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Objective: To explore the use of digital breast tomography (DBT) imaging omics

in developing breast cancer (BC) diagnostic models to identify molecular subtype

characteristics of BC.

Methods: A retrospective analysis was conducted on 433 DBT images. Candidate

features were extracted, and least absolute shrinkage and selection operator

(LASSO) regression model was established. Within the training set, machine

learning (ML) models were constructed, and their predictive performance was

evaluated using receiver operating characteristic (ROC) curves and confusion

matrixes in the test set, thereby screening the best predictive classifier. Univariate

and multivariate Cox regression analyses were conducted to obtain key

characteristics of nomogram modeling, correction and decision curve analysis

(DCA) were used to evaluate the clinical potential of this model.

Results: The LASSO selected 14 features. Random Forest (RF) had the highest

AUC value, the highest accuracy, sensitivity, recall rate and F1 score on the

training set and test set, and was the best classifier. A nomogram model was

established. The odds ratio (OR) of BC patients increased with the increase of the

total score.

Conclusion: The key features of BC were revealed by image omics and ML

models, and a nomogram model with diagnostic value was constructed.
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1 Introduction

Breast cancer (BC) is the most common cancer diagnosed in

women, and the second leading cause of all cancer-related deaths

(1). Early diagnosis of BC, as well as predicting prognosis and

treatment response, is a primary focus of clinical research. Based on

specific receptor expression levels, BC subtypes include luminal,

human epidermal growth factor receptor 2 (HER2)-enriched, and

triple-negative (TN) (2, 3). TN BC is notably more aggressive and

untreatable with endocrine therapy or trastuzumab, while its

distinct MRI patterns can be quantified via radiomics for precise

subtype diagnosis (2, 4–6).

Unlike genomic/transcriptomic profiling, which often analyzes

limited tumor samples, radiomics assesses whole-tumor heterogeneity

(7–9). While mammography, ultrasonography, and MRI findings

correlate with molecular subtypes (10–12), recent efforts focus on

predicting them radiomically, which extracts high-dimensional,

quantitative features from images, capturing both tissue

characteristics and gene expression profiles (13). Digital breast

tomography (DBT) has become the breast imaging standard: adding

DBT to digital mammography increases cancer detection rates versus

mammography alone (14, 15). Although MRI excels in tissue

characterization, its routine use remains limited (16, 17). Thus, non-

invasive subtype prediction using widely available DBT has significant

clinical value—it avoids invasive biopsies that cause patient

discomfort, reduces the risk of complications from invasive

procedures, and enables early, precise subtype-guided treatment.

Despite DBT’s role in BC diagnosis, challenges like increased

reading workload and inconsistent mass segmentation (due to

numerous image slices) limit radiomic application (18). Synthetic

mammography offers a solution for integrating radiomics into

clinical practice. However, prior radiomic studies focused on MRI

(costly/non-routine) or conventional mammography, with scarce

research on DBT-radiomics for subtype prediction, and radiomics-

ML integration remains underdeveloped.

Some studies have explored the use of radiomic methods for

analyzing molecular subtypes in DBT-derived synthetic

mammography. In the study by Xiong et al., which focused on

patients with invasive BC, radiomic features proved effective in

predicting disease-free survival (DFS) and outperformed

clinicopathological nomograms (19). Some investigations have

shown that radiomic features derived from magnetic resonance

imaging (MRI) correlate with the molecular subtypes of BC (20–

22). While MRI combined with radiomics has greatly contributed to

personalized BC treatment, there is currently a lack of research on

using DBT imaging radiomics to predict the molecular subtypes of

BC. However, the research on imaging omics and machine learning

to build diagnostic models to predict diseases in BC is not deep

enough, and it is worth further exploration.
Abbreviations: BI-RADS, Breast Imaging Reporting and Data System; BC, Breast

