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The role of immune- and lipid
metabolism-related genes in
macrophage polarization and
prognosis of glioblastoma
Yue Zhang †, Xin Xu †, Shuo Li †, Chenlong Liao,
Xiaosheng Yang* and Wenchuan Zhang*

Department of Neurosurgery, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao
Tong University, Shanghai, China
Objective: To investigate the roles of immune- and lipid metabolism-related

genes in macrophage polarization and their prognostic and therapeutic

implications in glioblastoma (GBM).

Methods: A total of 655 GBM samples from The Cancer Genome Atlas (TCGA)

were stratified into immune and non-immune groups based on immune scores.

Differentially expressed genes (DEGs) were identified, and their intersection with

859 lipid metabolism–related genes yielded 26 candidates. A 10-gene

prognostic signature was constructed using univariate and least absolute

shrinkage and selection operator (LASSO) Cox regression analyses and

validated in both internal (TCGA) and independent (Chinese Glioma Genome

Atlas, CGGA) cohorts. Functional enrichment, single-cell transcriptomic analysis,

experimental validation, and drug sensitivity profiling were performed to assess

the biological and therapeutic relevance of the identified genes.

Results: Ten immune- and lipid metabolism–related genes were significantly

associated with GBM prognosis. Key genes such as LGALS1, PLA2G5, and FABP5

were upregulated in high-risk patients and enriched in M2-like tumor-associated

macrophages. Enrichment analyses indicated their involvement in immune

regulation and lipid metabolic pathways. Their elevated expression in GBM

tissues was confirmed by qRT-PCR and Western blot. Drug sensitivity analysis

demonstrated a correlation between LGALS1 expression and the response to

agents such as zoledronate and staurosporine.

Conclusions: Immune- and lipid metabolism–related genes contribute to

macrophage polarization and are closely linked to GBM prognosis. The

identified gene signature provides prognostic value and potential therapeutic

targets for immunometabolic modulation in GBM.
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glioblastoma, macrophage polarization, lipid metabolism, prognostic genes,
immune response
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1 Introduction

Glioblastoma (GBM) is an aggressive primary brain tumor

marked by dismal outcomes despite multimodal therapy. The 5-

year survival rate is only around 5%, reflecting the failure of current

treatments to control this malignancy (1). A major challenge in

GBM management is the extreme heterogeneity of the tumor at

both the molecular and cellular levels (2). GBMs comprise multiple

subtypes and evolving niches within a single tumor, leading to

varied therapeutic responses and fostering treatment resistance.

This heterogeneity extends to the tumor microenvironment (TME),

which in GBM is highly immunosuppressive and poses a barrier to

immunotherapy (3, 4). Immunotherapeutic strategies that succeed

in other cancers have shown limited benefit in GBM, in large part

due to the unique immune milieu of the brain tumor and its

capacity to evade anti-tumor immune responses. Thus, there is an

urgent need for new biomarkers and models that capture the

complex biology of GBM and improve prognostic and

therapeutic stratification.

One key element of GBM’s TME is the abundance of tumor-

associated macrophages (TAMs), which can constitute 30–50% of

the cellular content of the tumor (5). TAMs in GBM originate from

both brain-resident microglia and infiltrating monocytes, and

together they dominate the immune landscape and drive

immunosuppression. Notably, increased TAM infiltration

correlates with tumor growth, recurrence, and worse patient

survival (6). TAMs exhibit remarkable plasticity, generally

polarized between two ends of a spectrum: the pro-inflammatory

“classically activated” M1 phenotype and the anti-inflammatory

“alternatively activated” M2 phenotype (7). M1-polarized

macrophages can phagocytose tumor cells and stimulate immune

responses, exerting anti-tumor effects, whereas M2-polarized TAMs

promote tumor cell proliferation, angiogenesis, and tissue

remodeling, thereby facilitating GBM progression (8). In GBM,

TAMs tend to skew towards the M2-like state, and a high M2/M1

ratio has been associated with immunotherapy resistance and poor

prognosis. M2-like TAMs secrete immunosuppressive cytokines

(e.g. IL-10, TGF-b) and growth factors (e.g. VEGF) that blunt

cytotoxic T cell activity and support tumor growth, effectively

creating a protective niche for the tumor (9). This TAM-driven

immunosuppressive microenvironment is a major hurdle for

immune-based therapies and contributes to the failure of GBM to

respond to checkpoint inhibitors and other immunotherapies.

Beyond well-characterized genetic alterations, GBM tumor

biology is profoundly influenced by metabolic reprogramming

and its crosstalk with immune elements of the TME. Emerging

evidence indicates that metabolic disturbances in GBM – including

aberrant lipid metabolism – can shape the immune contexture of

the tumor (10, 11). Tumor cells in GBM upregulate pathways for

glycolysis, glutamine utilization, and lipid synthesis/oxidation to

survive in hypoxic, nutrient-deprived conditions. These metabolic

changes not only fuel tumor growth but also impair immune cell

function, driving T cell exhaustion and biasing myeloid cells toward

immunosuppressive phenotypes. In particular, the polarization of

macrophages is closely tied to their metabolic state: M1
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macrophages rely on aerobic glycolysis, whereas M2 macrophages

depend on oxidative metabolism such as fatty acid oxidation (12,

13). The lipid-rich environment of GBM – partly a result of tumor

cell necrosis and active lipid biosynthesis – can thus preferentially

support an M2-like TAM phenotype. Indeed, tumor-derived lipids

and metabolic signals can hijack macrophage programming; for

example, high uptake of fatty acids via the scavenger receptor CD36

drives macrophages toward an M2 state (14). Consistent with this,

in situ studies of human GBM have identified “foam cell” TAMs

engorged with lipid droplets in perinecrotic regions, where they

enhance tumor-promoting conditions (15). These lipid-laden

macrophages secrete angiogenic factors like VEGF and HGF

under hypoxia and further dampen immunity by recruiting

additional M2 macrophages and inhibiting T cell responses. The

presence of such lipid-loaded TAMs is associated with an

immunosuppressive, pro-tumoral niche in GBM and highlights a

direct link between disordered lipid metabolism and immune

dysfunction in the tumor. Furthermore, glioma-associated

myeloid cells can supply metabolic resources to tumor cells; for

instance, macrophages and microglia in GBM can recycle myelin

debris and release lipids that are taken up by tumor cells to support

their growth and a mesenchymal, aggressive phenotype (16, 17).

Altogether, these findings underscore that the interplay between

lipid metabolism and the immune microenvironment is a crucial

but underexplored facet of GBM pathogenesis.

