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A lightweight CNN for colon
cancer tissue classification
and visualization
Jie Li*, Weiwei Goh* and Noor Zaman Jhanjhi

Digital Health and Medical Advancement Impact Lab, School of Computer Science, Taylor’s
University, Subang Jaya, Malaysia
Introduction: Colon cancer (CC) image classification plays a key role in the

diagnostic process in clinical contexts, especially as computational medical

solutions become the trend for future radiology and pathology practices. This

study presents a novel lightweight Convolutional Neural Network (CNN) model

designed with effective data cleaning strategy for the classification and

visualization of histopathology images of various colon cancer tissues.

Methods: Addressing the critical need for efficient diagnostic tools in colon

cancer detection, the proposed model leverages a non-pretrained architecture

optimized for performance in resource-constrained environments. Utilizing the

NCT-CRC-HE-100K and CRC-VAL-HE-7K datasets, this model employs a

parametric Gaussian distribution-based data cleaning approach to enhance

data quality by removing outliers.

Results: With a total of 4,414,217 parameters and a total size of 16.9 megabytes,

the model achieves a test accuracy of 0.990 ± 0.003 with 95% level of

confidence, which demonstrates high precision, recall, specificity, and F1

scores across various tissue classes.

Discussion: Comparative analysis with benchmark studies underscores the

model’s effectiveness, while discussions on underfitting and overfitting provide

insights into potential fine-tuning strategies. This research presents a robust,

lightweight solution for colon cancer histopathology image classification,

offering a foundation for future advancements in colon cancer diagnostics

with result visualization.
KEYWORDS

colon cancer, CNN, data cleaning, image processing, medical imaging, histopathology,
lightweight model
1 Introduction

Colon Cancer (CC) has become the second leading cause of cancer deaths worldwide in

the last decade. Meanwhile, the implementation of Artificial Intelligence (AI) in CC

diagnostic tools has significantly boosted its accuracy and speed. Histopathology images

have been widely used as a diagnostic tool to detect CC in clinical settings. Over the past
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years, the use of AI has boosted histopathological detections and

classification tasks in different types of cancers including breast (1,

2), brain (3), lung (4), and skin (5) etc. In this case, the use of AI in

histopathology image recognit ion has technological ly

revolutionized cancer diagnostics in the medical industry.

Classifying CC tissue in the diagnostic process is crucial to

accurately identify and differentiate between various pathological

conditions (6). In histopathology, distinguishing the tissue types

such as ADI (Adipose), TUM (Tumor), MUC (Mucin), STR

(Stroma), and others enables clinicians to pinpoint abnormal

growth patterns, assess tumor aggressiveness, and make informed

decisions about treatment strategies. AI-based classification of

histopathology images could potentially be crucial for early cancer

detection with accurate diagnostics in clinical practices. By

automating tissue classification. Using a confusion matrix derived

from a sorting model’s predictions, medical professionals gain

statistical insights into both the accuracy of the diagnoses and the

areas prone to error (misclassifications) (6). Thus, a clear and

reliable classification solution helps refine diagnostic protocols,

reduces manual errors, and potentially accelerates the turnaround

time for pathology reports, ultimately leading to better patient

outcomes in later treatment and therapy processes.

Deep Learning (DL) excels at advanced image recognition

applications. In recent years, the field of medical image

classification, particularly for CC, has seen significant

advancements with the use of Convolutional Neural Networks

(CNNs) in DL. However, there is still potential to improve the

accuracy of AI-based medical image classification to ensure better

diagnostic precision. In recent years, Dense-Net (7), Res-Net (8),

and Inception V3 (9) were the most widely-used pretrained models

to classify NCT-CRC-HE-100K and CRC-VAL-HE-7K datasets.

While pretrained CNN models are preferred for the classification of

CC tissues for diagnostic purposes, non-pretrained models possess

better flexibility for task-specific goals. In addition to model

generalizability, previous studies on CC tissue image classification

only focused on a single dataset, yet without specification on data

cleaning method on training, validation, and testing process in their

CNN models. Furthermore, integration of result visualization

improves intepretability of results in clinical practices. The use of

lightweight models to classify CC tissues would benefit the

pathological decision in the diagnosis of CC. A lightweight model

solution would be more advantageous in terms of the deployment

and energy consumption of front-end diagnostic devices (10).

In this case, the research objectives are: (1) to develop and

finetune a lightweight non-pre-trained CNN model to classify CC

histopathology images from the NCT-CRC-HE-100K and CRC-

VAL-HE-7K datasets (2) to evaluate its performance compared to

benchmark studies over the past 5 years, and (3) to visualize image

from result of different CC tissue classes. The motivation of this

research is to improve computational efficiency of AI model in

clinical settings via a lightweight CNN architecture configuration

with adoption of statistical data cleaning method. As a supportive

diagnostic tool, visualization of result could also benefit clinician

and pathologist on the final decision making to diagnosis.
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2 Literature review

2.1 CNNs in histopathology analysis

The DL approaches include hybrid learning, end-to-end

learning, transfer learning, explainable AI, and sampling-based

learning (11). Before the use of CNN classification, Toraman

et al. (12) proposed the use of an ANN model in 2019 to predict

the presence of colon cancer tissue using FTIR signals on 30 colon

cancer patients and 40 healthy humans, which managed to reach an

accuracy of 0.957. In recent years, most medical image processing

and imaging applications are powered by CNNs. Their architecture

includes data preprocessing and preparation, data augmentation,

feature extraction, and finally feature classification using linear or

nonlinear activation functions (e.g., ReLU, GeLU, etc). CNN’s

current contributions to histopathology analysis have had a

profound impact on the detection of cancers such as breast (13,

14), lung (15, 16), and brain (17, 18). The most commonly-used

models in the diagnosis process are based on Transformer-based

and hybrid CNN-Transformer architectures for classification task.

In Table 1, over the past 5 years, in 2020, a study proposed a

hybrid model (19) that adopted MFF-CNN with Shearlet transform

for the selection of histopathology images and reached a model

accuracy of 0.960 using National Cancer Center of Heidelberg and

Medical Center of Heidelberg University in Germany. Bukhari et al.

(20) applied ResNet 18, 30, and 50 to colonic tissue image

classification, and the models reach an accuracy of up to 0.939.