Cancer; DM, Digital mammography; DBT, digital breast tomosynthesis; PR,

progesterone receptor; ER, estrogen receptor; HER2, human epidermal growth

factor receptor 2.
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In our study, a variety of machine learning algorithms were

applied to establish a combined model of DBT imaging omics and

immunohistochemistry (IHC) data, and 5 high-risk characteristics

of BC were screened, which provided more valuable information to

the clinic and were conducive to personalized clinical treatment.
2 Materials and methods

2.1 Patients

This retrospective study, approved by our Institutional Review

Board (IRB) with waived written consent, identified 433 consecutive

female patients who were diagnosed with invasive BC and had

available preoperative mammography at our institution between

February 2019 and June 2023. This study has been approved by the

Ethics Committee of S&T Program of Hebei (20377783D), Medical

Science Research Project of Hebei (20221342), and Medical Science

Research Project of Hebei (20230863)). All patients included in the

study met the following inclusion criteria: (1) underwent DBT

examination within one month prior to surgery; (2) were

pathologically diagnosed with invasive breast carcinoma; (3) had

no documented history of any other malignancy; and (4) did not

undergo a biopsy or receive treatment for the breast tumor before

the DBT examination. Patients were excluded from the study if they

met any of the following exclusion criteria: (1) insufficient

clinicopathological data or suboptimal image quality; (2)

pathological diagnosis of non-invasive breast carcinoma, or

concurrent presence of other malignancies; (3) multiple BC

lesions or distant metastases; (4) tumors on DBT images that did

not appear as masses but presented in other forms, such as pure

calcification, asymmetry, or architectural distortion. The 433 cases

included 111 patients with subtype A BC, 100 patients with subtype

B BC, 107 patients with HER2-positive BC, and 112 patients with

basal-like BC. These cases were used to screen for regions of interest

(ROI) and extract image-omics features (Figure 1A).
2.2 DBT examination

In this study, the patients were scanned using GE Senographe

Essential digital mammography (GE Healthineers) fullfield digital

mammography systems. The typical imaging parameters were

established within the ranges of 27–32 kV and 28–68 mAs.

Additionally, both craniocaudal and mediolateral oblique images

were successfully obtained for every patient. This imaging

technique facilitated the acquisition of both a standard digital

mammogram and a tomosynthesis scan under the same breast

compression (23, 24). With a single low-dose exposure, the X-ray

tube was rotated through an angular range of 12.5 degrees,

completing a total of nine rotations. Advanced computerized

imaging algorithms were then employed to reconstruct

projections from each viewing angle, enabling three-dimensional

visualization of breast tissue.
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2.3 Image information

Two experienced radiologists, each with more than 5 years of

professional expertise, performed an impartial evaluation of DBT

images, which were anonymized. The three-dimensional ROI that

encompassed the tumor on synthetic mammography was manually

segmented (as shown in Figures 2, 3) by a resident radiologist with five

years of experience (referred to as reader 1) using the “3D Slicer”

software (https://www.slicer.org/). Subsequently, the delineated ROIs

were meticulously examined and verified by a breast radiologist

who possessed a decade of subspecialty experience (referred to as

reader 2). In cases where there were discrepancies regarding the

ROI, they were resolved through consensus-based discussions. This

assessment was conducted in a blinded manner, meaning that the

radiologists were not provided access to the associated

histopathological information to ensure an unbiased judgment. In

instances where discrepancies arose between the two radiologists, a

third radiologist with more than 10 years of experience was

consulted to resolve the discrepancies.
2.4 Pathological and IHC analysis

Surgical resection of BC specimens was performed, followed by

validation of diagnoses through histopathological examination. IHC

analyses were conducted to assess the expression levels of estrogen
Frontiers in Oncology 03
receptor (ER), progesterone receptor (PR), human epidermal growth

factor receptor 2 (HER-2), and the Ki-67 antigen (25, 26). The absence

of positive staining in 1% or fewer carcinoma nuclei indicated a

negative status for both ER and PR, as per references (26, 27).