Given the contributions of both immune suppression and

metabolic reprogramming to GBM malignancy, we hypothesized

that integrating immune-related and lipid metabolism–related

factors could yield novel prognostic insights. In this study, we

aimed to develop a prognostic model based on genes involved in

immune regulation and lipid metabolism, to better capture the

combined effect of tumor immunity and metabolism on patient

outcomes. The rationale is that such a gene signature might reflect

the degree of “immunometabolic” dysregulation in each tumor – for

example, the extent of M2 macrophage skewing or lipid-fueled

tumor aggressiveness – and thereby stratify patients by survival risk.

We constructed and validated an immune-lipid gene signature in

GBM cohorts, and explored its association with overall survival. We

further examined how the risk signature correlates with the tumor

immune microenvironment, particularly the polarization state of

TAMs (M1 vs M2), as well as with potential therapeutic

vulnerabilities such as sensitivity to drugs. Our objective was to

provide a more comprehensive prognostic tool that not only

predicts outcomes but also offers biological insights into

macrophage polarization and metabolic targets in GBM,

ultimately paving the way for improved therapeutic strategies.
2 Materials and methods

2.1 Data sources and sample acquisition

Gene expression profiles and clinical annotations of diffuse

gliomas were retrieved from The Cancer Genome Atlas (TCGA)

and the Chinese Glioma Genome Atlas (CGGA). A total of 1,528
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glioma samples, encompassing both lower-grade gliomas (WHO

grade II–III) and GBM (WHO grade IV), were included. Samples

with missing clinical data were excluded. The TCGA cohort (n =

655) was randomly divided into a training set (~60%) and an

internal validation set (~40%) using stratified sampling based on

tumor grade. The CGGA dataset (n = 873) served as an external

validation cohort.

Single-cell transcriptomic data were obtained from the GEO

dataset GSE84465, comprising 3,589 cells isolated from four

primary GBM specimens. These data were used to analyze TME

composition and cell-type–specific gene expression patterns.

A comprehensive list of 859 lipid metabolism–related genes was

compiled from the Molecular Signatures Database (MSigDB),

including Reactome, Hallmark, and KEGG lipid-related gene sets.

These genes were intersected with immune-related differentially

expressed genes (DEGs) to obtain a final set of 26 candidates used

for prognostic model construction.
2.2 Differential gene expression analysis

Based on immune score distribution, glioma samples were

classified into immune-infiltrated and non-infiltrated groups.

Differential expression analysis between these groups was

performed using the “limma” package in R. Genes with an absolute

log2 fold change > 1 and a false discovery rate (FDR) < 0.05 were

considered significantly differentially expressed.
2.3 Construction of the prognostic gene
signature

Univariate Cox proportional hazards regression was first

applied to the 26 immune- and lipid-related DEGs to screen for

genes significantly associated with overall survival (p < 0.05). These

candidate genes were then subjected to least absolute shrinkage and

selection operator (LASSO) Cox regression using the “glmnet” R

package to avoid overfitting. A prognostic signature comprising 10

genes was constructed based on the optimal penalty parameter (l).
Risk scores were calculated for each patient as a weighted sum of

normalized gene expression values multiplied by their respective

LASSO coefficients. Patients were stratified into high- and low-risk

groups using the median risk score as the cutoff. Figure 1 presents

the workflow of this study.
2.4 Evaluation and validation of the
prognostic model

Kaplan–Meier survival analysis and the log-rank test were used

to compare overall survival between the high- and low-risk groups.

Time-dependent receiver operating characteristic (ROC) curves

and corresponding area under the curve (AUC) values were

generated to evaluate the predictive accuracy of the model at 1-,

3-, and 5-year intervals. The performance of the risk model was
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external cohort. Univariate and multivariate Cox regression

analyses were conducted to assess whether the risk score was an

independent prognostic factor.
2.5 Functional enrichment analysis

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) enrichment analyses were performed on the

genes included in the prognostic signature using the

“clusterProfiler” package in R. GO terms and KEGG pathways

with an adjusted p-value < 0.05 (FDR corrected) were considered

significantly enriched. Biological processes related to immune

regulation, macrophage activation, and lipid metabolism were

particularly emphasized.
2.6 Single-cell RNA-sequencing analysis

Quality control, normalization, dimensionality reduction, and

clustering of the GSE84465 dataset were conducted using the Seurat

package (v4.0.4) in R (v4.2.2). Cells with fewer than 200 detected

genes, more than 2,500 detected genes, or >10% mitochondrial gene

content were excluded to remove low-quality cells. Gene expression

values were normalized using the “LogNormalize” method with a

scale factor of 10,000, and the top 2000 variable genes were

identified for downstream analyses.

Principal component analysis (PCA) was performed, and the

top 30 PCs were used to construct a shared nearest neighbor (SNN)

graph. Unsupervised clustering was conducted via the Louvain

algorithm, and clusters were visualized using both t-distributed

stochastic neighbor embedding (t-SNE) and Uniform Manifold

Approximation and Projection (UMAP).

Marker genes for each cluster were identified using the

“FindMarkers” function, and cluster annotation combined

manual curation based on canonical markers (e.g., CD3D and

CD3E for T cells, CD68 and CSF1R for macrophages, GFAP for

astrocytes) with reference-based validation using the CellMarker

database. To further confirm annotation accuracy, we cross-

referenced with previously published GBM single-cell atlases and

visualized marker expression patterns using violin and feature plots.

The expression of selected prognostic genes (e.g., ALOX5AP,

LGALS1, PLA2G5) was examined to determine cell-type specificity,

particularly within macrophage subpopulations. Differential

expression and pathway enrichment analyses were also conducted

to support biological interpretation.
2.7 Immune infiltration analysis

The CIBERSORT algorithm was applied to bulk RNA-

sequencing data from the TCGA cohort using the LM22 reference

signature to estimate the relative abundance of 22 immune cell

types. Only samples with a CIBERSORT p-value < 0.05 were
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included in downstream analyses. The proportions of M1- and M2-

like macrophages were compared between high- and low-risk

groups using the Wilcoxon rank-sum test. The M1/M2 ratio was

also calculated and its correlation with risk score was assessed using

Spearman’s rank correlation.
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2.8 Experimental validation

To validate the expression levels of selected risk genes, GBM

and non-tumor brain tissue samples were collected during

neurosurgical procedures (e.g., epilepsy or trauma surgery). All
FIGURE 1

Overview of study design and analysis workflow. Figure 1 shows the analytical workflow of this study. Glioma samples from the TCGA cohort
(n = 655) were classified into immune and non-immune groups based on immune scores. DEGs were identified, and 26 genes overlapping with 859
lipid metabolism–related genes from MSigDB were selected. Univariate and LASSO Cox regression analyses yielded a 10-gene prognostic signature,
which stratified patients into high- and low-risk groups. The model was validated in both the TCGA testing set and an external CGGA cohort. Further
analyses included survival and subgroup assessment, functional enrichment, single-cell transcriptomic profiling, experimental validation, and drug
sensitivity analysis.
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patients provided informed consent, and the study was approved by

the institutional ethics committee.