The accuracy of the prediction model showed a significant

improvement, as shown in research by Tasnim et al. (10), where

their MobileNetV2 model showed 0.997 accuracy in colon cell

image classification. In the same year, Hamida et al. (21) tested

AlexNet, Visual Geometry Group (VGG), and ResNet models on

colon cancer histopathology images, which reached the highest

accuracy of up to 0.970. Moreover, Ghosh et al. (22)designed and

developed an ensemble learning method CNN model to classify CC

histopathology images from the NCTCRC-HE-100K and/or the

CRC-VAL-HE-7K dataset in 2021 that was able to display a 0.961

diagnostic accuracy. In the same year, Shawesh and Chen (23)

applied the ResNet 50 model to classify colorectal cancer tissue

histopathology images that reached 0.977 accuracy. The model was

later improved by Tsai and Tao (24) to an accuracy of 0.993. Anju

and Vimala (9) achieved this in 2022 by applying the InceptionV3

model to classify images of colon cancer tissue and reached a model

accuracy of 0.974 using the same NCT-CRCHE-100K data set. Sakr

et al. (25) designed and developed a CNN model that improved the

model’s accuracy to 0.995, while a study (26) utilized a deep

convolutional neural network (DCNN) model to further improve

cancer recognition accuracy to 0.998. This is followed by an

innovative graph-based sparse principal component analysis (GS-

PCA) network model (27) detecting colon cancer tissues using

histopathology images with 0.909 accuracy.

Then, in 2023, Jiang et al. (28) designed a CNN model using a

multi-scale gradient generative adversarial network and recorded a

result accuracy of 0.869. Later in the same year, a CRCCN-Net
frontiersin.org
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architecture (29) using the same dataset, which obtained a high

classification accuracy of 0.992. Following that, the use of the

dResNet and DeepSVM methods (8) in the classification of

colorectal cancer histology images. Their results suggested that

the dResNet model that was trained on NCT-CRC-HE-100K had

an accuracy approaching 0.997. Subsequently, Reis and Turk (7)

applied DenseNet 169 architecture on the colorectal histology

MNIST dataset and managed to reach a 0.950 validation

accuracy. The CNN model (30) was optimised using colon cancer

datasets, which improved the model accuracy up to 0.996. In 2024, a

study by Sharkas and Attallah (36) applied the Swim Transform and

Color-CADx approaches to their CNN models, and their results

showed 0.993 accuracy in model performance. Haq et al. (31)

proposed Res-Net 18 and 50 achieved 0.987 and 0.967 accuracy.
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Alzubaidi et al. (32) came up with the solution based on 110 variant

of Res-Net architecture and achieved 0.996 accuracy. In 2025, Pacal

and Attallah (33) implemented hybrid architecture and achieved

(0.991 - 0.999) accuracy. Venkatachalam and Shah (34) proposed

another Res-Net based architecture and gained 0.989 accuracy in a

classification task. Hosny et al. (35) proposed a hybrid Res-Net and

Inception based learning model for the CC classification task with

0.997 accuracy.
2.2 Advantages of lightweight CNN
architecture

A lightweight nature is crucial for a CNN model that is

developed for medical diagnoses utilizing histopathology images

(10). Real-time prediction is required when it comes to medical

applications using the model, particularly in situations where

pathologists require a prompt and precise diagnosis (37).

Lightweight CNN models exhibit computational efficiency and

yield expedited predictions, being capable of operating on low-

powered hardware commonly seen in medical equipment or

systems such as mobile health applications and embedded devices

Reddy and Dhuli (38). The size of the lightweight model restricts

lightweight CNNs to have fewer model parameters and be under 20

megabytes. This is crucial for democratizing healthcare, as not all

medical facilities have access to medical equipment or systems with

advanced GPUs Momin et al. (39). Lightweight CNNmodels can be

utilized in remote locations or resource-limited settings where

access to extensive computing hardware is restricted (40). In low-

resource environments, healthcare professionals can utilize mobile

or portable diagnostic instruments equipped with lightweight

convolutional neural network models to identify colon cancer

(10). Lightweight models, due to their diminished parameter

count, have a lower susceptibility to overfitting, particularly when

trained on fewer datasets, which is a common scenario in medical

picture analysis (41). histopathology image datasets for colon

cancer may not be as extensive as those for general image

classification, hence lightweight models facilitate improved

generalization without overfitting to the training data under a

limited resource.
3 Method

3.1 Data collection and preprocessing

The CRC-VAL-HE-7K (in Figure 1A), NCT-CRC-HE-100K (in

Figure 1B), and their merged (in Figure 1C) datasets were used to

train, validate, and test the proposed model. The data-splitting

strategy followed the 80–20 distribution rule. In these datasets, the

classified categories are ADI (adipose tissue, consisting of

adipocytes), BACK (background of histopathology images), DEB

(debris, useful for diagnosis of cancer), LYM (lymphocytes, cells of

lymphatic system), MUC (mucus, protective layer on tissue), MUS
TABLE 1 Summary of recent deep learning models for colorectal cancer
histopathology image classification (2020–2025).

Benchmark Model/method Dataset ACC

Liang et al. (19)
MFF-CNN Shearlet
Transform

NCCH/CHU 0.960

Bukhari et al. (20) ResNet-18/30/50 CRAG 0.939

Tasnim et al. (10) MobileNetV2 LC25000 0.997

Hamida et al. (21). AlexNet, VGG, ResNet
Annotated WSI
data

0.970

Ghosh et al. (22) Ensemble CNN
NCT-100K/
CRC-7K

0.961

Shawesh and Chen
(23)

ResNet-50
NCT-100K/
CRC-7K

0.977

Tsai and Tao (24) Improved ResNet-50 NCT-100K 0.993

Anju and Vimala (9) InceptionV3 NCT-100K 0.974

Sakr et al. (25) Custom CNN LC25000 0.995

Hasan et al. (26) Deep CNN (DCNN) LC25000 0.998

Ram et al. (27) GS-PCA Network
Stefanie Galban
Lab

0.909

Jiang et al. (28)
Multi-scale Gradient
GAN

NCT-100K 0.869

Kumar et al. (29) CRCCN-Net NCT-100K 0.992

Fadafen and Rezaee (8) dResNet NCT-100K 0.997

Reis and Turk (7) DenseNet-169 MNIST 0.950

Azar et al. (30)
Swim Transform,
Color-CADx

NCT-100K 0.993

Haq et al. (31) ResNet-18/50 Not Specified 0.987

Alzubaidi et al. (32) ResNet-110 Warwick-QU 0.996

Pacal and Attallah (33)
ResMLP+SwimTran
+Xception

NCT-100K/
Kather-5K

0.991

Venkatachalam and
Shah (34)

ResNet-based LC25000 0.989

Hosny et al. (35)
Hybrid Res-Net &
Inception

LC25000 0.997
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(smooth muscle), NORM (normal tissue of colon), STR (stroma

tissue associated with cancer), and TUM (epithelium tissues

of adenocarcinoma).

