merged dataset exhibits a natural class
imbalance, as shown in Figure 1C. To mitigate bias towards
majority classes, we employed a dual strategy during training: (1)
Class-weighted loss function: The categorical cross-entropy loss was
weighted inversely proportional to class frequencies to penalize
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misclassifications on underrepresented classes more heavily. (2)
Targeted augmentation: During training, real-time data
augmentation (including rotation (+ 15°), horizontal/vertical flips,
and slight brightness adjustments) was applied, which artificially
increases the diversity of the training set and improves
generalization. All input images were normalized to the [0, 1]
range based on the RGB channel means and standard deviations
calculated from the merged set.

3.2 Data cleaning

As the key part of data preprocessing strategy, the parametric
Gaussian distribution, the Equation 1, was applied based on the
color distribution test, where input x was normalized based on the
mean value (¢) and standard deviation (o) as the applied data
cleaning method.

(x - p?

) ) (1)

1
(x M, 0-2) = Ex ( -
flx| R
and Equation 2 allocates x within the range of the 99% level of
distribution:

x € [u *2.5760] )

The Gaussian (normal) distribution is a fundamental concept in
statistics. Many natural and measurement-related phenomena,
including pixel intensities and feature distributions in images,
tend to follow a normal distribution, especially after
normalization or standardization for a consistent and
concentrated sample distribution.

3.3 Model design and development

The size of the model had 3,514,153 trainable and 928 non-
trainable parameters within 13.46 megabytes, which defined the
lightweight nature of the proposed model. As shown in Figure 2, an
input histopathology image of 224 * 224 pixels was marked on a
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GRB matrix in the initial step. Then, the convolutional layer, which
contains 4 individual blocks with 32, 64, 128, and 256 (3, 3)
dimensioned filters, detects features in the input data using the
ReLU activation function (in Equation 3), where the output of f{x)
was calculated:

x =20

x
flx) = MAX(O,x){ 3)
0 x<

0

Afterward, the Batch Normalization function (in Equation 4)
was adopted in normalizing the inputs to enhance the model
training speed, stability, and performance, where the normalized
yiwas calculated with the mean value (¢)and standard deviation (o)
of the batch setting:

Xi — Uy +ﬁ)

\/Of +e

To reduce the spatial size, the max pooling layer operates a (2, 2)

yi=Y( (4)

dimensioned filter over the feature map. Then, the proposed model
flattens the output and compares the features in a 4-block dense
layer with 0.8, 0.5, 0.3, and 0.2 learning rates using the ReLU
activation function (Equation 3) in the neural network. Finally, the
output was multi-classified with the number of classes (k) as the
identified categories (i), using the SOFTMAX (Equation 5) based on
the given vector Z:

e(Zi)
ez

The characterizes of the proposed model architecture shown in

o(2); = (5)

Figure 1 emphasizes on its lightweight nature. The first lightweight
characteristic is the depthwise convolution, which applies a single
filter per input channel, which could drastically reduces the

Frontiers in Oncology

parameters needed for spatial feature extraction. Thus, this model
factorization reduces computational cost and parameters by
approximately a factor of the number of output channels
compared to an equivalent standard convolution, and also
maintains representational power.

Instead of using one or more large, dense fully-connected (FC)
layers at the head of the network, a Global Average Pooling layer
was designed. This layer reduces each feature map from the final
convolutional block to a single value by taking the average. These
values are then fed directly into the final softmax classification layer.
In this case, the proposed model eliminates a massive source of
parameters in FC layer and also reduces the risk of overfitting.

The model’s width (number of filters per layer) and depth
(number of layers) were carefully co-designed through testing to
find the smallest viable configuration that could still capture the
necessary hierarchical features from the histopathology images.
This avoids the common pitfall of simply stacking more layers,
which leads to parameter inflation. To be summarized, there were
totally 4,414,217 trainable and non-trainable parameters in a total
size of 16.9 megabytes for model composition,

3.4 Measures

This research quantitatively evaluate the proposed lightweight
model’s performance. The evaluation focused on the accuracy,
categorical loss, classification report, as well as the confusion
matrix. The equations Equations 6-10 (42-44) interpret the key
performance metrics, including Accuracy (Acc), Categorical Loss
(L), Precision (P), Recall (R), Specificity(Sp), F1 Score (F1), and
Support (S). To all the expressions, TP stands for True Positive, TN
is True Negative, FP means False Positive, and FN is False Negative.
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In Equation 6, ACC is the measurement of how well the model
performs on a dataset:
TP+ TN