Quantitative reverse transcription polymerase chain reaction

(qRT-PCR): Total RNA was extracted using TRIzol reagent

(Invitrogen, USA) and quantified using a NanoDrop

spectrophotometer. Complementary DNA (cDNA) was

synthesized using a commercial reverse transcription kit

(manufacturer to be specified). Quantitative real-time polymerase

chain reaction (PCR) was performed on 15 pairs of GBM and

adjacent non-tumor brain tissue samples using an ABI 7500 system

using SYBR Green Master Mix. b-actin served as the internal

control. Reactions were run in triplicate, and gene expression

levels were calculated using the 2^–DDCt method. The primer

sequences employed for PCR amplification are detailed in the

Supplementary Material accompanying this study.

Western Blot: Total protein was extracted from tissue samples

using RIPA buffer supplemented with protease inhibitors. Equal

amounts of protein were separated by SDS-PAGE and transferred

to PVDF membranes (Millipore). Membranes were blocked and

incubated overnight at 4 °C with primary antibodies (e.g., anti-

Nmb, anti-NmbR; manufacturer and dilution to be specified),

followed by HRP-conjugated secondary antibodies. Protein bands

were visualized using enhanced chemiluminescence (ECL) and

quantified using ImageJ software. b-actin was used as a

loading control.

The reverse transcription kit (Name, Manufacturer, Catalog

number) and antibodies used for Western blot (target,

manufacturer, catalog number, dilution) are provided in

Supplementary Table 4 and 5.
2.9 Drug sensitivity analysis

Drug response data were obtained from the Genomics of Drug

Sensitivity in Cancer (GDSC) database. The “pRRophetic” package

was used to estimate the half-maximal inhibitory concentration

(IC50) values of chemotherapeutic and targeted agents based on

gene expression profiles. Pearson correlation was used to evaluate

the association between gene expression (e.g., LGALS1) and

predicted drug sensitivity. Differences in IC50 values between risk

groups were assessed using Student’s t-test.
2.10 Statistical analysis

All statistical analyses were performed using R software (v4.2.2).

The Wilcoxon rank-sum test was applied to compare numerical

variables between two groups, such as immune, stromal, and

ESTIMATE scores, as well as immune cell proportions. Pearson

or Spearman correlation analyses were applied based on data

distribution to evaluate associations between gene expression,

immune cell infiltration, drug sensitivity, and risk scores.

Survival analyses were conducted using the Kaplan–Meier

method and log-rank test. Univariate and multivariate Cox

proportional hazards regression models were used to identify
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independent prognostic factors. Time-dependent ROC curves

were constructed using the “survivalROC” package to assess the

predictive performance of the risk model.

The sample size of experimental validation was determined

based on clinical tissue availability and comparable studies in the

field, which is a common approach in glioblastoma research. To

further ensure robustness, we expanded the qRT-PCR validation

cohort to 15 pairs of GBM and non-tumor tissues in the revised

manuscript. Hazard ratios (HRs) with 95% confidence intervals

(CIs) were reported for survival analyses, and area under the ROC

curve (AUC) values were provided to quantify the predictive

performance of the model.

Enrichment analyses were adjusted using the Benjamini–

Hochberg method for multiple testing correction. All statistical

tests were two-sided, and p-values < 0.05 were considered

statistically significant.
3 Manuscript formatting

3.1 Patient sample classification and
baseline characteristics of datasets

To construct and validate the prognostic model, a total of 655

glioma samples from TCGA were included. These samples were

randomly divided into a training set (n = 378) and a testing set (n =

277) using a 3:2 ratio. Pathological classification was performed

according to the 2021 WHO criteria, in which tumors diagnosed as

grade IV gliomas were designated as GBM, while those with grade

II–III were categorized as non-GBM gliomas.

The clinical and demographic characteristics of patients in the

TCGA training and testing sets are summarized in Table 1. No

significant differences were observed between the two groups with

respect to age distribution, gender, or histological subtype,

confirming the comparability of the datasets for model training

and internal validation.

For external validation, an independent cohort of 655 glioma

patients from the CGGA was used. Pathological classification into

GBM and non-GBM groups followed the same criteria. The

baseline clinical characteristics of the CGGA cohort are presented

in Table 2.

This multi-cohort design allowed for robust evaluation of the

prognostic performance and generalizability of the model across

distinct populations.
3.2 Association between ESTIMATE scores
and clinicopathological features

A total of 655 cases from the TCGA glioma cohort were analyzed,

and for each sample the stromal, immune, and ESTIMATE scores

were calculated (ranges: –1735.34 to 1682.27, –1669.12 to 2679.67,

and –3381.83 to 3974.18, respectively). All three scores were

significantly correlated with tumor grade: WHO grade IV tumors

(GBM) exhibited higher immune, stromal, and ESTIMATE scores
frontiersin.org
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TABLE 1 Baseline demographic characteristic of glioma (TCGA).

Variables
Training set
(n=378)

Testing set
(n=277)

P
value

Age, n (%) 0.557

<45 177 (46.8%) 137 (49.5%)

≥45 201 (53.2%) 140 (50.5%)

Gender 0.901

Female 158 (41.8%) 118 (42.6%)

Male 220 (58.2%) 159 (57.4%)

Race 0.939

Asian 9 (2.38%) 5 (1.81%)

Black or African
American

19 (5.03%) 12 (4.33%)

White 344 (91.0%) 255 (92.1%)

Not reported 6 (1.59%) 5 (1.81%)

Grade 0.252

G2 144 (38.1%) 100 (36.1%)

G3 141 (37.3%) 120 (43.3%)

G4 93 (24.6%) 57 (20.6%)

Type 0.264

Non-GBM 285 (75.4%) 220 (79.4%)

GBM 93 (24.6%) 57 (20.6%)

Radiation therapy 0.476

NO 106 (28.0%) 81 (29.2%)

YES 238 (63.0%) 164 (59.2%)

Unknown 34 (8.99%) 32 (11.6%)

Neoadjuvant treatment 0.577

No 377 (99.7%) 275 (99.3%)

Yes 1 (0.26%) 2 (0.72%)

New tumor event after
initial treatment

0.3

NO 152 (40.2%) 118 (42.6%)

YES 68 (18.0%) 62 (22.4%)

Unknown 158 (41.8%) 97 (35.0%)

Sample type 0.732

Primary Tumor 367 (97.1%) 271 (97.8%)

