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Objective: To investigate the roles of immune- and lipid metabolism-related
genes in macrophage polarization and their prognostic and therapeutic
implications in glioblastoma (GBM).

Methods: A total of 655 GBM samples from The Cancer Genome Atlas (TCGA)
were stratified into immune and non-immune groups based on immune scores.
Differentially expressed genes (DEGs) were identified, and their intersection with
859 lipid metabolism-related genes yielded 26 candidates. A 10-gene
prognostic signature was constructed using univariate and least absolute
shrinkage and selection operator (LASSO) Cox regression analyses and
validated in both internal (TCGA) and independent (Chinese Glioma Genome
Atlas, CGGA) cohorts. Functional enrichment, single-cell transcriptomic analysis,
experimental validation, and drug sensitivity profiling were performed to assess
the biological and therapeutic relevance of the identified genes.

Results: Ten immune- and lipid metabolism—related genes were significantly
associated with GBM prognosis. Key genes such as LGALS1, PLA2G5, and FABP5
were upregulated in high-risk patients and enriched in M2-like tumor-associated
macrophages. Enrichment analyses indicated their involvement in immune
regulation and lipid metabolic pathways. Their elevated expression in GBM
tissues was confirmed by gRT-PCR and Western blot. Drug sensitivity analysis
demonstrated a correlation between LGALS1 expression and the response to
agents such as zoledronate and staurosporine.

Conclusions: Immune- and lipid metabolism-related genes contribute to
macrophage polarization and are closely linked to GBM prognosis. The
identified gene signature provides prognostic value and potential therapeutic
targets for immunometabolic modulation in GBM.

glioblastoma, macrophage polarization, lipid metabolism, prognostic genes,
immune response
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1 Introduction

Glioblastoma (GBM) is an aggressive primary brain tumor
marked by dismal outcomes despite multimodal therapy. The 5-
year survival rate is only around 5%, reflecting the failure of current
treatments to control this malignancy (1). A major challenge in
GBM management is the extreme heterogeneity of the tumor at
both the molecular and cellular levels (2). GBMs comprise multiple
subtypes and evolving niches within a single tumor, leading to
varied therapeutic responses and fostering treatment resistance.
This heterogeneity extends to the tumor microenvironment (TME),
which in GBM is highly immunosuppressive and poses a barrier to
immunotherapy (3, 4). Immunotherapeutic strategies that succeed
in other cancers have shown limited benefit in GBM, in large part
due to the unique immune milieu of the brain tumor and its
capacity to evade anti-tumor immune responses. Thus, there is an
urgent need for new biomarkers and models that capture the
complex biology of GBM and improve prognostic and
therapeutic stratification.

One key element of GBM’s TME is the abundance of tumor-
associated macrophages (TAMs), which can constitute 30-50% of
the cellular content of the tumor (5). TAMs in GBM originate from
both brain-resident microglia and infiltrating monocytes, and
together they dominate the immune landscape and drive
immunosuppression. Notably, increased TAM infiltration
correlates with tumor growth, recurrence, and worse patient
survival (6). TAMs exhibit remarkable plasticity, generally
polarized between two ends of a spectrum: the pro-inflammatory
“classically activated” M1 phenotype and the anti-inflammatory
“alternatively activated” M2 phenotype (7). Ml1-polarized
macrophages can phagocytose tumor cells and stimulate immune
responses, exerting anti-tumor effects, whereas M2-polarized TAMs
promote tumor cell proliferation, angiogenesis, and tissue
remodeling, thereby facilitating GBM progression (8). In GBM,
TAMs tend to skew towards the M2-like state, and a high M2/M1
ratio has been associated with immunotherapy resistance and poor
prognosis. M2-like TAMs secrete immunosuppressive cytokines
(e.g. IL-10, TGF-B) and growth factors (e.g. VEGF) that blunt
cytotoxic T cell activity and support tumor growth, effectively
creating a protective niche for the tumor (9). This TAM-driven
immunosuppressive microenvironment is a major hurdle for
immune-based therapies and contributes to the failure of GBM to
respond to checkpoint inhibitors and other immunotherapies.

Beyond well-characterized genetic alterations, GBM tumor
biology is profoundly influenced by metabolic reprogramming
and its crosstalk with immune elements of the TME. Emerging
evidence indicates that metabolic disturbances in GBM - including
aberrant lipid metabolism - can shape the immune contexture of
the tumor (10, 11). Tumor cells in GBM upregulate pathways for
glycolysis, glutamine utilization, and lipid synthesis/oxidation to
survive in hypoxic, nutrient-deprived conditions. These metabolic
changes not only fuel tumor growth but also impair immune cell
function, driving T cell exhaustion and biasing myeloid cells toward
immunosuppressive phenotypes. In particular, the polarization of
macrophages is closely tied to their metabolic state: Ml
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macrophages rely on aerobic glycolysis, whereas M2 macrophages
depend on oxidative metabolism such as fatty acid oxidation (12,
13). The lipid-rich environment of GBM - partly a result of tumor
cell necrosis and active lipid biosynthesis — can thus preferentially
support an M2-like TAM phenotype. Indeed, tumor-derived lipids
and metabolic signals can hijack macrophage programming; for
example, high uptake of fatty acids via the scavenger receptor CD36
drives macrophages toward an M2 state (14). Consistent with this,
in situ studies of human GBM have identified “foam cell” TAMs
engorged with lipid droplets in perinecrotic regions, where they
enhance tumor-promoting conditions (15). These lipid-laden
macrophages secrete angiogenic factors like VEGF and HGF
under hypoxia and further dampen immunity by recruiting
additional M2 macrophages and inhibiting T cell responses. The
presence of such lipid-loaded TAMs is associated with an
immunosuppressive, pro-tumoral niche in GBM and highlights a
direct link between disordered lipid metabolism and immune
dysfunction in the tumor. Furthermore, glioma-associated
myeloid cells can supply metabolic resources to tumor cells; for
instance, macrophages and microglia in GBM can recycle myelin
debris and release lipids that are taken up by tumor cells to support
their growth and a mesenchymal, aggressive phenotype (16, 17).
Altogether, these findings underscore that the interplay between
lipid metabolism and the immune microenvironment is a crucial
but underexplored facet of GBM pathogenesis.