Acc = 6
“TTPYFP+TIN+FN ©

In Equation 7, L is the dissimilarity between the true label
distribution (y;) and the predicted label distribution in a class (C)

c
L = XyiLog(y;) (7)

The Equation 8 presented P refers to the true positive
predictions out of all the instances the model has predicted as
positive:

TP

P=—
TP + FP

®)

In Equation 9, R is the sensitivity, the proportion of actual
positive instances that the model correctly identified as positive:

TP

R=——— 9
TP + FN ©)
Whereas the Specificity (Sp) is measured in Equation 10
TN
- 1
= IN T Fp (o)

Further in Equation 11, F1 refers to harmonic mean of precision
and recall provide balance between them.

PxR

F1 =2x
P+R

(11)

And Support(S) (Equation 12) is the number of actual
occurrences of each class in a dataset:

S=TP+EN (12)

The above metrics established foundation for analysis results
from extensive experiments. Particularly, the accuracy as the key
indicator to be used to compare with benchmark studies over the
past 5 years.

TABLE 2 Color distribution test.

10.3389/fonc.2025.1659010

4 Data analysis
4.1 Data preprocessing

The Figure 1 demonstrated the sample distribution, whereas
Table 2 listed the statistical view of the RGB color distribution of
input images in the 3 datasets.

In VAL-HE-7K, the MEAN (y) pixel value of 167.56 indicated
that the images have a moderate level of brightness. Specifically, for
the blue channel, the color was recorded as 180.84, the green
channel has a value of 136.51, and the red channel’s was 185.34.
A standard deviation (o) of 44.06 suggests a moderate degree of
contrast in the images. Specifically, the blue channel had a o of
30.88, the green channel was at 42.24, while the red channel was at
30.32. The u pixel value of NCT-CRC-HE-100K was 168.27,
indicating that the images are moderately bright compared to the
previous datasets. For the blue channel, the p pixel value was
recorded as 180.01, the green channel has a value of 135.94, and
the red channel was recorded as 188.86. A o of 43.28 suggests a
moderate degree of contrast in the images. In particular, the blue
channel had o of 24.09, the green channel’s was 34.06, and the red
channel’s was 24.13. Hence, by applying the Equation 2, there were
106,987 images qualified for further model training, testing,
and validation.

In the cases of NCT-CRC-HE-100K and VAL-HE-7K, the
distribution color tests indicated a variance of RGB color between
these 2 datasets. Thus, the use of a merged dataset could increase
data variety to improve the generality of the proposed model. In this
research, the merged dataset (VAL-HE-7K and NCTCRC-HE-
100K) was used for model training, testing, and validation.

4.2 Model performance test

Model performance test recorded model learning curve of Acc
and L in the training, validation, and test processes. Table 3
displayed the results of 6 extensive experiments, which is crucial

Index CRC-VALHE-7K NCT-CRC-HE-100K Merged
Pixel Value Mean 167.56 168.27 168.22
Blue channel 180.84 180.01 180.06
Green channel 136.51 135.94 135.98
Red channel 185.34 188.86 188.62
Pixel Value STD 44.06 43.28 43.33
Blue channel 30.88 24.09 24.60
Green channel 4224 34.06 34.67
Red channel 30.32 2413 24.61

The range of RGB color distribution is from 0 to 255.
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TABLE 3 Performance test summary.

10.3389/fonc.2025.1659010

No. Condition Sample size(n) Epoch (e) ACC L
1 CRC-7K 7,180 13 0.879 0.074
0.854 0.082
0.868 0.080
2 NCT-100K 100,000 10 0.974 0.020
0.967 0.025
0.969 0.023
3 NCT-100K/CRC-7K 107,180 10 0.959 0.026
0.932 0.046
0.931 0.048
4 NCT-100K/CRC-7K 106,987 10 0.960 0.030
Outlier Removed 0.953 0.037
0.951 0.037
5 NCT-100K/CRC-7K 106,987 100 0.999 0.001
Outlier Removed 0.988 0.051
0.987 0.059
6 NCT-100K/CRC-7K 106,987 100 0.999 0.000
Outlier Removed 0.989 0.074
Optimization 0.990 0.075

for understanding how different training setups (sample sizes, data
splits, and epochs) affect the performance of a model in terms of
accuracy and loss. It provides insights into the scalability of the
model and the effectiveness of different data handling strategies,
which is essential to optimize DL models to achieve the best possible
performance on various tasks.