Recurrent Tumor 11 (2.91%) 6 (2.17%)

Primary site 0.035

Brain, NOS 98 (25.9%) 60 (21.7%)

Frontal Lobe 154 (40.7%) 143 (51.6%)

Occipital Lobe 7 (1.85%) 1 (0.36%)

Parietal Lobe 32 (8.47%) 14 (5.05%)

(Continued)
F
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TABLE 1 Continued

Variables
Training set
(n=378)

Testing set
(n=277)

P
value

Posterior Fossa,
Cerebellum

1 (0.26%) 1 (0.36%)

Temporal Lobe 86 (22.8%) 58 (20.9%)

Laterality 0.492

Left 143 (37.8%) 104 (37.5%)

Midline 2 (0.53%) 3 (1.08%)

Right 140 (37.0%) 113 (40.8%)

Unknown 93 (24.6%) 57 (20.6%)

First presenting symptom -

Seizures 136 (36.0%) 109 (39.4%)

Headaches 54 (14.3%) 49 (17.7%)

Visual Changes 9 (2.38%) 2 (0.72%)

Sensory Changes 12 (3.17%) 5 (1.81%)

Mental Status Changes 20 (5.29%) 19 (6.86%)

Motor/Movement
Changes

23 (6.08%) 14 (5.05%)

Unknown 124 (32.8%) 79 (28.54%)

Seizure history 0.347

NO 94 (24.9%) 80 (28.9%)

YES 169 (44.7%) 129 (46.6%)

Unknown 115 (30.42%) 68 (24.57%)

Headache history 0.209

NO 163 (43.1%) 126 (45.5%)

YES 89 (23.5%) 78 (28.2%)

Unknown 126 (33.33%) 73 (26.38%)

Visual changes 0.379

NO 213 (56.3%) 174 (62.8%)

YES 37 (9.79%) 26 (9.39%)

Unknown 128 (33.86%) 77 (27.82%)

Sensory changes 0.092

NO 202 (53.4%) 175 (63.2%)

YES 44 (11.6%) 24 (8.66%)

Unknown 132 (34.9%) 78 (28.18%)

Mental status changes 0.464

NO 189 (50.0%) 149 (53.8%)

YES 62 (16.4%) 51 (18.4%)

Unknown 127 (33.59%) 77 (27.82%)
front
iersin.org

https://doi.org/10.3389/fonc.2025.1660754
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhang et al. 10.3389/fonc.2025.1660754
TABLE 2 Baseline demographic characteristic of glioma (CGGA).

Variables
GBM training
set (n=93)

GBM testing
set (n=57)

P value
Non-GBM training

set (n=301)
Non-GBM testing

set (n=204)
P value

Age, n (%) 1 0.779

<45 11 (11.83%) 6 (10.53%) 175 (58.14%) 122 (59.80%)

≥45 82 (88.17%) 51 (89.47%) 126 (41.86%) 82 (40.20%)

Gender, n (%) 0.858 0.743

Female 32 (34.41%) 18 (31.58%) 137 (45.51%) 89 (43.63%)

Male 61 (65.59%) 39 (68.42%) 164 (54.49%) 115 (56.37%)

Race, n (%) 0.848 0.052

Asian 3 (3.23%) 2 (3.51%) 3 (1.00%) 6 (2.94%)

Black or African American 5 (5.38%) 5 (8.77%) 15 (4.98%) 6 (2.94%)

White 84 (90.32%) 50 (87.72%) 274 (91.03%) 191 (93.63%)

Not reported 1 (1.08%) 0 (0.00%) 9 (2.99%) 1 (0.49%)

Grade, n (%) - 1

G2 0 (0.00%) 0 (0.00%) 145 (48.17%) 99 (48.53%)

G3 0 (0.00%) 0 (0.00%) 156 (51.83%) 105 (51.47%)

G4 93 (100.00%) 57 (100.00%) 0 (0.00%) 0 (0.00%)

Radiation therapy, n (%) 1 0.372

NO 13 (13.98%) 8 (14.04%) 94 (31.23%) 72 (35.29%)

YES 80 (86.02%) 49 (85.96%) 163 (54.15%) 110 (53.92%)

Unknown 0 (0.00%) 0 (0.00%) 44 (14.62%) 22 (10.78%)

Neoadjuvant treatment, n
(%)

- 1

No 93 (100.00%) 57 (100.00%) 299 (99.34%) 203 (99.51%)

Yes 0 (0.00%) 0 (0.00%) 2 (0.66%) 1 (0.49%)

New tumor event after initial
treatment, n (%)

- 0.854

NO 0 (0.00%) 0 (0.00%) 164 (54.49%) 106 (51.96%)

YES 0 (0.00%) 0 (0.00%) 76 (25.25%) 54 (26.47%)

Unknown 93 (100.00%) 57 (100.00%) 61 (20.27%) 44 (21.57%)

Sample type, n (%) 1 1

Primary Tumor 87 (93.55%) 54 (94.74%) 296 (98.34%) 201 (98.53%)

Recurrent Tumor 6 (6.45%) 3 (5.26%) 5 (1.66%) 3 (1.47%)

Primary site, n (%) - 0.96

Frontal Lobe 0 (0.00%) 0 (0.00%) 181 (60.13%) 116 (56.86%)

Occipital Lobe 0 (0.00%) 0 (0.00%) 5 (1.66%) 3 (1.47%)

Parietal Lobe 0 (0.00%) 0 (0.00%) 25 (8.31%) 21 (10.29%)

Posterior Fossa, Cerebellum 0 (0.00%) 0 (0.00%) 1 (0.33%) 1 (0.49%)

Temporal Lobe 0 (0.00%) 0 (0.00%) 84 (27.91%) 60 (29.41%)

Brain, NOS 93 (100.00%) 57 (100.00%) 5 (1.66%) 3 (1.47%)

Laterality, n (%) - 0.487

(Continued)
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than lower-grade (WHO II–III) tumors (Figures 2A–C, p, < 0.001).