The Figure 1 exhibited the data distribution of the

histopathology image classes in the VAL-HE-7K, NCT-CRC-HE-

100K, and the merged datasets. In VAL-HE-7K, there were a total of

7,180 images where ADI has the highest number of samples (n =

1,338: 18.6%) followed by the TUM category (n = 1,233: 17.2%).

This is followed by the MUC category, which has (n = 1,035; 14.4%)

images. These 3 categories made up more than 50% of the dataset,

and the rest of the categories—DEB, STR, MUS, LYM, NORM, and

BACK— covered 4.7%, 5.9%, 8.2%, 8.8%, 10.3%, and 11.6% of the

dataset, respectively. There were 100,000 histopathology images in

NCT-CRC-HE100K, where TUM has the highest number of

samples (n = 14,317: 14.3%), followed by MUS at n =13,536;

13.5%. LYM and DEB covered n = 11,557 (11.6%) and n =

11,512 (11.5%) of the dataset, respectively. These 4 categories

made up for over 50% of the sample size, while the rest of the

classes, including BACK, STR, ADI, MUC, and NORM, covered

10.6%, 10.4%, 10.4%, 8.9%, and 6.6% of the total sample size,

respectively. In the combined dataset, TUM has the highest

number of samples (n = 15,550: 14.5%), followed by MUS at n =

14,128: 13.2%. This is followed by the LYM and DEB categories at

n = 12191 (11.4%) and n = 11,851 (11.1%). These 4 categories take

up more than 50% of the total sample, and the rest of the categories,

including BACK, STR, ADI, MUC, and NORM, make up 10.6%,

10.1%, 11.0%, 9.3%, and 8.9% of the total sample size, respectively.

After merging NCT-CRCHE-100K and VAL-HE-7K, both the

quantity and variety of the merged dataset increased.

The descriptive result in Figure 1 detailed the class imbalance

inherent in the original datasets. This research adopted strategy

using weighted loss functions and data augmentation during

training, rather than aggressive pre-balancing which could discard

valuable data. The merged dataset exhibits a natural class

imbalance, as shown in Figure 1C. To mitigate bias towards

majority classes, we employed a dual strategy during training: (1)

Class-weighted loss function: The categorical cross-entropy loss was

weighted inversely proportional to class frequencies to penalize
Frontiers in Oncology 04
misclassifications on underrepresented classes more heavily. (2)

Targeted augmentation: During training, real-time data

augmentation (including rotation (± 15°), horizontal/vertical flips,

and slight brightness adjustments) was applied, which artificially

increases the diversity of the training set and improves

generalization. All input images were normalized to the [0, 1]

range based on the RGB channel means and standard deviations

calculated from the merged set.
3.2 Data cleaning

As the key part of data preprocessing strategy, the parametric

Gaussian distribution, the Equation 1, was applied based on the

color distribution test, where input x was normalized based on the

mean value (µ) and standard deviation (s) as the applied data

cleaning method.

f (xjm,s 2) =
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(2ps 2)
p Exp( −

(x − m)2

(2s 2)
) (1)

and Equation 2 allocates x within the range of the 99% level of

distribution:

x ∈ ½m ± 2:576s � (2)

The Gaussian (normal) distribution is a fundamental concept in

statistics. Many natural and measurement-related phenomena,

including pixel intensities and feature distributions in images,

tend to follow a normal distribution, especially after

normalization or standardization for a consistent and

concentrated sample distribution.
3.3 Model design and development

The size of the model had 3,514,153 trainable and 928 non-

trainable parameters within 13.46 megabytes, which defined the

lightweight nature of the proposed model. As shown in Figure 2, an

input histopathology image of 224 * 224 pixels was marked on a
FIGURE 1

Sample distribution (A) CRC-VAL-HE-7K; (B) NCT-CRC-HE-100K; (C) Merged dataset.
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GRB matrix in the initial step. Then, the convolutional layer, which

contains 4 individual blocks with 32, 64, 128, and 256 (3, 3)

dimensioned filters, detects features in the input data using the

ReLU activation function (in Equation 3), where the output of f(x)

was calculated:

f (x) = MAX(0, x)
x  x   ≥ 0  

0  x < 0  

(
(3)

Afterward, the Batch Normalization function (in Equation 4)

was adopted in normalizing the inputs to enhance the model

training speed, stability, and performance, where the normalized

yi was calculated with the mean value (µ)and standard deviation (s)
of the batch setting:

yi = g (
xi − mbffiffiffiffiffiffiffiffiffiffiffiffiffi
s 2
b + є

p + b) (4)

To reduce the spatial size, the max pooling layer operates a (2, 2)

dimensioned filter over the feature map. Then, the proposed model

flattens the output and compares the features in a 4-block dense

layer with 0.8, 0.5, 0.3, and 0.2 learning rates using the ReLU

activation function (Equation 3) in the neural network. Finally, the

output was multi-classified with the number of classes (k) as the

identified categories (i), using the SOFTMAX (Equation 5) based on

the given vector Z:

s (Z)i =
e(Zi)

ok
j e

(Zj)
(5)

The characterizes of the proposed model architecture shown in

Figure 1 emphasizes on its lightweight nature. The first lightweight

characteristic is the depthwise convolution, which applies a single

filter per input channel, which could drastically reduces the
Frontiers in Oncology 05
parameters needed for spatial feature extraction. Thus, this model

factorization reduces computational cost and parameters by

approximately a factor of the number of output channels

compared to an equivalent standard convolution, and also

maintains representational power.