The Table 3 provides a comprehensive overview of model
performance across different extensive experiments and highlights

Training and Validation Accuracy

=== Training Accuracy
w——\/alidation Accuracy

08

07

03

0.2

01

2 4 6 8
Epochs

FIGURE 3
Accuracy (Acc) and categorical loss (L) of experiment 1.

Frontiers in Oncology

07

the impact of sample size, data splitting, and training epochs on
accuracy and loss. demonstrates that larger sample sizes generally
lead to better performance, and Experiment 6 shows the best overall
results. As listed in Table 3, six step-by-step extensive experiments
were executed using the NCT-CRC-HE100K, CRC-VAL-HE-7K,
and merged dataset with the 80-20 rule applied in order to test the
performance of the model under different data cleaning and
splitting conditions.
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Accuracy (Acc) and categorical loss (L) of experiment 2.

Experiments 1 and 2 were tested with the original datasets,
NCT-CRC-HE-100K and CRC-VAL-HE7K, respectively, whereas
Experiment 3 was executed using the combined dataset.
Experiments 4 and 5 used a 99% Gaussian distribution (N =
106,987) in 10 and 100 epochs, respectively. Lastly, Experiment 6
was fine-tuned in 100 epochs with data augmentation and
hyperparameter fine-tuning strategy by Python Optuna to
stabilize the learning process of the model.

4.2.1 Experiment 1 - CRC-VAL-HE-7K

Experiment 1 (Figure 3) had 7,180 raw data from CRC-VAL-
HE-7K in the data frame while following the 80-20 rule with 13
epochs. From the result, the accuracy was 0.879, 0.854, and 0.868 in
the train, validation, and test data, respectively, whereas the loss
values were 0.074, 0.082, and 0.080. The testing accuracy was 0.868
with a loss of 0.148, indicating that the results did not vary
significantly but could be improved with more epochs. Thus, both
training and validation loss started high and decreased sharply as
the number of epochs increased. The training loss decreased more
smoothly and consistently compared to the validation loss, which
stabilized after initial fluctuations.

4.2.2 Experiment 2 -NCT-CRC-HE-100K

Experiment 2 (Figure 4) had 100,000 raw data from NCT-CRC-
HE-100K in the data frame while following the 80-20 rule with 10
epochs. The accuracy was 0.974, 0.967, and 0.969 in the train,
validation, and test datasets, respectively, whereas the loss values
were 0.020, 0.025, and 0.023. The testing accuracy was 0.969 with a
loss of 0.023, indicating that the model performed well but could be
further improved with more data and epochs, as well as by applying
noise-decreasing approaches. The validation loss, in particular,
showed sharp spikes, which could indicate issues with model
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stability or the presence of outliers in the data affecting the
model’s performance.

Across Experiments 1 and 2, there is a common trend of initial
improvements in both loss and accuracy as the number of epochs
increases. However, the presence of fluctuations, especially in
validation metrics, suggests challenges to the stability of the
model, the possibility of overfitting, and the sensitivity to the
validation dataset. These insights could guide further refinement
of the model, such as adjusting model complexity, implementing
regularization techniques, or revising data preprocessing and
augmentation strategies to enhance model robustness
and generalization.

4.2.3 Experiment 3 - cross-dataset validation

In Experiment 3 (Figure 5), the model was trained using the
combined dataset, consisting of 107,180 samples from CRC-VAL-
HE-7K and NCT-CRC-HE-100K. The training process spanned 10
epochs, resulting in a training accuracy of 0.959 with a loss of 0.026.
The validation and testing accuracies were slightly lower, at 0.932
and 0.931, respectively, with corresponding losses of 0.046 and
0.048. This experiment showed the most volatility among the six.
The validation loss had significant spikes, particularly around
epochs 2, 6, and 8. The training loss decreased more steadily. The
results across the training, validation, and testing phases did not
vary significantly, suggesting that the outlier removal technique
contributed to more consistent performance. Lastly, the
performance drop compared to Experiments 2, result of lower
accuracy and higher categorical loss in Experiment 3 suggest that
the combination of samples from different datasets had introduced
noise, which is expected due to the domain shift between datasets.
However, the model maintains high accuracy. This demonstrates a
strong degree of robustness and suggests that the features learned by
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FIGURE 5
Accuracy (Acc) and categorical loss (L) of experiment 3.

the lightweight CNN are generalizable across different sample
preparations within the same broader data source.