Furthermore, patients with higher stromal, immune, or ESTIMATE

scores had significantly worse overall survival compared to those with

lower scores (Figures 2D–F).
Frontiers in Oncology 08
3.3 Identification of DEGs

Using the immune score to stratify cases, the cohort was divided

into an “immune” group (positive immune score) and a “non-
TABLE 2 Continued

Variables
GBM training
set (n=93)

GBM testing
set (n=57)

P value
Non-GBM training

set (n=301)
Non-GBM testing

set (n=204)
P value

Left 0 (0.00%) 0 (0.00%) 144 (47.84%) 103 (50.49%)

Midline 0 (0.00%) 0 (0.00%) 2 (0.66%) 3 (1.47%)

Right 0 (0.00%) 0 (0.00%) 155 (51.50%) 98 (48.04%)

Unknown 93 (100.00%) 57 (100.00%) 0 (0.00%) 0 (0.00%)

First presenting symptom, n
(%)

- 0.78

Seizures 0 (0.00%) 0 (0.00%) 145 (48.17%) 100 (49.02%)

Headaches 0 (0.00%) 0 (0.00%) 61 (20.27%) 42 (20.59%)

Visual Changes 0 (0.00%) 0 (0.00%) 5 (1.66%) 6 (2.94%)

Sensory Changes 0 (0.00%) 0 (0.00%) 9 (2.99%) 8 (3.92%)

Mental Status Changes 0 (0.00%) 0 (0.00%) 26 (8.64%) 13 (6.37%)

Motor/Movement Changes 0 (0.00%) 0 (0.00%) 25 (8.31%) 12 (5.88%)

Unknown 93 (100.00%) 57 (100.00%) 30 (9.97%) 23 (11.27%)

Seizure history, n (%) - 0.875

NO 0 (0.00%) 0 (0.00%) 101 (33.55%) 73 (35.78%)

YES 0 (0.00%) 0 (0.00%) 180 (59.80%) 118 (57.84%)

Unknown 93 (100.00%) 57 (100.00%) 20 (6.64%) 13 (6.37%)

Headache history, n (%) - 0.879

NO 0 (0.00%) 0 (0.00%) 174 (57.81%) 115 (56.37%)

YES 0 (0.00%) 0 (0.00%) 97 (32.23%) 70 (34.31%)

Unknown 93 (100.00%) 57 (100.00%) 30 (9.97%) 19 (9.31%)

Visual changes, n (%) - 0.765

NO 0 (0.00%) 0 (0.00%) 230 (76.41%) 157 (76.96%)

YES 0 (0.00%) 0 (0.00%) 36 (11.96%) 27 (13.24%)

Unknown 93 (100.00%) 57 (100.00%) 35 (11.63%) 20 (9.80%)

Sensory changes, n (%) - 0.483

NO 0 (0.00%) 0 (0.00%) 219 (72.76%) 158 (77.45%)

YES 0 (0.00%) 0 (0.00%) 43 (14.29%) 25 (12.25%)

Unknown 93 (100.00%) 57 (100.00%) 39 (12.96%) 21 (10.29%)

Mental status changes, n (%) - 0.54

NO 0 (0.00%) 0 (0.00%) 196 (65.12%) 142 (69.61%)

YES 0 (0.00%) 0 (0.00%) 70 (23.26%) 43 (21.08%)

Unknown 93 (100.00%) 57 (100.00%) 35 (11.63%) 19 (9.31%)
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immune” group (negative immune score). Differential expression

analysis between these groups identified a total of 686 DEGs,

comprising 243 down-regulated genes and 443 up-regulated genes

in the immune-infiltrated group (Figure 3A). These genes represent

the immune-related transcriptomic differences between immune-

high and immune-low gliomas. The overall distribution of the

DEGs is visualized in Figure 3A (volcano plot), highlighting the

magnitude of expression changes between the two groups.
3.4 Overlap with lipid metabolism-related
genes

To narrow down the candidates, we intersected the immune-

related DEGs with genes involved in lipid metabolism. A set of 859

lipid metabolism-related genes was compiled from the MSigDB v5.1

(including Reactome pathways for lipid and phospholipid

metabolism, the Hallmark fatty acid metabolism gene set, and

KEGG glycerophospholipid metabolism pathways). The overlap

between these 859 genes and the 686 immune-related DEGs

yielded 26 genes that are related to both immune response and

lipid metabolism. These 26 overlapping genes were taken forward as

candidate genes potentially involved in immune regulation and

lipid metabolic processes in glioma.
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3.5 Development and validation of the
prognostic model

We next constructed a prognostic model based on the

overlapping immune- and lipid metabolism-related genes. First,

univariate Cox regression in the training set identified 20 candidate

genes (out of the 26 overlap genes) significantly associated with

overall survival (p < 0.05). These were further narrowed down via

LASSO Cox regression, resulting in a signature of 10 key risk genes.

Using the expression of these ten genes, a risk score was calculated for

each patient, and the cohort was split into high-risk and low-risk

groups (typically using the median risk score as the cutoff). Kaplan–

Meier survival analysis revealed that patients in the high-risk group

had a markedly poorer prognosis than those in the low-risk group

(Figure 4A). Consistently, visualization of the risk score distribution,

survival time, and survival status demonstrated that lower risk scores

tended to be associated with longer survival durations (Figure 4B).

Time-dependent ROC analysis further showed that the prognostic

model achieved favorable accuracy, with appreciable 3-year and 5-

year AUC values for overall survival prediction (Figure 4C).

The prognostic value of this 10-gene risk signature was

validated in both internal and external datasets (Supplementary

Figure 1). In the TCGA internal testing set, the same trend was

observed: high-risk patients had significantly shorter survival
FIGURE 2

Relationship between immune, stromal, and ESTIMATE scores and prognosis in gliomas. (A–C) Distributions of stromal scores, immune scores, and
composite ESTIMATE scores across different glioma pathological grades (p < 0.001 for all grade comparisons). (D–F) Kaplan–Meier overall survival
curves for patients stratified into high-score vs. low-score groups (for Stromal, Immune, and ESTIMATE scores respectively), with p-values
determined by log-rank tests.
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compared to low-risk patients, mirroring the training set results

(Supplementary Figure 1A–C). Similarly, when applied to the

independent CGGA cohort, the risk score stratification

successfully distinguished outcomes, with the high-risk group

demonstrating worse overall survival than the low-risk group

(consistent with Figure 4A) (Supplementary Figure 1D–F). These

concordant results across different datasets confirm the robustness

and generalizability of the prognostic model.
3.6 Expression analysis and identification of
independent risk factors

We examined the expression patterns and clinical associations

of the ten risk signature genes in glioma patients. Notably, distinct

subsets of these genes were associated with opposite prognostic

implications. Six genes— PLA2G5, LGALS1, GOS2, FABP5, PLBD1,

and ALOX5AP — were identified as “risk genes,” meaning that
Frontiers in Oncology 10
higher expression levels of these genes correlated with poorer

patient outcomes. In contrast, the remaining four genes —

ETNPPL, ACSL6, TSPOAP1, and TBXAS1 — behaved as

“protective genes,” where elevated expression was associated with

improved survival (Figure 3C). Furthermore, three of the protective

genes (ETNPPL, ACSL6, and TSPOAP1) were found to be

significantly down-regulated in the tumors of WHO grade IV as

compared to lower grades, suggesting that loss of these genes’

expression may be linked to the development of more aggressive

gliomas (GBM).