Given the contributions of both immune suppression and
metabolic reprogramming to GBM malignancy, we hypothesized
that integrating immune-related and lipid metabolism-related
factors could yield novel prognostic insights. In this study, we
aimed to develop a prognostic model based on genes involved in
immune regulation and lipid metabolism, to better capture the
combined effect of tumor immunity and metabolism on patient
outcomes. The rationale is that such a gene signature might reflect
the degree of “immunometabolic” dysregulation in each tumor - for
example, the extent of M2 macrophage skewing or lipid-fueled
tumor aggressiveness — and thereby stratify patients by survival risk.
We constructed and validated an immune-lipid gene signature in
GBM cohorts, and explored its association with overall survival. We
further examined how the risk signature correlates with the tumor
immune microenvironment, particularly the polarization state of
TAMs (M1 vs M2), as well as with potential therapeutic
vulnerabilities such as sensitivity to drugs. Our objective was to
provide a more comprehensive prognostic tool that not only
predicts outcomes but also offers biological insights into
macrophage polarization and metabolic targets in GBM,
ultimately paving the way for improved therapeutic strategies.

2 Materials and methods
2.1 Data sources and sample acquisition
Gene expression profiles and clinical annotations of diffuse

gliomas were retrieved from The Cancer Genome Atlas (TCGA)
and the Chinese Glioma Genome Atlas (CGGA). A total of 1,528

frontiersin.org


https://doi.org/10.3389/fonc.2025.1660754
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Zhang et al.

glioma samples, encompassing both lower-grade gliomas (WHO
grade II-III) and GBM (WHO grade IV), were included. Samples
with missing clinical data were excluded. The TCGA cohort (n =
655) was randomly divided into a training set (~60%) and an
internal validation set (~40%) using stratified sampling based on
tumor grade. The CGGA dataset (n = 873) served as an external
validation cohort.

Single-cell transcriptomic data were obtained from the GEO
dataset GSE84465, comprising 3,589 cells isolated from four
primary GBM specimens. These data were used to analyze TME
composition and cell-type-specific gene expression patterns.

A comprehensive list of 859 lipid metabolism-related genes was
compiled from the Molecular Signatures Database (MSigDB),
including Reactome, Hallmark, and KEGG lipid-related gene sets.
These genes were intersected with immune-related differentially
expressed genes (DEGs) to obtain a final set of 26 candidates used
for prognostic model construction.

2.2 Differential gene expression analysis

Based on immune score distribution, glioma samples were
classified into immune-infiltrated and non-infiltrated groups.
Differential expression analysis between these groups was
performed using the “limma” package in R. Genes with an absolute
log, fold change > 1 and a false discovery rate (FDR) < 0.05 were
considered significantly differentially expressed.

2.3 Construction of the prognostic gene
signature

Univariate Cox proportional hazards regression was first
applied to the 26 immune- and lipid-related DEGs to screen for
genes significantly associated with overall survival (p < 0.05). These
candidate genes were then subjected to least absolute shrinkage and
selection operator (LASSO) Cox regression using the “glmnet” R
package to avoid overfitting. A prognostic signature comprising 10
genes was constructed based on the optimal penalty parameter ().
Risk scores were calculated for each patient as a weighted sum of
normalized gene expression values multiplied by their respective
LASSO coefficients. Patients were stratified into high- and low-risk
groups using the median risk score as the cutoff. Figure 1 presents
the workflow of this study.

2.4 Evaluation and validation of the
prognostic model

Kaplan-Meier survival analysis and the log-rank test were used
to compare overall survival between the high- and low-risk groups.
Time-dependent receiver operating characteristic (ROC) curves
and corresponding area under the curve (AUC) values were
generated to evaluate the predictive accuracy of the model at 1-,
3-, and 5-year intervals. The performance of the risk model was
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validated across the TCGA internal validation set and the CGGA
external cohort. Univariate and multivariate Cox regression
analyses were conducted to assess whether the risk score was an
independent prognostic factor.

2.5 Functional enrichment analysis

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analyses were performed on the
genes included in the prognostic signature using the
“clusterProfiler” package in R. GO terms and KEGG pathways
with an adjusted p-value < 0.05 (FDR corrected) were considered
significantly enriched. Biological processes related to immune
regulation, macrophage activation, and lipid metabolism were
particularly emphasized.

2.6 Single-cell RNA-sequencing analysis

Quality control, normalization, dimensionality reduction, and
clustering of the GSE84465 dataset were conducted using the Seurat
package (v4.0.4) in R (v4.2.2). Cells with fewer than 200 detected
genes, more than 2,500 detected genes, or >10% mitochondrial gene
content were excluded to remove low-quality cells. Gene expression
values were normalized using the “LogNormalize” method with a
scale factor of 10,000, and the top 2000 variable genes were
identified for downstream analyses.

Principal component analysis (PCA) was performed, and the
top 30 PCs were used to construct a shared nearest neighbor (SNN)
graph. Unsupervised clustering was conducted via the Louvain
algorithm, and clusters were visualized using both t-distributed
stochastic neighbor embedding (t-SNE) and Uniform Manifold
Approximation and Projection (UMAP).

Marker genes for each cluster were identified using the
“FindMarkers” function, and cluster annotation combined
manual curation based on canonical markers (e.g., CD3D and
CD3E for T cells, CD68 and CSFIR for macrophages, GFAP for
astrocytes) with reference-based validation using the CellMarker
database. To further confirm annotation accuracy, we cross-
referenced with previously published GBM single-cell atlases and
visualized marker expression patterns using violin and feature plots.

The expression of selected prognostic genes (e.g., ALOX5AP,
LGALSI, PLA2G5) was examined to determine cell-type specificity,
particularly within macrophage subpopulations. Differential
expression and pathway enrichment analyses were also conducted
to support biological interpretation.

2.7 Immune infiltration analysis
The CIBERSORT algorithm was applied to bulk RNA-
sequencing data from the TCGA cohort using the LM22 reference

signature to estimate the relative abundance of 22 immune cell
types. Only samples with a CIBERSORT p-value < 0.05 were
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FIGURE 1

| 655 glioma cases from the TCGA cohort were analyzed |

|

| Samples were stratified into “immune” and “non-immune” groups |

|

Differential expression analysis identified 686 DEGs (243 down-

regulated, 443 up-regulated) in the immune-infiltrated group

10.3389/fonc.2025.1660754

859 lipid metabolism-related genes
retrieved from MSigDB v5.1

26 overlapping genes identified between immune-related
DEGs and lipid metabolism genes

l

Univariate Cox regression (training set) revealed 20 genes
significantly associated with overall survival (p < 0.05)

l

LASSO Cox regression reduced the list to a 10-gene
prognostic signature

|

Patients were stratified into high-risk and low-risk groups
based on the signature

|

Model validated in:
Internal TCGA testing set (n = 277)
Independent CGGA validation cohort (n = 873)

l

Survival and clinicopathological subgroup analysis performed |

GO and KEGG enrichment revealed functional roles in
macrophage polarization and immune/lipid pathways

l

Single-cell RNA sequencing analysis of GBM (GSE84465)
confirmed cell-type-specific expression of key genes (e.g.,
LGALS1, ALOX5AP)

l

gPCR and Western blot validated LGALS1, PLA2G5, and
ALOX5AP expression in GBM vs. non-tumor tissue