According to the IHC scoring system, HER-2 expression was

categorized into four levels: 0, 1+, 2+, or 3 +. Confirmation of a

negative HER-2 status can be achieved through two methods:

obtaining an IHC score of either 0 or 1+, or achieving an IHC score

of 2+ alongside a negative result from fluorescence in situ hybridization

(FISH) testing. Conversely, a positive HER-2 status can be confirmed

with either a score of 3+ or a score of 2+ combined with a positive FISH

test result (27, 28). Furthermore, if a patient presented with an IHC

score of 2+ but lacked FISH results, the recorded status for HER-2 was

classified as suspicious positive. A Ki-67 proliferation index below 14%

was categorized as a low level of proliferation, while a value equal to or

exceeding 14% was regarded as a high level of proliferation (28). The

IHC antibodies used in this study were as follows: ER (Roche, Clone

Number SP1), PR (Roche, Clone number IE2), HER2 (Roche, Clone

number 4B5), and KI-67 (Maxin, Clone number MX006).
2.5 Lesion segmentation and feature
extraction

The ROI on the cranio-caudal (CC) and mediolateral oblique

(MLO) views of DBT images was manually delineated, following the
FIGURE 1

The flowchart of the study. This flowchart outlines the key steps of the study. (A) Patient selection process. (B) Workflow for constructing and
validating the radiomics nomogram.
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contours of the tumor’s maximum diameter area. The lesion

segmentation task was conducted by two radiologists, referred to as

Radiologist 1 and Radiologist 2, who possessed 10 and 7 years of

experience in BC diagnosis, respectively. They employed 3D Slicer

(version 4.11; available at http://www.slicer.org) to outline all ROIs

while remaining unaware of the histopathological data during this

process. Figure 1B presents a diagrammatic representation

illustrating the segmentation of the ROI. Prior to commencing

feature extraction, the images underwent resampling and grayscale

discretization for normalization purposes, adhering to

recommendations established in prior research studies (28, 29).
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Radiomic features were extracted from both CC and MLO images

encompassing each patient’s ROI.
2.6 Selecting of radiomics features and
establishment of the radscore model

Radiomic feature extraction was performed using Python

(version 3.7) of the PyRadiomics package (version 3.0.1, http://

pyradiomics.readthedocs.io), according to the original, wavelet,

gauss Laplace (LoG), index, square, square root, logarithm and
FIGURE 2

Tumor segmentation example 1. Example of tumor segmentation on synthetic mammography. The synthetic mediolateral oblique (A) and
craniocaudal (B) views of a 69-year-old female diagnosed with the luminal A subtype of breast cancer. The breast lesion appears as a circumscribed
and round mass with high density (arrow).
FIGURE 3

Tumor segmentation example 2. Example of tumor segmentation on synthetic mammography. The synthetic mediolateral oblique (A) and
craniocaudal (B) views of a 79-year-old female diagnosed with the triple-negative subtype of breast cancer. The breast lesion appears as a
spiculated mass (arrow).
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gradient image retrieval. These image omics features were

statistically processed by Z-score and Kruskal-Wallis rank sum

test to screen out candidate features (p < 0.05).

For the sake of screening features for predicting BC, the dataset

was randomly split into training and validation subsets at a 7:3 ratio.

The radiomics features were normalized via Z-score standardization

(28). To precisely identify the most effective set of predictive

features, the study utilized least absolute shrinkage and selection

operator (LASSO) regression, implementing five-fold cross-

validation. The One-vs-Rest (OvR) strategy was utilized for

predicting the sample subtypes via building a binary classifier.

Based on the training set, the LASSO regression model was then

constructed by the R package ‘glmnet’ (Ver. 4.1-6) to select LASSO

features with the parameters of ‘famil ’= ‘binomial ’ and

‘type.measure’=‘class’. The results of multivariate classification

were determined by taking the category with the highest

probability (HER2-positive) through 10-fold cross-validation. And

the LASSO features were ascertained when the error rate of model

was lowest. Moreover, the receiver operating characteristic (ROC)

curves were plotted in training and testing set to evaluate the

performance of the model in predicting the subtypes of BC (area

under of ROC curves (AUCs) > 0.70).