Subsequently, univariate and multivariate Cox regression

analyses were performed to assess the impact of clinicopathologic

factors on the observed outcomes. The results identified age, grade,

first symptom, neoplastic event, and risk score as independent risk

factors (Figures 5A, B). Subsequent unfolding analyses for each

subgroup identified age ≥45 years, WHO grade II - III, and

headache as the first symptom with neoplastic event as

independent risk factors (Supplementary Figure 2). The results of
FIGURE 3

Differential gene expression and risk gene profiles between immune-infiltrated and non-infiltrated gliomas. (A) Volcano plot illustrating the
distribution of DEGs between the immune group and non-immune group, highlighting 243 down-regulated and 443 up-regulated genes in the
immune-infiltrated group. (B) Gene coefficients. (C) Heatmap presenting the expression levels of the ten identified immune- and lipid metabolism–

related risk genes across various glioma patient subgroups with different clinicopathological characteristics and outcomes. Significant expression
differences between subgroups are indicated: *p < 0.05; **p < 0.01; ***p < 0.001.
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the internal and independent validation (Supplementary

Figure 3A–D) further support the importance of age, grading,

new tumor events, and risk scores as independent risk factors,

particularly in high-risk populations.
3.7 Survival analysis in clinical subgroups

To further evaluate the performance of the risk model across

different clinical contexts, we conducted survival analyses within

various patient subgroups defined by the independent prognostic

factors. In each subgroup, high-risk patients had significantly

shorter overall survival than low-risk patients (Figures 5C–G; log-

rank p < 0.05 for all comparisons). This pattern was observed

among both younger patients (< 45 years) and older patients (≥ 45

years), in lower-grade gliomas (WHO II–III), in patients whose

initial presenting symptom was headache, and in patients with a

history of a new tumor event. These findings illustrate that the 10-

gene risk signature retains prognostic relevance across a broad

range of clinical subpopulations. It should be noted that the high-

risk group consisted predominantly of WHO grade IV (GBM) cases

– a subset of patients with uniformly poor outcomes. Consequently,

a separate survival analysis within the GBM-only subgroup was

deemed unnecessary, as nearly all GBM patients fell into the high-

risk category; further stratification of this uniformly high-risk

population would not be informative.
3.8 Functional enrichment analysis

To gain insight into the biological roles of the identified genes,

we performed gene set enrichment analysis (GSEA) focusing on GO

biological processes and relevant KEGG pathways (Figure 6A). This
Frontiers in Oncology 11
analysis revealed that the immune- and lipid metabolism-related

genes are involved in key pathways related to immune regulation

and macrophage function. In particular, pathways associated with

macrophage-derived foam cell differentiation and immune response

regulation were enriched in the high-risk group. Several of the 10

signature genes contributed to these enriched functions; for

example, the risk genes ALOX5AP, LGALS1, and PLA2G5 were

highly expressed in high-risk tumors and were implicated in the

GO terms identified. In addition, a few genes outside of the

signature, such as PLA2G2A and TNFAIP8L2, were also found

to play potential roles in these processes according to the

enrichment results.

More specifically, the positive regulation of foam cell

differentiation by PLA2G2A and PLA2G5 emerged as a notable

function, which may shed light on underlying pathological

mechanisms (analogous to processes in atherosclerosis) that could

be at play in glioma macrophages. Meanwhile, TNFAIP8L2 was

linked to the negative regulation of immune system processes and

the positive regulation of inflammatory responses. The involvement

of TNFAIP8L2 in these opposing regulatory functions highlights its

potential importance in modulating the tumor’s immune

microenvironment. Collectively, these enrichment findings

suggest that the immune- and lipid metabolism-related genes

identified in our study may influence glioma progression by

affecting immune response pathways and macrophage behavior

(e.g., polarization and foam cell formation), thereby contributing to

the tumor’s biology and patient outcomes.
3.9 Single-cell RNA sequencing analysis

To investigate the cellular context of our key genes in the TME,

we analyzed single-cell RNA sequencing (scRNA-seq) data from
FIGURE 4

Survival analysis of the ten-gene immune/lipid metabolism signature in the TCGA glioma cohort. (A) Kaplan–Meier overall survival curve comparing
patients in the high-risk vs. low-risk groups defined by the ten-gene risk score. (B) Distribution of risk scores (based on the ten-gene signature)
along with each patient’s survival status and time; patients with lower risk scores tend to have longer survival. (C) Time-dependent ROC curves
evaluating the prognostic performance of the risk model at 3 and 5 years, with the AUC values for 3-year and 5-year survival indicated. Log-rank
p-values are shown for the survival differences between risk groups.
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primary human GBM samples (GSE84465). Unsupervised

clustering of the scRNA-seq data using the Seurat package

identified multiple distinct cell clusters within the GBM

specimens (Figure 6B). By referencing known cell-type markers
Frontiers in Oncology 12
from the literature and the CellMarker database, we determined the

identity of each cluster and annotated the clusters accordingly

(Figures 6C, D). Notably, several clusters corresponded to tumor-

associated macrophages, representing different activation states of
FIGURE 5

Identification of independent prognostic factors and risk subgroup survival analyses in glioma patients. (A, B) Univariate and multivariate Cox
regression analyses of various clinicopathological variables (age, tumor grade, initial symptoms, new tumor events, and ten-gene risk score),
identifying age, WHO grade, first symptom, occurrence of a new tumor event, and the risk score as independent prognostic factors (HRs with 95%
CIs shown). (C–G) Kaplan–Meier overall survival curves for patient subgroups stratified by these independent factors, illustrating the prognostic
impact of the ten-gene risk signature within each subgroup. Panels show stratifications by: age ≥45 years vs. <45 years, WHO Grade II–III tumors,
headache vs. other initial symptoms, and presence vs. absence of a new tumor event. In all subgroups, high-risk patients have significantly shorter
overall survival than low-risk patients. (Log-rank test, p < 0.05 for all comparisons).
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FIGURE 6

GO functional enrichment of risk genes and single-cell RNA sequencing analysis in GBM. (A) Network plot of enriched GO biological processes
associated with the ten risk genes. Genes and GO terms are connected by lines indicating functional associations; line color and width reflect the
relative magnitude and direction of each gene’s contribution to a given biological process. (B) UMAP plot of cells from primary GBM (single-cell
RNA-seq dataset GSE84465), showing clustering of cells into distinct groups. (C) Dot plot of canonical cell-type marker gene expression across the
identified cell clusters, used to determine the cell identity of each cluster. (D) UMAP plot of the GBM cells with clusters annotated by cell type (e.g.,
malignant cells, and various immune cell subtypes including distinct macrophage populations). (E–G) Violin plots showing the expression of three
representative risk genes (ALOX5AP, LGALS1, and PLA2G5) across the annotated single-cell clusters; violin width represents the proportion of cells in
the cluster expressing the gene, and color intensity denotes the average expression level. Notably, ALOX5AP is expressed in all major macrophage
subclusters, LGALS1 is predominantly expressed in M2-like macrophages, and PLA2G5 shows low expression across all cell types.
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macrophages in the tumor. We next examined the expression of

three representative genes from our risk signature – ALOX5AP,

LGALS1, and PLA2G5 – across the single-cell clusters. ALOX5AP

was expressed in all of the major macrophage subpopulations,

indicating broad activity in tumor-infiltrating macrophages.