]

Drug sensitivity analysis identified candidate compounds
targeting LGALS1 with potential therapeutic implications

Overview of study design and analysis workflow. Figure 1 shows the analytical workflow of this study. Glioma samples from the TCGA cohort

(n = 655) were classified into immune and non-immune groups based on immune scores. DEGs were identified, and 26 genes overlapping with 859
lipid metabolism—related genes from MSigDB were selected. Univariate and LASSO Cox regression analyses yielded a 10-gene prognostic signature,

which stratified patients into high- and low-risk groups. The model was validated in both the TCGA testing set and an external CGGA cohort. Further
analyses included survival and subgroup assessment, functional enrichment, single-cell transcriptomic profiling, experimental validation, and drug

sensitivity analysis.

included in downstream analyses. The proportions of M1- and M2-

like macrophages were compared between high- and low-risk
groups using the Wilcoxon rank-sum test. The M1/M2 ratio was

2.8 Experimental validation

To validate the expression levels of selected risk genes, GBM

also calculated and its correlation with risk score was assessed using ~ and non-tumor brain tissue samples were collected during

Spearman’s rank correlation. neurosurgical procedures (e.g., epilepsy or trauma surgery). All
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patients provided informed consent, and the study was approved by
the institutional ethics committee.

Quantitative reverse transcription polymerase chain reaction
(qRT-PCR): Total RNA was extracted using TRIzol reagent
(Invitrogen, USA) and quantified using a NanoDrop
spectrophotometer. Complementary DNA (cDNA) was
synthesized using a commercial reverse transcription kit
(manufacturer to be specified). Quantitative real-time polymerase
chain reaction (PCR) was performed on 15 pairs of GBM and
adjacent non-tumor brain tissue samples using an ABI 7500 system
using SYBR Green Master Mix. B-actin served as the internal
control. Reactions were run in triplicate, and gene expression
levels were calculated using the 2A-AACt method. The primer
sequences employed for PCR amplification are detailed in the
Supplementary Material accompanying this study.

Western Blot: Total protein was extracted from tissue samples
using RIPA buffer supplemented with protease inhibitors. Equal
amounts of protein were separated by SDS-PAGE and transferred
to PVDF membranes (Millipore). Membranes were blocked and
incubated overnight at 4 °C with primary antibodies (e.g., anti-
Nmb, anti-NmbR; manufacturer and dilution to be specified),
followed by HRP-conjugated secondary antibodies. Protein bands
were visualized using enhanced chemiluminescence (ECL) and
quantified using Image] software. B-actin was used as a
loading control.

The reverse transcription kit (Name, Manufacturer, Catalog
number) and antibodies used for Western blot (target,
manufacturer, catalog number, dilution) are provided in
Supplementary Table 4 and 5.

2.9 Drug sensitivity analysis

Drug response data were obtained from the Genomics of Drug
Sensitivity in Cancer (GDSC) database. The “pRRophetic” package
was used to estimate the half-maximal inhibitory concentration
(IC50) values of chemotherapeutic and targeted agents based on
gene expression profiles. Pearson correlation was used to evaluate
the association between gene expression (e.g., LGALSI) and
predicted drug sensitivity. Differences in IC50 values between risk
groups were assessed using Student’s t-test.

2.10 Statistical analysis

All statistical analyses were performed using R software (v4.2.2).
The Wilcoxon rank-sum test was applied to compare numerical
variables between two groups, such as immune, stromal, and
ESTIMATE scores, as well as immune cell proportions. Pearson
or Spearman correlation analyses were applied based on data
distribution to evaluate associations between gene expression,
immune cell infiltration, drug sensitivity, and risk scores.

Survival analyses were conducted using the Kaplan-Meier
method and log-rank test. Univariate and multivariate Cox
proportional hazards regression models were used to identify
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independent prognostic factors. Time-dependent ROC curves
were constructed using the “survivalROC” package to assess the
predictive performance of the risk model.

The sample size of experimental validation was determined
based on clinical tissue availability and comparable studies in the
field, which is a common approach in glioblastoma research. To
further ensure robustness, we expanded the qRT-PCR validation
cohort to 15 pairs of GBM and non-tumor tissues in the revised
manuscript. Hazard ratios (HRs) with 95% confidence intervals
(CIs) were reported for survival analyses, and area under the ROC
curve (AUC) values were provided to quantify the predictive
performance of the model.

Enrichment analyses were adjusted using the Benjamini-
Hochberg method for multiple testing correction. All statistical
tests were two-sided, and p-values < 0.05 were considered
statistically significant.

3 Manuscript formatting

3.1 Patient sample classification and
baseline characteristics of datasets

To construct and validate the prognostic model, a total of 655
glioma samples from TCGA were included. These samples were
randomly divided into a training set (n = 378) and a testing set (n =
277) using a 3:2 ratio. Pathological classification was performed
according to the 2021 WHO criteria, in which tumors diagnosed as
grade IV gliomas were designated as GBM, while those with grade
II-IIT were categorized as non-GBM gliomas.

The clinical and demographic characteristics of patients in the
TCGA training and testing sets are summarized in Table 1. No
significant differences were observed between the two groups with
respect to age distribution, gender, or histological subtype,
confirming the comparability of the datasets for model training
and internal validation.

For external validation, an independent cohort of 655 glioma
patients from the CGGA was used. Pathological classification into
GBM and non-GBM groups followed the same criteria. The
baseline clinical characteristics of the CGGA cohort are presented
in Table 2.

This multi-cohort design allowed for robust evaluation of the
prognostic performance and generalizability of the model across
distinct populations.

3.2 Association between ESTIMATE scores
and clinicopathological features

A total of 655 cases from the TCGA glioma cohort were analyzed,
and for each sample the stromal, immune, and ESTIMATE scores
were calculated (ranges: —1735.34 to 1682.27, -1669.12 to 2679.67,
and -3381.83 to 3974.18, respectively). All three scores were
significantly correlated with tumor grade: WHO grade IV tumors
(GBM) exhibited higher immune, stromal, and ESTIMATE scores
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TABLE 1 Baseline demographic characteristic of glioma (TCGA).