4.2.4 Experiment 4 - parametric cleaning

In Experiment 4 (Figure 6), the model was trained on the same
datasets, but with 106,987 rows after removing 1% of outliers using
the 99% normal distribution rule. The training spanned 10 epochs,
resulting in a training accuracy of 0.960 and a loss of 0.030.
Validation and testing accuracies were 0.953 and 0.951, with the
same loss value of 0.037. The training loss starts high and decreased
steadily over epochs. The validation loss showed more fluctuation
but generally decreases, with a notable spike around epoch 4. The
performance improvement compared to Experiment 3 suggests that
the use of a parametric cleaning approach improves model
performance in the classification tasks. After merging the data
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FIGURE 6
Accuracy (Acc) and categorical loss (L) of experiment 4.
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sets, feature learning becomes challenging due to the complexity
of feature extraction. In this case, further enhancement is necessary.

4.2.5 Experiment 5 - enhancement

In Figure 7, the authors set the number of epochs to 100 to train,
validate, and test the model in order to boost the effectiveness of
learning. The cleaned dataset was registered at 106,987 rows after
using the 99% normal distribution rule. As a result, the accuracy
reached 0.987 with 0.059 loss.

4.2.6 Experiment 6 - augmentation and
hyperparameter fine-tuning

As shown in Figure 8, fluctuation in the training process was
observed in Experiment 5. In this case, an optimization strategy
(data augmentation and hyperparameter fine-tuning) was applied
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Accuracy (Acc) and categorical loss (L) of experiment 5.

to improve the stability as well as the learning efficiency of the
proposed model. After fine-tuning, the model consumes 16.9
megabytes with 4,414,217 total parameters. As a result, the
accuracy reached 0.990 with 0.075 loss in the testing process. The
augmented data had allowed the weakly-parameterized CNN model
to train on a more diversified set of images. This helps the model
generalize better to unseen images in future clinical context, as
reflected in the high accuracy (0.990) reported after hyperparameter
fine-tuning. For our proposed model, we performed 5-fold cross-
validation with accuracy as 0.990 + 0.003 (mean + 95% CI) with a
95% confidence interval (CI) of [0.987, 0.993].

4.3 Classification report

The classification report (Table 4) presents a detailed confusion
matrix that illustrates not only the classification performance
through correctly predicted instances (true positives) but also the
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FIGURE 8
Accuracy (Acc) and categorical loss (L) of experiment 6.
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misclassification behavior of the model. In statistical terms, a
confusion matrix (Figure 9) is a 9 % 9 table, where each row
represents the actual classes (true labels) and each column
represents the predicted classes by the model.

For a model classifying nine categories (ADI, BACK, DEB,
LYM, MUC, MUS, NORM, STR, and TUM), each diagonal
category contains the number of observations that have been
correctly classified for that particular category. The confusion
matrix above (see Figure 6) indicates the representativeness of the
classification model’s performance with the test dataset. There were
nine categories identified from Experiment 5, and for each of the
categories, most predictions hit on the target’s true labels. In the
ADI category, all the 1165 samples were correctly predicted.
Similarly, all the BACK samples were accurately predicted. In the
case of DEB, there were 1167 samples predicted as they were
labeled, but 3 were predicted as BACK, 2 as MUS, 4 as TUM, and
10 as STR. LYM predictions were spot on 1154 out of 1158
instances, with 1 and 3 misclassifications to DEB and TUM,
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TABLE 4 Classification report.