Instead of using one or more large, dense fully-connected (FC)

layers at the head of the network, a Global Average Pooling layer

was designed. This layer reduces each feature map from the final

convolutional block to a single value by taking the average. These

values are then fed directly into the final softmax classification layer.

In this case, the proposed model eliminates a massive source of

parameters in FC layer and also reduces the risk of overfitting.

The model’s width (number of filters per layer) and depth

(number of layers) were carefully co-designed through testing to

find the smallest viable configuration that could still capture the

necessary hierarchical features from the histopathology images.

This avoids the common pitfall of simply stacking more layers,

which leads to parameter inflation. To be summarized, there were

totally 4,414,217 trainable and non-trainable parameters in a total

size of 16.9 megabytes for model composition,
3.4 Measures

This research quantitatively evaluate the proposed lightweight

model’s performance. The evaluation focused on the accuracy,

categorical loss, classification report, as well as the confusion

matrix. The equations Equations 6-10 (42–44) interpret the key

performance metrics, including Accuracy (Acc), Categorical Loss

(L), Precision (P), Recall (R), Specificity(Sp), F1 Score (F1), and

Support (S). To all the expressions, TP stands for True Positive, TN

is True Negative, FP means False Positive, and FN is False Negative.
FIGURE 2

Model architecture.
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In Equation 6, ACC is the measurement of how well the model

performs on a dataset:

Acc =
TP + TN

TP + FP + TN + FN
(6)

In Equation 7, L is the dissimilarity between the true label

distribution (yi) and the predicted label distribution in a class (C)

L =o
C

i
yiLog(yi)) (7)

The Equation 8 presented P refers to the true positive

predictions out of all the instances the model has predicted as

positive:

P =
TP

TP + FP
(8)

In Equation 9, R is the sensitivity, the proportion of actual

positive instances that the model correctly identified as positive:

R =
TP

TP + FN
(9)

Whereas the Specificity (Sp) is measured in Equation 10

Sp =
TN

TN + FP
(10)

Further in Equation 11, F1 refers to harmonic mean of precision

and recall provide balance between them.

F1 = 2*
P*R
P + R

(11)

And Support(S) (Equation 12) is the number of actual

occurrences of each class in a dataset:

S = TP + FN (12)

The above metrics established foundation for analysis results

from extensive experiments. Particularly, the accuracy as the key

indicator to be used to compare with benchmark studies over the

past 5 years.
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4 Data analysis

4.1 Data preprocessing

The Figure 1 demonstrated the sample distribution, whereas

Table 2 listed the statistical view of the RGB color distribution of

input images in the 3 datasets.

In VAL-HE-7K, the MEAN (µ) pixel value of 167.56 indicated

that the images have a moderate level of brightness. Specifically, for

the blue channel, the color was recorded as 180.84, the green

channel has a value of 136.51, and the red channel’s was 185.34.

A standard deviation (s) of 44.06 suggests a moderate degree of

contrast in the images. Specifically, the blue channel had a s of

30.88, the green channel was at 42.24, while the red channel was at

30.32. The µ pixel value of NCT-CRC-HE-100K was 168.27,

indicating that the images are moderately bright compared to the

previous datasets. For the blue channel, the µ pixel value was

recorded as 180.01, the green channel has a value of 135.94, and

the red channel was recorded as 188.86. A s of 43.28 suggests a

moderate degree of contrast in the images. In particular, the blue

channel had s of 24.09, the green channel’s was 34.06, and the red

channel’s was 24.13. Hence, by applying the Equation 2, there were

106,987 images qualified for further model training, testing,

and validation.

In the cases of NCT-CRC-HE-100K and VAL-HE-7K, the

distribution color tests indicated a variance of RGB color between

these 2 datasets. Thus, the use of a merged dataset could increase

data variety to improve the generality of the proposed model. In this

research, the merged dataset (VAL-HE-7K and NCTCRC-HE-

100K) was used for model training, testing, and validation.
4.2 Model performance test

Model performance test recorded model learning curve of Acc

and L in the training, validation, and test processes. Table 3

displayed the results of 6 extensive experiments, which is crucial
TABLE 2 Color distribution test.

Index CRC-VALHE-7K NCT-CRC-HE-100K Merged

Pixel Value Mean 167.56 168.27 168.22

Blue channel 180.84 180.01 180.06

Green channel 136.51 135.94 135.98

Red channel 185.34 188.86 188.62

Pixel Value STD 44.06 43.28 43.33

Blue channel 30.88 24.09 24.60

Green channel 42.24 34.06 34.67

Red channel 30.32 24.13 24.61
The range of RGB color distribution is from 0 to 255.
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for understanding how different training setups (sample sizes, data

splits, and epochs) affect the performance of a model in terms of

accuracy and loss. It provides insights into the scalability of the

model and the effectiveness of different data handling strategies,

which is essential to optimize DLmodels to achieve the best possible

performance on various tasks.

The Table 3 provides a comprehensive overview of model

performance across different extensive experiments and highlights
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the impact of sample size, data splitting, and training epochs on

accuracy and loss. demonstrates that larger sample sizes generally

lead to better performance, and Experiment 6 shows the best overall

results. As listed in Table 3, six step-by-step extensive experiments

were executed using the NCT-CRC-HE100K, CRC-VAL-HE-7K,

and merged dataset with the 80–20 rule applied in order to test the

performance of the model under different data cleaning and

splitting conditions.
RE 3FIGU

Accuracy (Acc) and categorical loss (L) of experiment 1.
TABLE 3 Performance test summary.

No. Condition Sample size(n) Epoch (e) ACC L

1 CRC-7K 7,180 13 0.879 0.074

0.854 0.082

0.868 0.080

2 NCT-100K 100,000 10 0.974 0.020

0.967 0.025

0.969 0.023

3 NCT-100K/CRC-7K 107,180 10 0.959 0.026

0.932 0.046

0.931 0.048

4 NCT-100K/CRC-7K 106,987 10 0.960 0.030

Outlier Removed 0.953 0.037

0.951 0.037

5 NCT-100K/CRC-7K 106,987 100 0.999 0.001

Outlier Removed 0.988 0.051

0.987 0.059

6 NCT-100K/CRC-7K 106,987 100 0.999 0.000

Outlier Removed 0.989 0.074

Optimization 0.990 0.075
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Experiments 1 and 2 were tested with the original datasets,

NCT-CRC-HE-100K and CRC-VAL-HE7K, respectively, whereas

Experiment 3 was executed using the combined dataset.