In order to assess the correlations between LASSO features and

BC subtypes, Dunn’s test was exploited to determine whether there

were significant discrepancies in LASSO features between luminal

A-subtype, luminal B-subtype, HER2-positive BC and basal-like

BC. The violin plots were created via the R package ‘ggstatsplot’

(Ver. 0.12.0) to exhibit the outcomes.
2.7 Selecting of the optimal classifier and
nomogram modeling

To screen the optimal classifier for further predicting BC

subtypes using image-omics LASSO features, 8 machine learning

(ML) models in the R package ‘caret’ (Ver. 6.0-94) were

constructed. In the training set, Regularized Logistic Regression

(regLogistic), support vector machine (SVM), Random Forest (RF),

k-nearest neighbors (KNN), eXtreme Gradient Boosting (xgboost),

Gradient Boosting Machine (GBM), Naive Bayes and Neural

Network (NNET) models were constructed to predict the

categories of samples, and the diagnostic efficacy of each model

was calculated separately with the 5-fold cross-validation. The

predictive performances of the 8 models were evaluated with

ROC curve and confusion matrix in training and testing sets, and

AUCs of 8 models in the training and testing sets were compared.

Simultaneously, accuracy, sensitivity, specificity, recall, precision

and F1 score of each model were estimated to filter the classifier

with the best performance. Eventually, the optimal classifier was

used to rank the importance of each LASSO feature. Ulteriorly,

univariate (p < 0.05) and multivariate Cox regression analyses (p <

0.05) were proceeded through the R package ‘rms’ (Ver. 6.5-0) to

acquire crucial features for nomogram modeling. The relationships

between crucial features and BC were predicted in the light of the

odds ratio (OR) of the patients in the nomogram model.
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Additionally, calibration curve and Decision Curve Analysis

(DCA) were adopted to evaluate the predictive power of

nomogram model.
2.8 Statistical analysis

Bioinformatics analyses were conducted using R software

(Version 6.0-94). Significant differences among three or more

groups were assessed by the Kruskal-Wallis rank sum test,

followed by Dunn’s test for pairwise comparisons between

multiple groups. A p-value or adjusted p-value (p.adj) of less than

0.05 was considered statistically significant.
3 Results

3.1 A sum of 14 LASSO features were
obtained

A total of 7 types of features, encompassing 306 first-order

features, 14 shape features, and 1,241 texture features (glcm, gldm,

glrlm, glszm and ngtdm) emerged from the original, wavelet, LoG,

exponential, square, squareRoot, logarithm, gradient images

(Table 1, Figure 4A). In sum of 1,175 candidate features were

obtained after Z-score standardization and Kruskal-Wallis rank

sum test for 7 types (Figure 4B). In order to screen features that

were strongly associated with BC, a LASSO regression model was

built in the training set, producing 14 LASSO features when the

minimum Lambda value was 0.0481 (Figures 4C, D). The AUCs of

the training and testing sets were 0.723 and 0.727, respectively

(Figures 4E, F). The correlation analysis between LASSO features

and BC subtypes revealed significant differences among the 14

LASSO features across different subtype comparisons. Specifically,

between luminal B and HER2-positive subtypes, the following nine

features showed significant differences: gradient glszm

SmallAreaLowGrayLevelEmphasis, log sigma 1–0 mm 3D glcm

Idmn, logarithm ngtdm Busyness, squareroot glcm Imc1, wavelet

HHH firstorder RobustMeanAbsoluteDeviat, wavelet LHH ngtdm

Busyness, wavelet LLH firstorder Entropy, wavelet LLL glcm Idm
TABLE 1 The number of features extracted.

Feature type Number

first-order 306

glcm 374

gldm 238

glrlm 272

glszm 272

ngtdm 85

shape 14
The number of features extracted by LASSO model.
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and wavelet LLL glszm SizeZoneNonUniformityNormalized.