10.3389/fonc.2025.1659010

Precision Sensitivity (recall) = Specificity F1 score Support
ADI 1.00 1.00 1.00 1.00 1,165
BACK 1.00 1.00 1.00 1.00 1,150
DEB 0.99 0.98 0.99 0.99 1,186
LYM 1.00 1.00 1.00 1.00 1,158
MUC 0.99 0.99 1.00 0.9 995
MUS 0.99 1.00 1.00 0.99 1,400
NORM 0.99 0.99 1.00 0.9 979
STR 0.98 0.96 098 097 1,071
TUM 0.98 1.00 0.99 0.99 1,595
Accuracy 0.99 10,699
Macro Avg 0.99 0.99 0.99 0.99 10,699
Weighted Avg 0.99 0.99 0.99 0.99 10,699
Confusion Matrix T
ADI m 0 0 0 0 0 0 0
BACK 0 0 0 0 0 1200
DEB 0 2 0 10 4
1000
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FIGURE 9

Confusion matrix.
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respectively. MUC had 983 out of 995 successful predictions with 6
mislabeled instances each to STR and TUM. The MUS category was
correctly predicted 1394 out of 1400 instances with 1
misclassification each to ADI, DEB, and MUC, and 3
misclassified instances to STR. In the case of NORM, there were
965 out of 979 successful predictions with 1 misclassification to
MUS, 4 to MUC, and 9 to TUM. Model predictions correctly
interpreted 1028 out of 1071 STR instances with 10 misclassified
instances to DEB, 14 to MUS, 5 to NORM, and 13 to TUM. Lastly,
there were 1588 out of 1595 instances of TUM that were correctly
classified, with 1 instance of misclassification to MUS and 2
misclassifications each to DEB, MUC, and NORM.

The Table 4 above summarizes the classification report,
including precision, recall, F1-score, and the number of supports
from Experiment 6 using the proposed model. The precision values
indicate that 100% of the ADI, BACK, and LYM tissues in the
sample images were successfully predicted by the proposed model
and matched actual observations. This is followed by precision
values indicating that 99% of the predicted DEB, MUC, MUC, and
NORM tissues, as well as 98% of the STR and TUM tissues,
matched actual observations. Recall, also known as sensitivity, is a
statistical measure that quantifies the proportion of correctly
predicted positive cases out of the total number of true-positive
instances in a dataset. In this case, the recall values explain the
sensitivity of the proposed model in accurately identifying the true
positives among the 9 data classes. Lastly, the F1 score explains the
balance of precision and recall. From Figure 9, it showed that ADI,
BACK and LYM had the highest F1 scores, at a value of 1, for the
predictions among all the nine categories. DEB, MUC, MUS,
NORM, and TUM have F1 scores of 0.99, followed by STR with
an F1 score of 0.97. In summary, the proposed model demonstrates
99% accuracy in both macro and weighted average metrics.

4.4 Result visualization

The interpretability of model predictions is critical for clinical
adoption. To provide comprehensive visual insights, we generate a
multi-faceted visualization for each input histopathology image via
Local Binary Pattern (LBP), clustering, heatmap, contoured images,
and intensity are commonly used computer vision techniques for
histopathology data observation. In Figure 10, identified
histopathology images from the 9 categories were processed with
computer vision techniques to improve the clinical interpretability
of the classification result.

The K-Mean Clustering method was used to group distinct
segments and distinct areas using K-Means clustering algorithm
(with k=3 clusters chosen empirically to represent key tissue
structures). The algorithm operates on the color features of the
image in the RGB space, grouping pixels into distinct regions based
on color similarity. A uniform rotation-invariant LBP descriptor
was used to describe the texture features of each categorical image.
The LBP image highlights texture patterns and edges, which are
critical for identifying histological structures.
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Afterward, a heatmap was used to visualize the areas of
frequency to identify concentrations using gradient-weighted class
activation mapping (Grad-CAM). These gradients were globally
average-pooled to obtain neuron importance weights, which were
then used to create a weighted combination of the activation maps
for transfer learning purpose. Contour lines were then extracted
from this smoothed heatmap using the Moore-Neighbor tracing
algorithm on a binary thresholded version of the map. These
contours represent the boundaries of high-confidence regions
identified by the model and are superimposed on the original
image to delineate areas of pathological interest. Lastly, a per-
pixel grayscale intensity transformation was applied, and it
interpreted the color and brightness of the histopathology images
from each category. The intensity view helps pathologists assess
tissue staining density and cellularity without the potential bias of
color variation (e.g., from H&E staining differences).

In Figure 11, a 3D reconstruction map demonstrates the
reconstruction of the spatial arrangement and depth of objects
from different angles in the 2D histopathology input images. From
the observation of the sample images in a human sense, there were
straightforward differences in color, shape, edge, and intensity
among CC tissue categories. To provide an intuitive
representation of tissue morphology and density, the 3D intensity
surface plots were generated for each sample image across all nine
tissue classes. These plots visualize the spatial distribution of pixel
intensity (brightness) across the image, effectively mapping the
topographic features of the histopathology sample.