10.3389/fonc.2025.1660754

TABLE 1 Continued

. Training set  Testing set P : Training set  Testing set P
Variables Variables
(n=378) (n=277) value (n=378) (n=277) value
Age, . Posterior F s
ge, n (%) 0.557 osterior Fossa 1 (0.26%) 1 (0.36%)
Cerebellum
<45 177 (46.8%) 137 (49.5%)
Temporal Lobe 86 (22.8%) 58 (20.9%)
>45 201 (53.2%) 140 (50.5%)
Laterality 0.492
Gender 0.901
Left 143 (37.8%) 104 (37.5%)
Female 158 (41.8%) 118 (42.6%)
Midline 2 (0.53%) 3 (1.08%)
Male 220 (58.2%) 159 (57.4%)
Right 140 (37.0%) 113 (40.8%)
Race 0.939
Unknown 93 (24.6%) 57 (20.6%)
Asian 9 (2.38%) 5 (1.81%)
First presenting symptom -
Black or African 19 (5.03%) 12 (433%)
American R oI Seizures 136 (36.0%) 109 (39.4%)
White 344 (91.0%) 255 (92.1%) Headaches 54 (14.3%) 49 (17.7%)
Not reported 6 (1.59%) 5 (1.81%) Visual Changes 9 (2.38%) 2 (0.72%)
Grade 0.252 Sensory Changes 12 (3.17%) 5 (1.81%)
G2 144 (38.1%) 100 (36.1%) Mental Status Changes 20 (5.29%) 19 (6.86%)
3 141 (37.39 120 (43.39 Motor/M t
G ( %) ( %) otor/Movemen 23 (6.08%) 14 (5.05%)
Changes
G4 93 (24.6%) 57 (20.6%)
Unknown 124 (32.8%) 79 (28.54%)
Type 0.264
Seizure history 0.347
Non-GBM 285 (75.4%) 220 (79.4%)
NO 94 (24.9%) 80 (28.9%)
GBM 93 (24.6%) 57 (20.6%)
YES 169 (44.7%) 129 (46.6%)
Radiation therapy 0.476
Unknown 115 (30.42%) 68 (24.57%)
NO 106 (28.0%) 81 (29.2%)
Headache history 0.209
YES 238 (63.0%) 164 (59.2%)
NO 163 (43.1%) 126 (45.5%)
Unknown 34 (8.99%) 32 (11.6%)
YES 89 (23.5%) 78 (28.2%)
Neoadjuvant treatment 0.577
Unknown 126 (33.33%) 73 (26.38%)
No 377 (99.7%) 275 (99.3%)
Visual changes 0.379
Yes 1 (0.26%) 2 (0.72%)
NO 213 (56.3%) 174 (62.8%)
New tumor event after 03
initial treatment : YES 37 (9.79%) 26 (9.39%)
NO 152 (40.2%) 118 (42.6%) Unknown 128 (33.86%) 77 (27.82%)
YES 68 (18.0%) 62 (22.4%) Sensory changes 0.092
Unknown 158 (41.8%) 97 (35.0%) NO 202 (53.4%) 175 (63.2%)
Sample type 0.732 YES 44 (11.6%) 24 (8.66%)
Primary Tumor 367 (97.1%) 271 (97.8%) Unknown 132 (34.9%) 78 (28.18%)
Recurrent Tumor 11 (2.91%) 6 (2.17%) Mental status changes 0.464
Primary site 0.035 NO 189 (50.0%) 149 (53.8%)
Brain, NOS 98 (25.9%) 60 (21.7%) YES 62 (16.4%) 51 (18.4%)
Frontal Lobe 154 (40.7%) 143 (51.6%) Unknown 127 (33.59%) 77 (27.82%)
Occipital Lobe 7 (1.85%) 1 (0.36%)
Parietal Lobe 32 (8.47%) 14 (5.05%)
(Continued)
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TABLE 2 Baseline demographic characteristic of glioma (CGGA).

Variables GBM training GBM testing P value Non-GBM training  Non-GBM testing P value
set (n=93) set (n=57) set (n=301) set (n=204)
Age, n (%) 1 0.779
<45 11 (11.83%) 6 (10.53%) 175 (58.14%) 122 (59.80%)
>45 82 (88.17%) 51 (89.47%) 126 (41.86%) 82 (40.20%)
Gender, n (%) 0.858 0.743
Female 32 (34.41%) 18 (31.58%) 137 (45.51%) 89 (43.63%)
Male 61 (65.59%) 39 (68.42%) 164 (54.49%) 115 (56.37%)
Race, n (%) 0.848 0.052
Asian 3 (3.23%) 2 (3.51%) 3 (1.00%) 6 (2.94%)
Black or African American 5 (5.38%) 5 (8.77%) 15 (4.98%) 6 (2.94%)
White 84 (90.32%) 50 (87.72%) 274 (91.03%) 191 (93.63%)
Not reported 1 (1.08%) 0 (0.00%) 9 (2.99%) 1 (0.49%)
Grade, n (%) - 1
G2 0 (0.00%) 0 (0.00%) 145 (48.17%) 99 (48.53%)
G3 0 (0.00%) 0 (0.00%) 156 (51.83%) 105 (51.47%)
G4 93 (100.00%) 57 (100.00%) 0 (0.00%) 0 (0.00%)
Radiation therapy, n (%) 1 0.372
NO 13 (13.98%) 8 (14.04%) 94 (31.23%) 72 (35.29%)
YES 80 (86.02%) 49 (85.96%) 163 (54.15%) 110 (53.92%)
Unknown 0 (0.00%) 0 (0.00%) 44 (14.62%) 22 (10.78%)
Neoadjuvant treatment, n . 1
(%)
No 93 (100.00%) 57 (100.00%) 299 (99.34%) 203 (99.51%)
Yes 0 (0.00%) 0 (0.00%) 2 (0.66%) 1 (0.49%)
New tumor event after initial
treatment, n (%) ) 0-854
NO 0 (0.00%) 0 (0.00%) 164 (54.49%) 106 (51.96%)
YES 0 (0.00%) 0 (0.00%) 76 (25.25%) 54 (26.47%)
Unknown 93 (100.00%) 57 (100.00%) 61 (20.27%) 44 (21.57%)
Sample type, n (%) 1 1
Primary Tumor 87 (93.55%) 54 (94.74%) 296 (98.34%) 201 (98.53%)
Recurrent Tumor 6 (6.45%) 3 (5.26%) 5 (1.66%) 3 (1.47%)
Primary site, n (%) - 0.96
Frontal Lobe 0 (0.00%) 0 (0.00%) 181 (60.13%) 116 (56.86%)
Occipital Lobe 0 (0.00%) 0 (0.00%) 5 (1.66%) 3 (1.47%)
Parietal Lobe 0 (0.00%) 0 (0.00%) 25 (8.31%) 21 (10.29%)
Posterior Fossa, Cerebellum 0 (0.00%) 0 (0.00%) 1 (0.33%) 1 (0.49%)
Temporal Lobe 0 (0.00%) 0 (0.00%) 84 (27.91%) 60 (29.41%)
Brain, NOS 93 (100.00%) 57 (100.00%) 5 (1.66%) 3 (1.47%)
Laterality, n (%) - 0.487
(Continued)
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TABLE 2 Continued