Additionally, between luminal A and luminal B subtypes,

eight features exhibited significant differences: gradient

glszm SmallAreaLowGrayLevelEmphasis, squareroot glcm Imc1,
Frontiers in Oncology 06
wavelet LHH firstorder Entropy, wavelet LHH ngtdm Busyness,

wavelet LLH firstorder Entropy, wavelet LLH firstorder

InterquartileRangewavelet LLL glcm Idm and wavelet LLL glszm

SizeZoneNonUniformityNormalized (Figure 5).
FIGURE 4

(A) The proportion of extracted features; (B) P-value distribution of statistical tests of imaging omics features; (C, D) Feature screening by LASSO
logistic regression; (E, F) Model ROC curves for validation and test sets. (A) The percentage of each feature extracted by LASSO model; (B) Kruskal-
Wallis rank sum test was performed on all image omics features, and only the image omics features with a p value less than 0.05 were retained;
(C) Characteristic coefficient variations with penalty coefficient; (D) Cross-verify error plots. Figure (left): The horizontal coordinate is Lambda, and
the vertical coordinate represents the error of cross-validation. In the actual analysis, we expect the position with the smallest mean square error
of cross-validation, and the left dotted line is the position with the smallest cross-validation error. According to the position lambda.min, the
corresponding horizontal coordinate lambda is determined and the optimal Lambda value is found. The minimum Lambda value of 0.0481 produces
14 noose features. The size of the mean square error of the model is shown in the figure on the right; (E) Verify the model ROC curve of the set;
(F) Test the model ROC curve of the set. The model ROC curve AUC of the verification set and the test set is greater than 0.7.
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3.2 RF model was the optimal classifier

In sum of 8 ML models were constructed in the training set to

select the best classifier to accurately predict the BC subtypes. Among 8

ML models, RF possessed the highest AUC value and accuracy in

training set (Figures 6A, B), As presented in training and testing sets,

the RF model retained the highest AUC values for the four BC

subtypes, as did the Macro average AUC and Micro average AUC

values, demonstrating the excellent predictive capacity of RF

(Figure 6C). In addition, the abilities of 8 ML models were assessed
Frontiers in Oncology 07
using confusion matrix, highlighting RF had the highest accuracy,

sensitivity, recall and F1 score in 8 ML models (Table 2, Figure 6D).

The line graph illustrating the AUC discrepancies of 8 ML models

between training and testing sets emphasized the highest AUCs of RF

in both sets (Figure 6E). In conclusion, RF was the optimal classifier

predicting image-omics LASSO features of BC. As a consequence,14

LASSO features were sorted by Random Forest model according to

their importance. Among these, logarithm ngtdm Busyness and

original shape Surface Volume Ratio contributed the most to the

model due to their higher importance values (Figure 6F).
FIGURE 5

Violin diagram of strong correlation between different types of breast cancer (BC). The R package ggstatsplot (version 0.12.0) was used to plot the
strong correlation features between different BC subtypes, evaluate the correlation between the strong correlation features and BC subtypes, and
show the most common post-hoc test after the important Kruskal-Wallis test - Dunn test. P<0.05 indicates that there are significant differences in
the strong correlation characteristics between different clinical groups.
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FIGURE 6

(A, B) ROC curves and confusion matrices for 8 machine algorithms; (C) The test set verifies the ROC curve for each model separately; (D) The test set
verifies each model confusion matrix separately; (E) Test set and verification set accuracy line chart curve; (F) Feature importance ranking of Random
Forest. (A, B) Random Forest has the highest ROC Area under Curve (AUC) value; (C) ROC is a one-to-many (OvR) multi-class strategy, also known as
one-to-many, which involves calculating each class. At each step, the given class is treated as a positive class, and the remaining classes are treated as a
negative class of the whole. ‘macro’: calculates the metrics for each label and finds their unweighted average. This does not take into account label
imbalance. ‘micro’: calculates the global indicator by counting total true positives, false negatives, and false positives; (D) Confusion matrix is a situation
analysis table that summarizes the prediction results of classification model in machine learning, and summarizes the records in the data set in the
form of matrix according to the real category and the category judgment predicted by the classification model; (E) AUC for different test sets and
validation sets; (F) The importance of features of Random Forest model corresponds to the scores displayed by corresponding color cards.
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3.3 Using the nomogram model to predict
BC