Experiments 4 and 5 used a 99% Gaussian distribution (N =

106,987) in 10 and 100 epochs, respectively. Lastly, Experiment 6

was fine-tuned in 100 epochs with data augmentation and

hyperparameter fine-tuning strategy by Python Optuna to

stabilize the learning process of the model.

4.2.1 Experiment 1 - CRC-VAL-HE-7K
Experiment 1 (Figure 3) had 7,180 raw data from CRC-VAL-

HE-7K in the data frame while following the 80–20 rule with 13

epochs. From the result, the accuracy was 0.879, 0.854, and 0.868 in

the train, validation, and test data, respectively, whereas the loss

values were 0.074, 0.082, and 0.080. The testing accuracy was 0.868

with a loss of 0.148, indicating that the results did not vary

significantly but could be improved with more epochs. Thus, both

training and validation loss started high and decreased sharply as

the number of epochs increased. The training loss decreased more

smoothly and consistently compared to the validation loss, which

stabilized after initial fluctuations.

4.2.2 Experiment 2 -NCT-CRC-HE-100K
Experiment 2 (Figure 4) had 100,000 raw data from NCT-CRC-

HE-100K in the data frame while following the 80–20 rule with 10

epochs. The accuracy was 0.974, 0.967, and 0.969 in the train,

validation, and test datasets, respectively, whereas the loss values

were 0.020, 0.025, and 0.023. The testing accuracy was 0.969 with a

loss of 0.023, indicating that the model performed well but could be

further improved with more data and epochs, as well as by applying

noise-decreasing approaches. The validation loss, in particular,

showed sharp spikes, which could indicate issues with model
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stability or the presence of outliers in the data affecting the

model’s performance.

Across Experiments 1 and 2, there is a common trend of initial

improvements in both loss and accuracy as the number of epochs

increases. However, the presence of fluctuations, especially in

validation metrics, suggests challenges to the stability of the

model, the possibility of overfitting, and the sensitivity to the

validation dataset. These insights could guide further refinement

of the model, such as adjusting model complexity, implementing

regularization techniques, or revising data preprocessing and

augmentation strategies to enhance model robustness

and generalization.
4.2.3 Experiment 3 - cross-dataset validation
In Experiment 3 (Figure 5), the model was trained using the

combined dataset, consisting of 107,180 samples from CRC-VAL-

HE-7K and NCT-CRC-HE-100K. The training process spanned 10

epochs, resulting in a training accuracy of 0.959 with a loss of 0.026.

The validation and testing accuracies were slightly lower, at 0.932

and 0.931, respectively, with corresponding losses of 0.046 and

0.048. This experiment showed the most volatility among the six.

The validation loss had significant spikes, particularly around

epochs 2, 6, and 8. The training loss decreased more steadily. The

results across the training, validation, and testing phases did not

vary significantly, suggesting that the outlier removal technique

contributed to more consistent performance. Lastly, the

performance drop compared to Experiments 2, result of lower

accuracy and higher categorical loss in Experiment 3 suggest that

the combination of samples from different datasets had introduced

noise, which is expected due to the domain shift between datasets.

However, the model maintains high accuracy. This demonstrates a

strong degree of robustness and suggests that the features learned by
FIGURE 4

Accuracy (Acc) and categorical loss (L) of experiment 2.
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the lightweight CNN are generalizable across different sample

preparations within the same broader data source.
4.2.4 Experiment 4 - parametric cleaning
In Experiment 4 (Figure 6), the model was trained on the same

datasets, but with 106,987 rows after removing 1% of outliers using

the 99% normal distribution rule. The training spanned 10 epochs,

resulting in a training accuracy of 0.960 and a loss of 0.030.

Validation and testing accuracies were 0.953 and 0.951, with the

same loss value of 0.037. The training loss starts high and decreased

steadily over epochs. The validation loss showed more fluctuation

but generally decreases, with a notable spike around epoch 4. The

performance improvement compared to Experiment 3 suggests that

the use of a parametric cleaning approach improves model

performance in the classification tasks. After merging the data
Frontiers in Oncology 09
sets, feature learning becomes challenging due to the complexity

of feature extraction. In this case, further enhancement is necessary.

4.2.5 Experiment 5 - enhancement
In Figure 7, the authors set the number of epochs to 100 to train,

validate, and test the model in order to boost the effectiveness of

learning. The cleaned dataset was registered at 106,987 rows after

using the 99% normal distribution rule. As a result, the accuracy

reached 0.987 with 0.059 loss.

4.2.6 Experiment 6 - augmentation and
hyperparameter fine-tuning

As shown in Figure 8, fluctuation in the training process was

observed in Experiment 5. In this case, an optimization strategy

(data augmentation and hyperparameter fine-tuning) was applied
E 5FIGUR

Accuracy (Acc) and categorical loss (L) of experiment 3.
FIGURE 6

Accuracy (Acc) and categorical loss (L) of experiment 4.
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to improve the stability as well as the learning efficiency of the

proposed model. After fine-tuning, the model consumes 16.9

megabytes with 4,414,217 total parameters. As a result, the

accuracy reached 0.990 with 0.075 loss in the testing process. The

augmented data had allowed the weakly-parameterized CNNmodel

to train on a more diversified set of images. This helps the model

generalize better to unseen images in future clinical context, as

reflected in the high accuracy (0.990) reported after hyperparameter

fine-tuning. For our proposed model, we performed 5-fold cross-

validation with accuracy as 0.990 ± 0.003 (mean ± 95% CI) with a

95% confidence interval (CI) of [0.987, 0.993].
4.3 Classification report

The classification report (Table 4) presents a detailed confusion

matrix that illustrates not only the classification performance

through correctly predicted instances (true positives) but also the
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misclassification behavior of the model. In statistical terms, a

confusion matrix (Figure 9) is a 9 ∗ 9 table, where each row

represents the actual classes (true labels) and each column

represents the predicted classes by the model.