GBM training GBM testing

Non-GBM training  Non-GBM testing

variables set (n=93) set(n=57) " VAUe et (n=301) set (n=204) T vale
Left 0 (0.00%) 0 (0.00%) 144 (47.84%) 103 (50.49%)
Midline 0 (0.00%) 0 (0.00%) 2 (0.66%) 3 (1.47%)
Right 0 (0.00%) 0 (0.00%) 155 (51.50%) 98 (48.04%)
Unknown 93 (100.00%) 57 (100.00%) 0 (0.00%) 0 (0.00%)
First presentz;)g; symptom, n i 078
Seizures 0 (0.00%) 0 (0.00%) 145 (48.17%) 100 (49.02%)
Headaches 0 (0.00%) 0 (0.00%) 61 (20.27%) 42 (20.59%)
Visual Changes 0 (0.00%) 0 (0.00%) 5 (1.66%) 6 (2.94%)
Sensory Changes 0 (0.00%) 0 (0.00%) 9 (2.99%) 8 (3.92%)
Mental Status Changes 0 (0.00%) 0 (0.00%) 26 (8.64%) 13 (6.37%)
Motor/Movement Changes 0 (0.00%) 0 (0.00%) 25 (8.31%) 12 (5.88%)
Unknown 93 (100.00%) 57 (100.00%) 30 (9.97%) 23 (11.27%)
Seizure history, n (%) - 0.875
NO 0 (0.00%) 0 (0.00%) 101 (33.55%) 73 (35.78%)
YES 0 (0.00%) 0 (0.00%) 180 (59.80%) 118 (57.84%)
Unknown 93 (100.00%) 57 (100.00%) 20 (6.64%) 13 (6.37%)
Headache history, n (%) - 0.879
NO 0 (0.00%) 0 (0.00%) 174 (57.81%) 115 (56.37%)
YES 0 (0.00%) 0 (0.00%) 97 (32.23%) 70 (34.31%)
Unknown 93 (100.00%) 57 (100.00%) 30 (9.97%) 19 (9.31%)
Visual changes, n (%) - 0.765
NO 0 (0.00%) 0 (0.00%) 230 (76.41%) 157 (76.96%)
YES 0 (0.00%) 0 (0.00%) 36 (11.96%) 27 (13.24%)
Unknown 93 (100.00%) 57 (100.00%) 35 (11.63%) 20 (9.80%)
Sensory changes, n (%) - 0.483
NO 0 (0.00%) 0 (0.00%) 219 (72.76%) 158 (77.45%)
YES 0 (0.00%) 0 (0.00%) 43 (14.29%) 25 (12.25%)
Unknown 93 (100.00%) 57 (100.00%) 39 (12.96%) 21 (10.29%)
Mental status changes, n (%) - 0.54
NO 0 (0.00%) 0 (0.00%) 196 (65.12%) 142 (69.61%)
YES 0 (0.00%) 0 (0.00%) 70 (23.26%) 43 (21.08%)
Unknown 93 (100.00%) 57 (100.00%) 35 (11.63%) 19 (9.31%)
than lower-grade (WHO II-III) tumors (Figures 2A-C, p, < 0.001). 3.3 |dentification of DEGs
Furthermore, patients with higher stromal, immune, or ESTIMATE
scores had significantly worse overall survival compared to those with Using the immune score to stratify cases, the cohort was divided
lower scores (Figures 2D-F). into an “immune” group (positive immune score) and a “non-
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FIGURE 2

Relationship between immune, stromal, and ESTIMATE scores and prognosis in gliomas. (A—C) Distributions of stromal scores, immune scores, and
composite ESTIMATE scores across different glioma pathological grades (p < 0.001 for all grade comparisons). (D—F) Kaplan—Meier overall survival
curves for patients stratified into high-score vs. low-score groups (for Stromal, Immune, and ESTIMATE scores respectively), with p-values

determined by log-rank tests.

immune” group (negative immune score). Differential expression
analysis between these groups identified a total of 686 DEGs,
comprising 243 down-regulated genes and 443 up-regulated genes
in the immune-infiltrated group (Figure 3A). These genes represent
the immune-related transcriptomic differences between immune-
high and immune-low gliomas. The overall distribution of the
DEGs is visualized in Figure 3A (volcano plot), highlighting the
magnitude of expression changes between the two groups.

3.4 Overlap with lipid metabolism-related
genes

To narrow down the candidates, we intersected the immune-
related DEGs with genes involved in lipid metabolism. A set of 859
lipid metabolism-related genes was compiled from the MSigDB v5.1
(including Reactome pathways for lipid and phospholipid
metabolism, the Hallmark fatty acid metabolism gene set, and
KEGG glycerophospholipid metabolism pathways). The overlap
between these 859 genes and the 686 immune-related DEGs
yielded 26 genes that are related to both immune response and
lipid metabolism. These 26 overlapping genes were taken forward as
candidate genes potentially involved in immune regulation and
lipid metabolic processes in glioma.

Frontiers in Oncology

3.5 Development and validation of the
prognostic model

We next constructed a prognostic model based on the
overlapping immune- and lipid metabolism-related genes. First,
univariate Cox regression in the training set identified 20 candidate
genes (out of the 26 overlap genes) significantly associated with
overall survival (p < 0.05). These were further narrowed down via
LASSO Cox regression, resulting in a signature of 10 key risk genes.
Using the expression of these ten genes, a risk score was calculated for
each patient, and the cohort was split into high-risk and low-risk
groups (typically using the median risk score as the cutoff). Kaplan-
Meier survival analysis revealed that patients in the high-risk group
had a markedly poorer prognosis than those in the low-risk group
(Figure 4A). Consistently, visualization of the risk score distribution,
survival time, and survival status demonstrated that lower risk scores
tended to be associated with longer survival durations (Figure 4B).
Time-dependent ROC analysis further showed that the prognostic
model achieved favorable accuracy, with appreciable 3-year and 5-
year AUC values for overall survival prediction (Figure 4C).

The prognostic value of this 10-gene risk signature was
validated in both internal and external datasets (Supplementary
Figure 1). In the TCGA internal testing set, the same trend was
observed: high-risk patients had significantly shorter survival
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FIGURE 3
Differential gene expression and risk gene profiles between immune-infiltrated and non-infiltrated gliomas. (A) Volcano plot illustrating the
distribution of DEGs between the immune group and non-immune group, highlighting 243 down-regulated and 443 up-regulated genes in the
immune-infiltrated group. (B) Gene coefficients. (C) Heatmap presenting the expression levels of the ten identified immune- and lipid metabolism—
related risk genes across various glioma patient subgroups with different clinicopathological characteristics and outcomes. Significant expression
differences between subgroups are indicated: *p < 0.05; **p < 0.01; ***p < 0.001.

compared to low-risk patients, mirroring the training set results
(Supplementary Figure 1A-C). Similarly, when applied to the
independent CGGA cohort, the risk score stratification
successfully distinguished outcomes, with the high-risk group
demonstrating worse overall survival than the low-risk group
(consistent with Figure 4A) (Supplementary Figure 1D-F). These
concordant results across different datasets confirm the robustness
and generalizability of the prognostic model.