For each RGB image, we first converted it to grayscale using the
luminance formula, which weights the color channels according to
human perceptual sensitivity. The grayscale image represents the
intensity values at each pixel location (x,y). Then, grayscale intensity
values were treated as height values in a 3D space. Thus, the 2D
image grid (x,y) was transformed into a 3D surface where the z-axis
represents the pixel intensity. This creates a topographic map where
brighter regions (e.g., nuclei, mucin) appear as peaks, and darker
regions (e.g., stroma, background) appear as valleys. The 3D surface
was rendered using a bicubic interpolation to smooth the surface
and enhance visualization of trends. The colormap was applied to
the z-values (intensity) to provide an additional visual cue for height
variations. In summary, the 3D intensity plot allows pathologists to
quickly assess cellularity, texture, and structural patterns.

5 Discussion
5.1 Benchmark comparison

To compare the proposed model in this study with the
benchmarks, Table 5 below lists the overview of benchmark
studies over the past 5 years with precision values ranging from
0.869 to 0.997 using various CNN architectures with different
histopathology datasets.

The comparison considered accuracy value as the most
important metric for model performance. Over the past 5 years,
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Data visualization using clustered, LBP, heatmap, contoured, and intensity imaging for clinical interpretation.
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histopathology image classification regarding colon cancer was
accomplished by researchers worldwide. Tasnim et al. (10)
applied MobileNet V2 and achieved 0.997 accuracy in their
experiment with 12,500 histopathology images.

Models trained exclusively on the NCT-CRC-HE-100K dataset
demonstrate a wide performance range (Accuracy: 0.869 - 0.999),
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with the highest accuracy (0.999) achieved by a sophisticated hybrid
ResMLP+SwimTran+Xception architecture (33). This is closely
followed by models like dResNet+DeepSVM and Color-CADx,
which also achieve top-tier performance (= 0.993). Studies by
Tsai and Tao (24) Kumar et al. (29) Sharkas and Attallah (36),
and Fadafen and Rezaee (8) gained model accuracy surpassing
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NORM

FIGURE 11
3D intensity of sample images.

0.990. This variance underscores that architectural innovation
remains a primary driver of high accuracy on a single, well-
curated dataset.

In contrast, models evaluated on the combined NCT-CRC-HE-
100K and CRC-VAL-HE-7K dataset present a more rigorous test of
generalizability, as they must perform well on images from a
separate validation set. Performance in this group is strong and
more clustered (Accuracy: 0.961 - 0.991).

The proposed Lightweight CNN model achieves an accuracy of
0.990 within this cohort, performing competitively against other
contemporary models like CNNReFeatureBlock (0.991) (50) and a
multi-model ensemble (49) with 0.988 accuracy.

As the comparison result, the current research improved the use
of CNN in CC histopathology image classification with superior
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accuracy performance and a lightweight nature. The current
research combined the NCT-CRC-HE-100K and CRCVAL-HE-
7K datasets and applied a parametric data cleaning process to
improve model learning performance.

5.2 Pathological interpretive visualization

In this study, the visualizations presented in Figures 10, 11 were
specifically designed to bridge the gap between the extraction of
computational features and the morphological interpretative
framework used by pathologists. The K-Mean Clustering
approach applied as data-centric visualization aligns with the
pathologist’s initial, low-power assessment of architectural
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TABLE 5 Benchmark comparison.