For a model classifying nine categories (ADI, BACK, DEB,

LYM, MUC, MUS, NORM, STR, and TUM), each diagonal

category contains the number of observations that have been

correctly classified for that particular category. The confusion

matrix above (see Figure 6) indicates the representativeness of the

classification model’s performance with the test dataset. There were

nine categories identified from Experiment 5, and for each of the

categories, most predictions hit on the target’s true labels. In the

ADI category, all the 1165 samples were correctly predicted.

Similarly, all the BACK samples were accurately predicted. In the

case of DEB, there were 1167 samples predicted as they were

labeled, but 3 were predicted as BACK, 2 as MUS, 4 as TUM, and

10 as STR. LYM predictions were spot on 1154 out of 1158

instances, with 1 and 3 misclassifications to DEB and TUM,
E 7FIGUR

Accuracy (Acc) and categorical loss (L) of experiment 5.
FIGURE 8

Accuracy (Acc) and categorical loss (L) of experiment 6.
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TABLE 4 Classification report.

Precision Sensitivity (recall) Specificity F1 score Support

ADI 1.00 1.00 1.00 1.00 1,165

BACK 1.00 1.00 1.00 1.00 1,150

DEB 0.99 0.98 0.99 0.99 1,186

LYM 1.00 1.00 1.00 1.00 1,158

MUC 0.99 0.99 1.00 0.99 995

MUS 0.99 1.00 1.00 0.99 1,400

NORM 0.99 0.99 1.00 0.99 979

STR 0.98 0.96 0.98 0.97 1,071

TUM 0.98 1.00 0.99 0.99 1,595

Accuracy 0.99 10,699

Macro Avg 0.99 0.99 0.99 0.99 10,699

Weighted Avg 0.99 0.99 0.99 0.99 10,699
F
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FIGURE 9

Confusion matrix.
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respectively. MUC had 983 out of 995 successful predictions with 6

mislabeled instances each to STR and TUM. The MUS category was

correctly predicted 1394 out of 1400 instances with 1

misclassification each to ADI, DEB, and MUC, and 3

misclassified instances to STR. In the case of NORM, there were

965 out of 979 successful predictions with 1 misclassification to

MUS, 4 to MUC, and 9 to TUM. Model predictions correctly

interpreted 1028 out of 1071 STR instances with 10 misclassified

instances to DEB, 14 to MUS, 5 to NORM, and 13 to TUM. Lastly,

there were 1588 out of 1595 instances of TUM that were correctly

classified, with 1 instance of misclassification to MUS and 2

misclassifications each to DEB, MUC, and NORM.

The Table 4 above summarizes the classification report,

including precision, recall, F1-score, and the number of supports

from Experiment 6 using the proposed model. The precision values

indicate that 100% of the ADI, BACK, and LYM tissues in the

sample images were successfully predicted by the proposed model

and matched actual observations. This is followed by precision

values indicating that 99% of the predicted DEB, MUC, MUC, and

NORM tissues, as well as 98% of the STR and TUM tissues,

matched actual observations. Recall, also known as sensitivity, is a

statistical measure that quantifies the proportion of correctly

predicted positive cases out of the total number of true-positive

instances in a dataset. In this case, the recall values explain the

sensitivity of the proposed model in accurately identifying the true

positives among the 9 data classes. Lastly, the F1 score explains the

balance of precision and recall. From Figure 9, it showed that ADI,

BACK and LYM had the highest F1 scores, at a value of 1, for the

predictions among all the nine categories. DEB, MUC, MUS,

NORM, and TUM have F1 scores of 0.99, followed by STR with

an F1 score of 0.97. In summary, the proposed model demonstrates

99% accuracy in both macro and weighted average metrics.
4.4 Result visualization

The interpretability of model predictions is critical for clinical

adoption. To provide comprehensive visual insights, we generate a

multi-faceted visualization for each input histopathology image via

Local Binary Pattern (LBP), clustering, heatmap, contoured images,

and intensity are commonly used computer vision techniques for

histopathology data observation. In Figure 10, identified

histopathology images from the 9 categories were processed with

computer vision techniques to improve the clinical interpretability

of the classification result.

The K-Mean Clustering method was used to group distinct

segments and distinct areas using K-Means clustering algorithm

(with k=3 clusters chosen empirically to represent key tissue

structures). The algorithm operates on the color features of the

image in the RGB space, grouping pixels into distinct regions based

on color similarity. A uniform rotation-invariant LBP descriptor

was used to describe the texture features of each categorical image.

The LBP image highlights texture patterns and edges, which are

critical for identifying histological structures.
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Afterward, a heatmap was used to visualize the areas of

frequency to identify concentrations using gradient-weighted class

activation mapping (Grad-CAM). These gradients were globally

average-pooled to obtain neuron importance weights, which were

then used to create a weighted combination of the activation maps

for transfer learning purpose. Contour lines were then extracted

from this smoothed heatmap using the Moore-Neighbor tracing

algorithm on a binary thresholded version of the map. These

contours represent the boundaries of high-confidence regions

identified by the model and are superimposed on the original

image to delineate areas of pathological interest. Lastly, a per-

pixel grayscale intensity transformation was applied, and it

interpreted the color and brightness of the histopathology images

from each category. The intensity view helps pathologists assess

tissue staining density and cellularity without the potential bias of

color variation (e.g., from H&E staining differences).

In Figure 11, a 3D reconstruction map demonstrates the

reconstruction of the spatial arrangement and depth of objects

from different angles in the 2D histopathology input images. From

the observation of the sample images in a human sense, there were

straightforward differences in color, shape, edge, and intensity

among CC tissue categories. To provide an intuitive

representation of tissue morphology and density, the 3D intensity

surface plots were generated for each sample image across all nine

tissue classes. These plots visualize the spatial distribution of pixel

intensity (brightness) across the image, effectively mapping the

topographic features of the histopathology sample.