3.6 Expression analysis and identification of
independent risk factors

We examined the expression patterns and clinical associations
of the ten risk signature genes in glioma patients. Notably, distinct
subsets of these genes were associated with opposite prognostic
implications. Six genes — PLA2G5, LGALS1, GOS2, FABP5, PLBD1,
and ALOX5AP — were identified as “risk genes,” meaning that

Frontiers in Oncology 10

higher expression levels of these genes correlated with poorer
patient outcomes. In contrast, the remaining four genes —
ETNPPL, ACSL6, TSPOAPI, and TBXASI
“protective genes,” where elevated expression was associated with

— behaved as

improved survival (Figure 3C). Furthermore, three of the protective
genes (ETNPPL, ACSL6, and TSPOAP1) were found to be
significantly down-regulated in the tumors of WHO grade IV as
compared to lower grades, suggesting that loss of these genes’
expression may be linked to the development of more aggressive
gliomas (GBM).

Subsequently, univariate and multivariate Cox regression
analyses were performed to assess the impact of clinicopathologic
factors on the observed outcomes. The results identified age, grade,
first symptom, neoplastic event, and risk score as independent risk
factors (Figures 5A, B). Subsequent unfolding analyses for each
subgroup identified age =45 years, WHO grade II - III, and
headache as the first symptom with neoplastic event as
independent risk factors (Supplementary Figure 2). The results of
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Survival analysis of the ten-gene immune/lipid metabolism signature in the TCGA glioma cohort. (A) Kaplan—Meier overall survival curve comparing
patients in the high-risk vs. low-risk groups defined by the ten-gene risk score. (B) Distribution of risk scores (based on the ten-gene signature)
along with each patient’s survival status and time; patients with lower risk scores tend to have longer survival. (C) Time-dependent ROC curves
evaluating the prognostic performance of the risk model at 3 and 5 years, with the AUC values for 3-year and 5-year survival indicated. Log-rank

p-values are shown for the survival differences between risk groups.

the internal and independent validation (Supplementary
Figure 3A-D) further support the importance of age, grading,
new tumor events, and risk scores as independent risk factors,
particularly in high-risk populations.

3.7 Survival analysis in clinical subgroups

To further evaluate the performance of the risk model across
different clinical contexts, we conducted survival analyses within
various patient subgroups defined by the independent prognostic
factors. In each subgroup, high-risk patients had significantly
shorter overall survival than low-risk patients (Figures 5C-G; log-
rank p < 0.05 for all comparisons). This pattern was observed
among both younger patients (< 45 years) and older patients (> 45
years), in lower-grade gliomas (WHO II-III), in patients whose
initial presenting symptom was headache, and in patients with a
history of a new tumor event. These findings illustrate that the 10-
gene risk signature retains prognostic relevance across a broad
range of clinical subpopulations. It should be noted that the high-
risk group consisted predominantly of WHO grade IV (GBM) cases
- a subset of patients with uniformly poor outcomes. Consequently,
a separate survival analysis within the GBM-only subgroup was
deemed unnecessary, as nearly all GBM patients fell into the high-
risk category; further stratification of this uniformly high-risk
population would not be informative.

3.8 Functional enrichment analysis
To gain insight into the biological roles of the identified genes,

we performed gene set enrichment analysis (GSEA) focusing on GO
biological processes and relevant KEGG pathways (Figure 6A). This
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analysis revealed that the immune- and lipid metabolism-related
genes are involved in key pathways related to immune regulation
and macrophage function. In particular, pathways associated with
macrophage-derived foam cell differentiation and immune response
regulation were enriched in the high-risk group. Several of the 10
signature genes contributed to these enriched functions; for
example, the risk genes ALOX5AP, LGALSI, and PLA2G5 were
highly expressed in high-risk tumors and were implicated in the
GO terms identified. In addition, a few genes outside of the
signature, such as PLA2G2A and TNFAIP8L2, were also found
to play potential roles in these processes according to the
enrichment results.

More specifically, the positive regulation of foam cell
differentiation by PLA2G2A and PLA2G5 emerged as a notable
function, which may shed light on underlying pathological
mechanisms (analogous to processes in atherosclerosis) that could
be at play in glioma macrophages. Meanwhile, TNFAIP8L2 was
linked to the negative regulation of immune system processes and
the positive regulation of inflammatory responses. The involvement
of TNFAIP8L2 in these opposing regulatory functions highlights its
potential importance in modulating the tumor’s immune
microenvironment. Collectively, these enrichment findings
suggest that the immune- and lipid metabolism-related genes
identified in our study may influence glioma progression by
affecting immune response pathways and macrophage behavior
(e.g., polarization and foam cell formation), thereby contributing to
the tumor’s biology and patient outcomes.

3.9 Single-cell RNA sequencing analysis

To investigate the cellular context of our key genes in the TME,
we analyzed single-cell RNA sequencing (scRNA-seq) data from
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FIGURE 5

Identification of independent prognostic factors and risk subgroup survival analyses in glioma patients. (A, B) Univariate and multivariate Cox
regression analyses of various clinicopathological variables (age, tumor grade, initial symptoms, new tumor events, and ten-gene risk score),
identifying age, WHO grade, first symptom, occurrence of a new tumor event, and the risk score as independent prognostic factors (HRs with 95%
Cls shown). (C—G) Kaplan—Meier overall survival curves for patient subgroups stratified by these independent factors, illustrating the prognostic
impact of the ten-gene risk signature within each subgroup. Panels show stratifications by: age >45 years vs. <45 years, WHO Grade II-Ill tumors,
headache vs. other initial symptoms, and presence vs. absence of a new tumor event. In all subgroups, high-risk patients have significantly shorter
overall survival than low-risk patients. (Log-rank test, p < 0.05 for all comparisons).