10.3389/fonc.2025.1659010

Architecture Dataset ACC Author & year
GS-PCANet LC25000 0.909 Ram et al. (27)
Ensemble of adapted CNNs LC25000 0.972 Salmi and Rustam (45)
MobileNetV2 12,500 Histopathology 0.997 Tasnim et al. (10)
ALEXNET LC25000 0.970 Hamida et al. (46)
ResNet-18, 30 and 50 CRAG dataset 0.939 Cakmak and Pacal (2)
CNN+Swim Transform NCT-CRC-HE-100K 0.937 Qin et al. (47)
Multi-scale gradient GAN NCT-CRC-HE-100K 0.869 Jiang et al. (28)
Color-CADx NCT-CRC-HE-100K 0.993 Sharkas and Attallah (36)
CRCCN-Net NCT-CRC-HE-100K 0.992 Kumar et al. (29)
dResNet and DeepSVM NCT-CRC-HE-100K 0.997 Fadafen and Rezaee (8)
Inception V3 NCT-CRC-HE-100K 0.974 Anju and Vimala (9)
Ensemble learning CNN NCT-CRC-HE-100K 0.961 Ghosh et al. (22)
ResNet 50 NCT-CRC-HE-100K 0.993 Tsai and Tao (24)
ResMLP+SwimTran+Xception NCT-CRC-HE-100K 0.999 Pacal and Attallah (33)
TransNetV I;IKC T-CRC-HE-100K CRC-VAL-HE- 0.985 Tanveer et al. (48)
Ensemble CNN I;IIST—CRC-HE-IOOK CRC-VAL-HE- 0.961 Ghosh et al. (22)
ResNet-50 I;IIST—CRC-HE—IOOK CRC-VAL-HE- 0.977 Shawesh and Chen (23)
;IOGG—IG,—19, InceptionV3, ResNet- I;IIST—CRC—HEJOOK CRC-VAL-HE- 0.988 Intissar and Yassine (49)
CNNReFeatureBlock I;IKC T-CRC-HE-100K CRC-VAL-HE- 0.991 Firildak et al. (50)
Lightweight CNN NCT-CRC-HE-100K CRC-VAL-HE- 0.990 Proposed Model

7K

patterns, which provides an objective, quantitative basis for tissue
segmentation, which can be used to isolate specific regions for
further quantitative analysis (e.g. measuring stromal percentage)
(51). The algorithm automatically partitions the image into
structurally coherent regions (e.g., epithelial clusters, stromal
bands, luminal spaces) (52) to simulate the way a pathologist
mentally segments tissue to organize analysis.

Texture is a critical differentiator in histology. The LBP
visualization enhances textural patterns that are key to diagnosis.
The uniform patterns highlighted by LBP correspond to repetitive
structure of normal glandular epithelium (NORM) (53), disordered
texture of tumor glands (TUM) (54), and fibrous texture of stromal
tissue (55). The LBP provides a computational evidence for
validation by pathologist gains subjectively at high power with an
objective measure of tissue disorder.

The Grad-CAM Heatmaps and Contoured visualizations,
which are model-centric interpretative visualization methods,
reinforce the pathologist’s fundamental reasoning of predicted
result, and function as an automated highlighting tool for less

Frontiers in Oncology

experienced practitioners or high-volume workloads. The activation
of the model consistently localizes to areas showing pools of
extracellular MUC (56), glandular architecture (57), nuclear
hyperchromasia (58) of TUM, and desmoplastic STR reaction
(59). The regions highlighted by the Grad-CAM heatmap directly
correspond to morphological features of diagnostic significance
(59, 60).

While Grad-CAM highlights where the model looked, the 3D
intensity plot helps explain what the model perceived in those
regions. The 3D intensity translates the 2D slide into a 3D
topographic map that correlates directly with cellularity and
density. The 3D visualization quantifies the subjective assessment
of cellular density. The 3D surface is a direct measure of textural
heterogeneity. Stromal tissue (STR) might have a moderately rough
texture, while homogeneous mucin (MUC) appears as a smooth
plateau. A TUM image would show numerous, irregular peaks,
while an ADI image would show large valleys with sparse, isolated
peaks (representing adipocyte nuclei). The use of 3D intensity plots
quantitatively assesses the size, shape and separation of the tumor
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(61). To be summarized, the above-mentionedd approaches form a
multi-modal explanation system in terms of a collaborative human-
Al decision-making process.

5.3 Key findings and implications

From the experiment results, the following findings can be
stated. First of all, the experimental results illustrated that a merged
dataset, a rigorous data cleaning approach, and targeted fine-tuning
could lead to improvement on image classification performance,
thereby contributing to faster and more reliable diagnostic
processes with the proposed lightweight CNN model. Second, the
fine-tuning process produced a significant enhancement,
demonstrating that the lightweight CNN is not only efficient but
also highly accurate for the classification of histopathology images
in colon cancer. Third, the improved stability and performance
metrics demonstrate the model’s potential for deployment in
resource-constrained environments such as mobile diagnostic
devices. Lastly, the detailed classification report reinforces the
model’s robustness across various tissue classes, which is critical
for achieving precision in diagnostic applications.