For each RGB image, we first converted it to grayscale using the

luminance formula, which weights the color channels according to

human perceptual sensitivity. The grayscale image represents the

intensity values at each pixel location (x,y). Then, grayscale intensity

values were treated as height values in a 3D space. Thus, the 2D

image grid (x,y) was transformed into a 3D surface where the z-axis

represents the pixel intensity. This creates a topographic map where

brighter regions (e.g., nuclei, mucin) appear as peaks, and darker

regions (e.g., stroma, background) appear as valleys. The 3D surface

was rendered using a bicubic interpolation to smooth the surface

and enhance visualization of trends. The colormap was applied to

the z-values (intensity) to provide an additional visual cue for height

variations. In summary, the 3D intensity plot allows pathologists to

quickly assess cellularity, texture, and structural patterns.
5 Discussion

5.1 Benchmark comparison

To compare the proposed model in this study with the

benchmarks, Table 5 below lists the overview of benchmark

studies over the past 5 years with precision values ranging from

0.869 to 0.997 using various CNN architectures with different

histopathology datasets.

The comparison considered accuracy value as the most

important metric for model performance. Over the past 5 years,
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histopathology image classification regarding colon cancer was

accomplished by researchers worldwide. Tasnim et al. (10)

applied MobileNet V2 and achieved 0.997 accuracy in their

experiment with 12,500 histopathology images.

Models trained exclusively on the NCT-CRC-HE-100K dataset

demonstrate a wide performance range (Accuracy: 0.869 – 0.999),
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with the highest accuracy (0.999) achieved by a sophisticated hybrid

ResMLP+SwimTran+Xception architecture (33). This is closely

followed by models like dResNet+DeepSVM and Color-CADx,

which also achieve top-tier performance (≥ 0.993). Studies by

Tsai and Tao (24) Kumar et al. (29) Sharkas and Attallah (36),

and Fadafen and Rezaee (8) gained model accuracy surpassing
FIGURE 10

Data visualization using clustered, LBP, heatmap, contoured, and intensity imaging for clinical interpretation.
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0.990. This variance underscores that architectural innovation

remains a primary driver of high accuracy on a single, well-

curated dataset.

In contrast, models evaluated on the combined NCT-CRC-HE-

100K and CRC-VAL-HE-7K dataset present a more rigorous test of

generalizability, as they must perform well on images from a

separate validation set. Performance in this group is strong and

more clustered (Accuracy: 0.961 – 0.991).

The proposed Lightweight CNN model achieves an accuracy of

0.990 within this cohort, performing competitively against other

contemporary models like CNNReFeatureBlock (0.991) (50) and a

multi-model ensemble (49) with 0.988 accuracy.

As the comparison result, the current research improved the use

of CNN in CC histopathology image classification with superior
Frontiers in Oncology 14
accuracy performance and a lightweight nature. The current

research combined the NCT-CRC-HE-100K and CRCVAL-HE-

7K datasets and applied a parametric data cleaning process to

improve model learning performance.
5.2 Pathological interpretive visualization

In this study, the visualizations presented in Figures 10, 11 were

specifically designed to bridge the gap between the extraction of

computational features and the morphological interpretative

framework used by pathologists. The K-Mean Clustering

approach applied as data-centric visualization aligns with the

pathologist’s initial, low-power assessment of architectural
FIGURE 11

3D intensity of sample images.
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patterns, which provides an objective, quantitative basis for tissue

segmentation, which can be used to isolate specific regions for

further quantitative analysis (e.g. measuring stromal percentage)

(51). The algorithm automatically partitions the image into

structurally coherent regions (e.g., epithelial clusters, stromal

bands, luminal spaces) (52) to simulate the way a pathologist

mentally segments tissue to organize analysis.

Texture is a critical differentiator in histology. The LBP

visualization enhances textural patterns that are key to diagnosis.

The uniform patterns highlighted by LBP correspond to repetitive

structure of normal glandular epithelium (NORM) (53), disordered

texture of tumor glands (TUM) (54), and fibrous texture of stromal

tissue (55). The LBP provides a computational evidence for

validation by pathologist gains subjectively at high power with an

objective measure of tissue disorder.

The Grad-CAM Heatmaps and Contoured visualizations,

which are model-centric interpretative visualization methods,

reinforce the pathologist’s fundamental reasoning of predicted

result, and function as an automated highlighting tool for less
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experienced practitioners or high-volume workloads. The activation

of the model consistently localizes to areas showing pools of

extracellular MUC (56), glandular architecture (57), nuclear

hyperchromasia (58) of TUM, and desmoplastic STR reaction

(59). The regions highlighted by the Grad-CAM heatmap directly

correspond to morphological features of diagnostic significance

(59, 60).

While Grad-CAM highlights where the model looked, the 3D

intensity plot helps explain what the model perceived in those

regions. The 3D intensity translates the 2D slide into a 3D

topographic map that correlates directly with cellularity and

density. The 3D visualization quantifies the subjective assessment

of cellular density. The 3D surface is a direct measure of textural

heterogeneity. Stromal tissue (STR) might have a moderately rough

texture, while homogeneous mucin (MUC) appears as a smooth

plateau. A TUM image would show numerous, irregular peaks,

while an ADI image would show large valleys with sparse, isolated

peaks (representing adipocyte nuclei). The use of 3D intensity plots

quantitatively assesses the size, shape and separation of the tumor
TABLE 5 Benchmark comparison.

Architecture Dataset ACC Author & year

GS-PCANet LC25000 0.909 Ram et al. (27)

Ensemble of adapted CNNs LC25000 0.972 Salmi and Rustam (45)

MobileNetV2 12,500 Histopathology 0.997 Tasnim et al. (10)

ALEXNET LC25000 0.970 Hamida et al. (46)

ResNet-18, 30 and 50 CRAG dataset 0.939 Çakmak and Pacal (2)

CNN+Swim Transform NCT-CRC-HE-100K 0.937 Qin et al. (47)

Multi-scale gradient GAN NCT-CRC-HE-100K 0.869 Jiang et al. (28)

Color-CADx NCT-CRC-HE-100K 0.993 Sharkas and Attallah (36)

CRCCN-Net NCT-CRC-HE-100K 0.992 Kumar et al. (29)

dResNet and DeepSVM NCT-CRC-HE-100K 0.997 Fadafen and Rezaee (8)

Inception V3 NCT-CRC-HE-100K 0.974 Anju and Vimala (9)

Ensemble learning CNN NCT-CRC-HE-100K 0.961 Ghosh et al. (22)

ResNet 50 NCT-CRC-HE-100K 0.993 Tsai and Tao (24)