primary human GBM samples (GSE84465). Unsupervised
clustering of the scRNA-seq data using the Seurat package
identified multiple distinct cell clusters within the GBM
specimens (Figure 6B). By referencing known cell-type markers
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from the literature and the CellMarker database, we determined the
identity of each cluster and annotated the clusters accordingly
(Figures 6C, D). Notably, several clusters corresponded to tumor-
associated macrophages, representing different activation states of
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GO functional enrichment of risk genes and single-cell RNA sequencing analysis in GBM. (A) Network plot of enriched GO biological processes
associated with the ten risk genes. Genes and GO terms are connected by lines indicating functional associations; line color and width reflect the
relative magnitude and direction of each gene’s contribution to a given biological process. (B) UMAP plot of cells from primary GBM (single-cell
RNA-seq dataset GSE84465), showing clustering of cells into distinct groups. (C) Dot plot of canonical cell-type marker gene expression across the
identified cell clusters, used to determine the cell identity of each cluster. (D) UMAP plot of the GBM cells with clusters annotated by cell type (e.g.,
malignant cells, and various immune cell subtypes including distinct macrophage populations). (E-G) Violin plots showing the expression of three
representative risk genes (ALOX5AP, LGALS1, and PLA2Gb5) across the annotated single-cell clusters; violin width represents the proportion of cells in
the cluster expressing the gene, and color intensity denotes the average expression level. Notably, ALOX5AP is expressed in all major macrophage
subclusters, LGALS1 is predominantly expressed in M2-like macrophages, and PLA2G5 shows low expression across all cell types.
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gRT-PCR and Western blot validation of risk gene expression in GBM vs. non-tumor brain tissues. (A) gRT-PCR measured the relative mRNA
expression levels of three selected risk genes (ALOX5AP, LGALS1, and PLA2G5) in GBM tumor tissue compared to non-tumor brain tissue (B-actin as
internal control; n = 15 per group). (B) Western blot detection of two representative risk gene products (ALOX5AP and LGALS1) in non-tumor (N) and
GBM tumor (T) tissue samples, with B-actin as a loading control. (C) Densitometric quantification of the Western blot bands showing significantly
elevated protein expression of ALOX5AP and LGALS1 in GBM tissues versus non-tumor tissues (*p < 0.05, **p < 0.01).

macrophages in the tumor. We next examined the expression of
three representative genes from our risk signature — ALOX5AP,
LGALSI, and PLA2G5 - across the single-cell clusters. ALOX5AP
was expressed in all of the major macrophage subpopulations,
indicating broad activity in tumor-infiltrating macrophages.
LGALSI expression was enriched in the M2-like macrophage
clusters (an immunosuppressive phenotype), consistent with its
putative role in promoting tumor progression. In contrast, PLA2G5
showed uniformly low expression across all cell clusters, suggesting
that at baseline no particular cell type in the TME highly expresses
this gene (Figures 6E-G). These single-cell findings provide further
evidence that the identified key genes - especially LGALS! and
ALOX5AP - play functionally relevant roles in the context of
macrophage polarization and function within the GBM TME.

3.10 Experimental validation of risk gene
expression

To validate the differential expression of key risk genes at the
tissue level, we performed qRT-PCR and Western blot experiments
using clinical samples. We examined GBM tumor tissues and non-
tumor brain tissues for the expression of selected risk genes. The
qRT-PCR results, based on 15 clinical GBM and paired non-tumor
brain tissue samples, showed that the mRNA levels of ALOX5AP,
LGALSI, and PLA2G5 were significantly higher in GBM tumor
tissues compared to non-tumor brain tissues (all p < 0.05)
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(Figure 7A). Consistently, Western blot analysis confirmed
markedly up-regulated protein expression of ALOX5AP and
LGALSI1 in GBM tumors versus non-tumor tissues (Figures 7B,
C). Densitometric quantification revealed a significant increase in
ALOXS5AP protein in GBM (p < 0.01) and in LGALSI protein (p <
0.05) relative to normal brain samples. These findings corroborate
that the identified risk genes are indeed overexpressed in GBM,
supporting their proposed role in driving a high-risk phenotype.

3.11 Drug sensitivity analysis of LGALS1

Given the elevated expression of LGALSI in M2-polarized
macrophages and its association with poorer prognosis, we
explored whether targeting LGALSI could have therapeutic
implications. We screened 19 candidate compounds known to
interact with galectin-1 (the protein encoded by LGALSI), with an
emphasis on drugs that are either FDA-approved or in clinical trials
(Figure 8A). From this screen, nine drugs were selected for detailed
analysis of their sensitivity profiles in relation to LGALSI expression.
Among these, LGALSI expression levels showed a significant positive
correlation with tumor cell sensitivity to four agents — zoledronate,
staurosporine, JNJ-38877605, and pazopanib - indicating that higher
LGALSI might render tumors more susceptible to these drugs.
Conversely, LGALSI expression was significantly negatively
correlated with the sensitivity to two agents (a metabolite of
CUDC-305 and the PLK inhibitor volasertib), suggesting that
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Drug sensitivity analysis related to LGALS1 expression. (A) Correlations between LGALS1 gene expression and the sensitivity of GBM cells to nine
selected anticancer compounds (including FDA-approved drugs or those in clinical trials targeting the galectin-1 pathway). Higher LGALS1
expression is significantly associated with increased sensitivity to four agents (e.g., zoledronate, staurosporine, JNJ-38877605, pazopanib) and with
decreased sensitivity to two agents (a CUDC-305 metabolite and volasertib) (all correlation p < 0.05). (B) Comparison of drug sensitivity in the high-
risk vs. low-risk patient groups for the same set of compounds. High-risk (LGALSI-high) patients tended to be more responsive to zoledronate,
staurosporine, JINJ-38877605 and pazopanib, and less responsive to the CUDC-305 metabolite and volasertib, than low-risk patients, although
these differences did not reach statistical significance (*p < 0.05, **p < 0.01, "NS" denotes not significant).

LGALSI-high tumors are relatively resistant to those treatments
(Figure 8A). All of the above correlations were statistically
significant (p < 0.05). In contrast, for three other tested drugs
(SGX-523, LY-294002, and OSU-03012), no significant relationship
between LGALSI expression and drug response was observed.

We further investigated drug sensitivities in the context of the
risk stratification by comparing responses between high-risk and
low-risk groups of patients (as defined by the 10-gene signature)
(Figure 8B). The high-risk group, which exhibits higher LGALSI
expression on average, showed trends consistent with the
correlation analysis: for example, high-risk patients tended to be
more responsive to zoledronate, staurosporine, JNJ-38877605, and
pazopanib, whereas they appeared less sensitive to the CUDC-305
by-product and volasertib, compared to low-risk patients. However,
these differences did not reach statistical significance in our cohort.
Overall, this drug sensitivity analysis points to LGALSI as a
promising therapeutic target. The identified LGALSI-associated
compounds (such as zoledronate and pazopanib) may provide a
basis for tailored treatment strategies in GBM, particularly for
patients with tumors characterized by an immunosuppressive,
M2-macrophage-rich microenvironment. These findings
underscore the potential clinical utility of integrating our risk
gene signature with drug response data to inform personalized
therapy for GBM.
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4 Discussion

Our study identified a set of immune- and lipid metabolism-
related genes that are significantly associated with macrophage
polarization and prognosis in GBM patients. By performing
differential expression analysis, we uncovered 243 down-regulated
and 443 up-regulated genes between immune and non-immune
groups, with several of these genes playing a pivotal role in
macrophage function and polarization. Among the 26
overlapping genes between immune-related and lipid metabolism-
related genes, we identified 10 risk genes (PLA2G5, LGALSI, GOS2,
FABP5, PLBD1, ALOX5AP, ETNPPL, ACSL6, TSPOAPI, and
TBXASI), which were associated with distinct prognostic outcomes.