The steep improvement in both training and validation metrics
during the Experiment 6 (see Table 4; Figure 8) indicated that the
model quickly learns the most salient features of the dataset. This
rapid convergence suggests that the proposed architecture and
hyperparameters are well-suited to the task. However, it also
implies that fine-tuning efforts should focus on the underlying
pattern recognition where improvements on feature extraction
become more subtle and challenging. The growing gap between
training and validation performance, particularly in accuracy,
suggests a tendency towards overfitting. This implies that fine-
tuning efforts should prioritize techniques that enhance the model’s
generalization capabilities without sacrificing its ability to learn
from the training data.

In summary, while the CNN model shows promising
performance, the results highlight several areas where fine-tuning
could lead to improvements. By carefully addressing overfitting
tendencies, optimizing the learning rate strategy, refining the
architecture, and stabilizing validation performance, it may be
possible to develop a model that not only achieves high accuracy
but also demonstrates more consistent and generalizable
performance across both training and validation datasets. The
fine-tuning process should be iterative, with each adjustment
carefully monitored for its impact on both training and

validation metrics.

5.4 Clinical deployment

The proposed model can be deployed as a pre-screening tool on
pathologists’ workstations with rapid analysis on digitized slides by
flagging regions suspicious for carcinoma (TUM, MUC) for expert
review. In this case, the proposed model could significantly reduce
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the pathologist’s workload, decrease turnaround times, and
minimize screening fatigue, especially in high-volume laboratories.

To be integrated into a hospital’s digital pathology system, the
model could serve as an always-available “second reader”. After a
pathologist renders a diagnosis, the system could automatically
process the slide and provide a concordance check or highlight
potential areas of disagreement for further scrutiny in terms of
diagnostic confidence.

The lightweight nature of proposed CNN model offers distinct
advantages for deployment in hospital and laboratory
environments, which often have heterogeneous computing
infrastructure. Specifically speaking, the deployment on front-end
devices majorly reguires for processor. On a standard CPU (Intel
Xeon), the model processes over 50 images per second. This speed
increases to over 1,200 images per second on a high-end GPU
(NVIDIA 4060Ti) and even higher if a higher GPU version or
NPUs were applied, facilitating the batch processing of large
datasets. The entire model requires less than 50 MB of RAM for
inference (without the operating system and image data). This
minimal memory requirement allows it to run concurrently with
other essential hospital software without contention for resources.

6 Conclusion

In conclusion, this research achieved all of the objectives. First
of all, the proposed lightweight CNN model (16.9 megabytes) offers
a highly efficient and accurate approach to colon cancer
histopathology image classification, particularly suited for
environments with limited computational resources. Second, this
paper realized histopathology image segmentation by constructing
clustering, LBP, heatmap, contoured, and 3D views for
interpretability improvement in the CC diagnosis process. Third,
from the results, the proposed model gained 0.990 accuracy with
0.075 loss in performance metrics. On the other hand, in the
classification report, the proposed model achieved a macro
average precision of 0.99, a recall (sensitivity) of 0.99, specificity
0f 0.99, an F1 score of 0.99, and a total of 10,699 support instances.
By integrating a data cleaning strategy based on parametric
Gaussian distribution, the model effectively enhances data quality,
leading to superior classification performance. The study’s findings
highlight the model’s competitive edge over existing benchmarks,
demonstrating its potential as a reliable diagnostic tool.

The study proposes that a lightweight CNN is a robust and
efficient solution for histopathology image classification, providing
a promising foundation for further developments in this field. These
findings contribute to the development of efficient and accurate CC
histopathology image processing systems, particularly in resource-
constrained environments. The lightweight model design and data
cleaning strategy can serve as a foundation for future research in
this area.

The primary limitation is the potential for inherent bias in the
NCT-CRC-HE-100K and CRC-VAL-HE-7K datasets, while being
large-scale public benchmarks, are sourced from a single institution.
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The cross-dataset validation and data augmentation is the steps
towards assessing generalizability and bias mitigation, but the
definitive test requires validation on a fully external, multi-centric
dataset. Therefore, a key direction for future work is to acquire and
validate our model on such an external dataset comprising images
from multiple, geographically diverse medical centers. Secondly,
future research can be built upon this work by exploring further
transfer learning for classification tasks in multi-organ
histopathology to enhance generalization. This work lays the
groundwork for developing advanced, resource-efficient AI
solutions in medical diagnostics with streamlined deployment on
mobile and edge devices.
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