LGALS1 expression was enriched in the M2-like macrophage

clusters (an immunosuppressive phenotype), consistent with its

putative role in promoting tumor progression. In contrast, PLA2G5

showed uniformly low expression across all cell clusters, suggesting

that at baseline no particular cell type in the TME highly expresses

this gene (Figures 6E–G). These single-cell findings provide further

evidence that the identified key genes – especially LGALS1 and

ALOX5AP – play functionally relevant roles in the context of

macrophage polarization and function within the GBM TME.
3.10 Experimental validation of risk gene
expression

To validate the differential expression of key risk genes at the

tissue level, we performed qRT-PCR and Western blot experiments

using clinical samples. We examined GBM tumor tissues and non-

tumor brain tissues for the expression of selected risk genes. The

qRT-PCR results, based on 15 clinical GBM and paired non-tumor

brain tissue samples, showed that the mRNA levels of ALOX5AP,

LGALS1, and PLA2G5 were significantly higher in GBM tumor

tissues compared to non-tumor brain tissues (all p < 0.05)
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(Figure 7A). Consistently, Western blot analysis confirmed

markedly up-regulated protein expression of ALOX5AP and

LGALS1 in GBM tumors versus non-tumor tissues (Figures 7B,

C). Densitometric quantification revealed a significant increase in

ALOX5AP protein in GBM (p < 0.01) and in LGALS1 protein (p <

0.05) relative to normal brain samples. These findings corroborate

that the identified risk genes are indeed overexpressed in GBM,

supporting their proposed role in driving a high-risk phenotype.
3.11 Drug sensitivity analysis of LGALS1

Given the elevated expression of LGALS1 in M2-polarized

macrophages and its association with poorer prognosis, we

explored whether targeting LGALS1 could have therapeutic

implications. We screened 19 candidate compounds known to

interact with galectin-1 (the protein encoded by LGALS1), with an

emphasis on drugs that are either FDA-approved or in clinical trials

(Figure 8A). From this screen, nine drugs were selected for detailed

analysis of their sensitivity profiles in relation to LGALS1 expression.

Among these, LGALS1 expression levels showed a significant positive

correlation with tumor cell sensitivity to four agents – zoledronate,

staurosporine, JNJ-38877605, and pazopanib – indicating that higher

LGALS1 might render tumors more susceptible to these drugs.

Conversely, LGALS1 expression was significantly negatively

correlated with the sensitivity to two agents (a metabolite of

CUDC-305 and the PLK inhibitor volasertib), suggesting that
frontiersin.o
FIGURE 7

qRT-PCR and Western blot validation of risk gene expression in GBM vs. non-tumor brain tissues. (A) qRT-PCR measured the relative mRNA
expression levels of three selected risk genes (ALOX5AP, LGALS1, and PLA2G5) in GBM tumor tissue compared to non-tumor brain tissue (b-actin as
internal control; n = 15 per group). (B) Western blot detection of two representative risk gene products (ALOX5AP and LGALS1) in non-tumor (N) and
GBM tumor (T) tissue samples, with b-actin as a loading control. (C) Densitometric quantification of the Western blot bands showing significantly
elevated protein expression of ALOX5AP and LGALS1 in GBM tissues versus non-tumor tissues (*p < 0.05, **p < 0.01).
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LGALS1-high tumors are relatively resistant to those treatments

(Figure 8A). All of the above correlations were statistically

significant (p < 0.05). In contrast, for three other tested drugs

(SGX-523, LY-294002, and OSU-03012), no significant relationship

between LGALS1 expression and drug response was observed.

We further investigated drug sensitivities in the context of the

risk stratification by comparing responses between high-risk and

low-risk groups of patients (as defined by the 10-gene signature)

(Figure 8B). The high-risk group, which exhibits higher LGALS1

expression on average, showed trends consistent with the

correlation analysis: for example, high-risk patients tended to be

more responsive to zoledronate, staurosporine, JNJ-38877605, and

pazopanib, whereas they appeared less sensitive to the CUDC-305

by-product and volasertib, compared to low-risk patients. However,

these differences did not reach statistical significance in our cohort.

Overall, this drug sensitivity analysis points to LGALS1 as a

promising therapeutic target. The identified LGALS1-associated

compounds (such as zoledronate and pazopanib) may provide a

basis for tailored treatment strategies in GBM, particularly for

patients with tumors characterized by an immunosuppressive,

M2-macrophage-rich microenvironment. These findings

underscore the potential clinical utility of integrating our risk

gene signature with drug response data to inform personalized

therapy for GBM.
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4 Discussion

Our study identified a set of immune- and lipid metabolism-

related genes that are significantly associated with macrophage

polarization and prognosis in GBM patients. By performing

differential expression analysis, we uncovered 243 down-regulated

and 443 up-regulated genes between immune and non-immune

groups, with several of these genes playing a pivotal role in

macrophage function and polarization. Among the 26

overlapping genes between immune-related and lipid metabolism-

related genes, we identified 10 risk genes (PLA2G5, LGALS1, GOS2,

FABP5, PLBD1, ALOX5AP, ETNPPL, ACSL6, TSPOAP1, and

TBXAS1), which were associated with distinct prognostic outcomes.

The involvement of macrophages, particularly the polarization

between M1 and M2 phenotypes, has profound implications for

tumor progression (18, 19). M1 macrophages are typically

associated with anti-tumor activities, producing pro-inflammatory

cytokines like TNF-a and IL-12, and promoting tumor cell killing.