ResMLP+SwimTran+Xception NCT-CRC-HE-100K 0.999 Pacal and Attallah (33)

TransNetV
NCT-CRC-HE-100K CRC-VAL-HE-
7K

0.985 Tanveer et al. (48)

Ensemble CNN
NCT-CRC-HE-100K CRC-VAL-HE-
7K

0.961 Ghosh et al. (22)

ResNet-50
NCT-CRC-HE-100K CRC-VAL-HE-
7K

0.977 Shawesh and Chen (23)

VGG-16,-19, InceptionV3, ResNet-
50

NCT-CRC-HE-100K CRC-VAL-HE-
7K

0.988 Intissar and Yassine (49)

CNNReFeatureBlock
NCT-CRC-HE-100K CRC-VAL-HE-
7K

0.991 Firildak et al. (50)

Lightweight CNN
NCT-CRC-HE-100K CRC-VAL-HE-
7K

0.990 Proposed Model
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(61). To be summarized, the above-mentionedd approaches form a

multi-modal explanation system in terms of a collaborative human-

AI decision-making process.
5.3 Key findings and implications

From the experiment results, the following findings can be

stated. First of all, the experimental results illustrated that a merged

dataset, a rigorous data cleaning approach, and targeted fine-tuning

could lead to improvement on image classification performance,

thereby contributing to faster and more reliable diagnostic

processes with the proposed lightweight CNN model. Second, the

fine-tuning process produced a significant enhancement,

demonstrating that the lightweight CNN is not only efficient but

also highly accurate for the classification of histopathology images

in colon cancer. Third, the improved stability and performance

metrics demonstrate the model’s potential for deployment in

resource-constrained environments such as mobile diagnostic

devices. Lastly, the detailed classification report reinforces the

model’s robustness across various tissue classes, which is critical

for achieving precision in diagnostic applications.

The steep improvement in both training and validation metrics

during the Experiment 6 (see Table 4; Figure 8) indicated that the

model quickly learns the most salient features of the dataset. This

rapid convergence suggests that the proposed architecture and

hyperparameters are well-suited to the task. However, it also

implies that fine-tuning efforts should focus on the underlying

pattern recognition where improvements on feature extraction

become more subtle and challenging. The growing gap between

training and validation performance, particularly in accuracy,

suggests a tendency towards overfitting. This implies that fine-

tuning efforts should prioritize techniques that enhance the model’s

generalization capabilities without sacrificing its ability to learn

from the training data.

In summary, while the CNN model shows promising

performance, the results highlight several areas where fine-tuning

could lead to improvements. By carefully addressing overfitting

tendencies, optimizing the learning rate strategy, refining the

architecture, and stabilizing validation performance, it may be

possible to develop a model that not only achieves high accuracy

but also demonstrates more consistent and generalizable

performance across both training and validation datasets. The

fine-tuning process should be iterative, with each adjustment

carefully monitored for its impact on both training and

validation metrics.
5.4 Clinical deployment

The proposed model can be deployed as a pre-screening tool on

pathologists’ workstations with rapid analysis on digitized slides by

flagging regions suspicious for carcinoma (TUM, MUC) for expert

review. In this case, the proposed model could significantly reduce
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the pathologist’s workload, decrease turnaround times, and

minimize screening fatigue, especially in high-volume laboratories.

To be integrated into a hospital’s digital pathology system, the

model could serve as an always-available “second reader”. After a

pathologist renders a diagnosis, the system could automatically

process the slide and provide a concordance check or highlight

potential areas of disagreement for further scrutiny in terms of

diagnostic confidence.

The lightweight nature of proposed CNN model offers distinct

advantages for deployment in hospital and laboratory

environments, which often have heterogeneous computing

infrastructure. Specifically speaking, the deployment on front-end

devices majorly reguires for processor. On a standard CPU (Intel

Xeon), the model processes over 50 images per second. This speed

increases to over 1,200 images per second on a high-end GPU

(NVIDIA 4060Ti) and even higher if a higher GPU version or

NPUs were applied, facilitating the batch processing of large

datasets. The entire model requires less than 50 MB of RAM for

inference (without the operating system and image data). This

minimal memory requirement allows it to run concurrently with

other essential hospital software without contention for resources.
6 Conclusion

In conclusion, this research achieved all of the objectives. First

of all, the proposed lightweight CNN model (16.9 megabytes) offers

a highly efficient and accurate approach to colon cancer

histopathology image classification, particularly suited for

environments with limited computational resources. Second, this

paper realized histopathology image segmentation by constructing

clustering, LBP, heatmap, contoured, and 3D views for

interpretability improvement in the CC diagnosis process. Third,

from the results, the proposed model gained 0.990 accuracy with

0.075 loss in performance metrics. On the other hand, in the

classification report, the proposed model achieved a macro

average precision of 0.99, a recall (sensitivity) of 0.99, specificity

of 0.99, an F1 score of 0.99, and a total of 10,699 support instances.

By integrating a data cleaning strategy based on parametric

Gaussian distribution, the model effectively enhances data quality,

leading to superior classification performance. The study’s findings

highlight the model’s competitive edge over existing benchmarks,

demonstrating its potential as a reliable diagnostic tool.

The study proposes that a lightweight CNN is a robust and

efficient solution for histopathology image classification, providing

a promising foundation for further developments in this field. These

findings contribute to the development of efficient and accurate CC

histopathology image processing systems, particularly in resource-

constrained environments. The lightweight model design and data

cleaning strategy can serve as a foundation for future research in

this area.

The primary limitation is the potential for inherent bias in the

NCT-CRC-HE-100K and CRC-VAL-HE-7K datasets, while being

large-scale public benchmarks, are sourced from a single institution.
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The cross-dataset validation and data augmentation is the steps

towards assessing generalizability and bias mitigation, but the

definitive test requires validation on a fully external, multi-centric

dataset. Therefore, a key direction for future work is to acquire and

validate our model on such an external dataset comprising images

from multiple, geographically diverse medical centers. Secondly,

future research can be built upon this work by exploring further

transfer learning for classification tasks in multi-organ

histopathology to enhance generalization. This work lays the

groundwork for developing advanced, resource-efficient AI

solutions in medical diagnostics with streamlined deployment on

mobile and edge devices.
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