The involvement of macrophages, particularly the polarization
between M1 and M2 phenotypes, has profound implications for
tumor progression (18, 19). M1 macrophages are typically
associated with anti-tumor activities, producing pro-inflammatory
cytokines like TNF-o and IL-12, and promoting tumor cell killing.
In contrast, M2 macrophages, which are abundant in the TME of
GBM, facilitate tumor growth by secreting anti-inflammatory
cytokines (e.g., IL-10 and TGF-f), promoting angiogenesis, and
remodeling the extracellular matrix (20-22). Our findings indicated
that several risk genes, such as LGALSI and PLA2G5, were highly
expressed in M2 macrophages, underscoring their potential role in
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promoting the immunosuppressive microenvironment that
supports GBM progression. LGALSI, for example, has been
shown to promote M2 polarization and contribute to immune
evasion in GBM by inhibiting T-cell function and promoting
regulatory T-cell activity (23, 24). Similarly, ALOX5AP, involved
in leukotriene biosynthesis, has been linked to pro-tumorigenic
functions in M2 macrophages (25, 26).

Lipid metabolism also plays a crucial role in regulating
macrophage polarization and function in the TME. Lipid uptake,
storage, and metabolism are significantly altered in TAMs,
especially in M2-like macrophages, which utilize fatty acid
oxidation (FAO) to sustain their immunosuppressive activities
(27-29). Our study identified genes like FABP5 and ACSL6,
which are key players in lipid metabolism, as potential regulators
of macrophage polarization in GBM. FABPS5, a fatty acid-binding
protein, has been implicated in the uptake and transport of fatty
acids, particularly in M2 macrophages, where it supports FAO and
oxidative phosphorylation (30). The upregulation of FABP5 in
high-risk GBM patients, as seen in our analysis, suggests that it
may facilitate the metabolic reprogramming of TAMs to sustain
tumor-promoting functions. Targeting these metabolic pathways
may represent a promising strategy to modulate macrophage
polarization and inhibit GBM progression.

In addition to macrophage polarization, our findings also shed
light on the broader prognostic implications of immune and lipid
metabolism-related genes in GBM. Survival analysis revealed that
patients with higher expression levels of risk genes, such as LGALSI
and PLA2GS5, had significantly poorer outcomes, suggesting that
these genes could serve as biomarkers for GBM prognosis.
Furthermore, pathway enrichment analysis highlighted the
involvement of these genes in immune regulation, inflammation,
and lipid metabolism, reinforcing their role in shaping the TME and
influencing tumor progression. The GO and KEGG pathway
enrichment analysis revealed critical biological processes,
including macrophage differentiation, lipid biosynthesis, and
inflammatory responses, which are known to contribute to cancer
progression (31, 32).

The therapeutic implications of our findings are significant.
Given the crucial role of M2-like macrophages in supporting GBM,
strategies aimed at reprogramming macrophages from the M2 to
M1 phenotype have garnered increasing interest as potential
therapeutic approaches (33, 34). Moreover, targeting lipid
metabolism in TAMs represents another promising avenue for
disrupting the tumor-promoting functions of these immune cells
(35, 36). Drugs that inhibit fatty acid oxidation or interfere with
lipid signaling pathways, such as inhibitors of ALOX5AP or FABP5,
could serve as potential therapies for GBM by impairing the
metabolic fitness of TAMs and reactivating anti-tumor immunity
(37). Additionally, the identification of LGALSI as a potential
therapeutic target opens up new possibilities for pharmacological
intervention. Our drug sensitivity analysis revealed that LGALSI
expression was correlated with sensitivity to several FDA-approved
drugs, including zoledronate and staurosporine, highlighting the
potential for repurposing existing drugs to target this immune
regulatory protein in GBM.
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This study has several limitations that should be acknowledged.
First, we did not perform in vivo animal experiments to validate the
therapeutic potential of the identified immune- and lipid
metabolism-related genes. Such experiments will be important in
the future to clarify their roles in macrophage polarization and
tumor progression. Second, functional mechanistic studies such as
gene knockdown, overexpression, flow cytometry, or cytokine
profiling were not included; therefore, our conclusions remain
correlative rather than causative. Future work incorporating these
approaches will be valuable to provide direct causal evidence. Third,
the number of clinical samples used for experimental validation was
relatively limited, which may restrict the generalizability of the
findings. Fourth, the single-cell RNA-seq analysis was based on four
GBM specimens, which might not fully capture the extensive
heterogeneity of the tumor microenvironment. Larger single-cell
datasets could help to address this limitation in subsequent studies.
Finally, the study relied heavily on public datasets (TCGA, CGGA,
GEO), where sample collection and processing were beyond our
control, potentially introducing bias. These limitations highlight the
importance of further validation and the need for future studies to
extend our findings.

Beyond glioblastoma, emerging evidence suggests that
immune-metabolic interactions may also play important roles in
other cancers. For example, in breast cancer and melanoma, lipid
metabolic pathways have been shown to influence macrophage
polarization and impact patient prognosis. This indicates that the
immune-lipid axis identified in GBM may represent a broader
mechanism relevant across multiple tumor types. Future studies
comparing the prognostic and functional roles of these genes across
different cancers will help to clarify their generalizability and
potential as therapeutic targets.

Taken together, our findings highlight the critical role of
immune- and lipid metabolism-related genes in shaping the
glioblastoma microenvironment. These genes may substantially
influence patient outcomes. By integrating bulk and single-cell
transcriptomic analyses with experimental validation, we
established a prognostic gene signature and provided preliminary
evidence for its potential therapeutic relevance. Importantly, these
results suggest that targeting immunometabolic pathways may offer
new strategies for modulating macrophage polarization and
improving GBM treatment. Looking forward, further mechanistic
studies, in vivo validation, and larger independent cohorts will be
essential to confirm the causal roles of these genes and to explore
their translational potential. Ultimately, translating these insights
into clinically actionable biomarkers and therapeutic strategies
could contribute to more personalized and effective care for
patients with glioblastoma.

5 Conclusions

This study highlights the prognostic significance of immune-
and lipid metabolism-related genes in GBM, particularly in relation
to macrophage polarization and tumor progression. The
identification of key risk genes, such as LGALSI and PLA2GS5,
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suggests novel therapeutic targets within immune modulation and
lipid metabolism pathways. These findings provide a foundation for
future research aimed at developing macrophage-targeted therapies
and improving clinical outcomes for GBM patients.
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