In contrast, M2 macrophages, which are abundant in the TME of

GBM, facilitate tumor growth by secreting anti-inflammatory

cytokines (e.g., IL-10 and TGF-b), promoting angiogenesis, and

remodeling the extracellular matrix (20–22). Our findings indicated

that several risk genes, such as LGALS1 and PLA2G5, were highly

expressed in M2 macrophages, underscoring their potential role in
FIGURE 8

Drug sensitivity analysis related to LGALS1 expression. (A) Correlations between LGALS1 gene expression and the sensitivity of GBM cells to nine
selected anticancer compounds (including FDA-approved drugs or those in clinical trials targeting the galectin-1 pathway). Higher LGALS1
expression is significantly associated with increased sensitivity to four agents (e.g., zoledronate, staurosporine, JNJ-38877605, pazopanib) and with
decreased sensitivity to two agents (a CUDC-305 metabolite and volasertib) (all correlation p < 0.05). (B) Comparison of drug sensitivity in the high-
risk vs. low-risk patient groups for the same set of compounds. High-risk (LGALS1-high) patients tended to be more responsive to zoledronate,
staurosporine, JNJ-38877605 and pazopanib, and less responsive to the CUDC-305 metabolite and volasertib, than low-risk patients, although
these differences did not reach statistical significance (*p < 0.05, **p < 0.01, “NS” denotes not significant).
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promoting the immunosuppressive microenvironment that

supports GBM progression. LGALS1, for example, has been

shown to promote M2 polarization and contribute to immune

evasion in GBM by inhibiting T-cell function and promoting

regulatory T-cell activity (23, 24). Similarly, ALOX5AP, involved

in leukotriene biosynthesis, has been linked to pro-tumorigenic

functions in M2 macrophages (25, 26).

Lipid metabolism also plays a crucial role in regulating

macrophage polarization and function in the TME. Lipid uptake,

storage, and metabolism are significantly altered in TAMs,

especially in M2-like macrophages, which utilize fatty acid

oxidation (FAO) to sustain their immunosuppressive activities

(27–29). Our study identified genes like FABP5 and ACSL6,

which are key players in lipid metabolism, as potential regulators

of macrophage polarization in GBM. FABP5, a fatty acid-binding

protein, has been implicated in the uptake and transport of fatty

acids, particularly in M2 macrophages, where it supports FAO and

oxidative phosphorylation (30). The upregulation of FABP5 in

high-risk GBM patients, as seen in our analysis, suggests that it

may facilitate the metabolic reprogramming of TAMs to sustain

tumor-promoting functions. Targeting these metabolic pathways

may represent a promising strategy to modulate macrophage

polarization and inhibit GBM progression.

In addition to macrophage polarization, our findings also shed

light on the broader prognostic implications of immune and lipid

metabolism-related genes in GBM. Survival analysis revealed that

patients with higher expression levels of risk genes, such as LGALS1

and PLA2G5, had significantly poorer outcomes, suggesting that

these genes could serve as biomarkers for GBM prognosis.

Furthermore, pathway enrichment analysis highlighted the

involvement of these genes in immune regulation, inflammation,

and lipid metabolism, reinforcing their role in shaping the TME and

influencing tumor progression. The GO and KEGG pathway

enrichment analysis revealed critical biological processes,

including macrophage differentiation, lipid biosynthesis, and

inflammatory responses, which are known to contribute to cancer

progression (31, 32).

The therapeutic implications of our findings are significant.

Given the crucial role of M2-like macrophages in supporting GBM,

strategies aimed at reprogramming macrophages from the M2 to

M1 phenotype have garnered increasing interest as potential

therapeutic approaches (33, 34). Moreover, targeting lipid

metabolism in TAMs represents another promising avenue for

disrupting the tumor-promoting functions of these immune cells

(35, 36). Drugs that inhibit fatty acid oxidation or interfere with

lipid signaling pathways, such as inhibitors of ALOX5AP or FABP5,

could serve as potential therapies for GBM by impairing the

metabolic fitness of TAMs and reactivating anti-tumor immunity

(37). Additionally, the identification of LGALS1 as a potential

therapeutic target opens up new possibilities for pharmacological

intervention. Our drug sensitivity analysis revealed that LGALS1

expression was correlated with sensitivity to several FDA-approved

drugs, including zoledronate and staurosporine, highlighting the

potential for repurposing existing drugs to target this immune

regulatory protein in GBM.
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This study has several limitations that should be acknowledged.

First, we did not perform in vivo animal experiments to validate the

therapeutic potential of the identified immune- and lipid

metabolism–related genes. Such experiments will be important in

the future to clarify their roles in macrophage polarization and

tumor progression. Second, functional mechanistic studies such as

gene knockdown, overexpression, flow cytometry, or cytokine

profiling were not included; therefore, our conclusions remain

correlative rather than causative. Future work incorporating these

approaches will be valuable to provide direct causal evidence. Third,

the number of clinical samples used for experimental validation was

relatively limited, which may restrict the generalizability of the

findings. Fourth, the single-cell RNA-seq analysis was based on four

GBM specimens, which might not fully capture the extensive

heterogeneity of the tumor microenvironment. Larger single-cell

datasets could help to address this limitation in subsequent studies.

Finally, the study relied heavily on public datasets (TCGA, CGGA,

GEO), where sample collection and processing were beyond our

control, potentially introducing bias. These limitations highlight the

importance of further validation and the need for future studies to

extend our findings.

Beyond glioblastoma, emerging evidence suggests that

immune–metabolic interactions may also play important roles in

other cancers. For example, in breast cancer and melanoma, lipid

metabolic pathways have been shown to influence macrophage

polarization and impact patient prognosis. This indicates that the

immune–lipid axis identified in GBM may represent a broader

mechanism relevant across multiple tumor types. Future studies

comparing the prognostic and functional roles of these genes across

different cancers will help to clarify their generalizability and

potential as therapeutic targets.

Taken together, our findings highlight the critical role of

immune- and lipid metabolism–related genes in shaping the

glioblastoma microenvironment. These genes may substantially

influence patient outcomes. By integrating bulk and single-cell

transcriptomic analyses with experimental validation, we

established a prognostic gene signature and provided preliminary

evidence for its potential therapeutic relevance. Importantly, these

results suggest that targeting immunometabolic pathways may offer

new strategies for modulating macrophage polarization and

improving GBM treatment. Looking forward, further mechanistic

studies, in vivo validation, and larger independent cohorts will be

essential to confirm the causal roles of these genes and to explore

their translational potential. Ultimately, translating these insights

into clinically actionable biomarkers and therapeutic strategies

could contribute to more personalized and effective care for

patients with glioblastoma.
5 Conclusions

This study highlights the prognostic significance of immune-

and lipid metabolism-related genes in GBM, particularly in relation

to macrophage polarization and tumor progression. The

identification of key risk genes, such as LGALS1 and PLA2G5,
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suggests novel therapeutic targets within immune modulation and

lipid metabolism pathways. These findings provide a foundation for

future research aimed at developing macrophage-targeted therapies

and improving clinical outcomes for GBM patients.
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