To identify BC features for nomogram modeling, univariate Cox

regression analysis was performed, followed by multivariate Cox

analysis. Ten LASSO-selected features (p < 0.05) from the univariate

analysis were subsequently incorporated into the multivariate model

(Table 3, Figure 7A), yielding 5 crucial features, namely logarithm
Frontiers in Oncology 09
glrlm RunLengthNonUniformityNormalized, logarithm ngtdm

Busyness, original sape SurfaceVolumeRatio, wavelet LLH firstorder

InterquartileRange and wavelet LLL glcm Idm (Table 4, Figure 7B). A

nomogram model embracing 5 crucial features was developed

immediately; the OR values of BC patients increased with the

elevated total points (Figure 7C). Importantly, the validity and

universality of the nomogram model were certified via calibration

curve and DCA curve. The calibration curve manifested that the slope
TABLE 2 Model energy efficiency index.

Model Class Sensitivity Specificity Pos Pred Value Neg Pred Value Precision Recall F1

knn Class: Luminal_A 0.595 0.964 0.806 0.904 0.806 0.595 0.685

knn Class: Luminal_B 0.956 0.790 0.775 0.959 0.775 0.956 0.856

knn Class: HER_2 0.707 0.964 0.829 0.931 0.829 0.707 0.763

knn Class: Basal_like 0.639 0.948 0.719 0.927 0.719 0.639 0.676

svmLinear Class: Luminal_A 0.310 0.946 0.591 0.845 0.591 0.310 0.406

svmLinear Class: Luminal_B 0.778 0.580 0.583 0.775 0.583 0.778 0.667

svmLinear Class: HER_2 0.220 0.893 0.333 0.824 0.333 0.220 0.265

svmLinear Class: Basal_like 0.389 0.850 0.350 0.870 0.350 0.389 0.368

rf Class: Luminal_A 0.619 0.970 0.839 0.910 0.839 0.619 0.712

rf Class: Luminal_B 0.933 0.731 0.724 0.935 0.724 0.933 0.816

rf Class: HER_2 0.585 0.982 0.889 0.907 0.889 0.585 0.706

rf Class: Basal_like 0.667 0.936 0.686 0.931 0.686 0.667 0.676

nnet Class: Luminal_A 0.357 0.946 0.625 0.854 0.625 0.357 0.455

nnet Class: Luminal_B 0.756 0.655 0.624 0.780 0.624 0.756 0.683

nnet Class: HER_2 0.439 0.857 0.429 0.862 0.429 0.439 0.434

nnet Class: Basal_like 0.528 0.913 0.559 0.903 0.559 0.528 0.543

lasso Class: Luminal_A 0.310 0.964 0.684 0.847 0.684 0.310 0.426

lasso Class: Luminal_B 0.856 0.462 0.546 0.809 0.546 0.856 0.667

lasso Class: HER_2 0.293 0.958 0.632 0.847 0.632 0.293 0.400

lasso Class: Basal_like 0.333 0.896 0.400 0.866 0.400 0.333 0.364

xgboost Class: Luminal_A 0.643 0.952 0.771 0.914 0.771 0.643 0.701

xgboost Class: Luminal_B 0.889 0.790 0.762 0.904 0.762 0.889 0.821

xgboost Class: HER_2 0.585 0.958 0.774 0.904 0.774 0.585 0.667

xgboost Class: Basal_like 0.778 0.942 0.737 0.953 0.737 0.778 0.757

naive_bayes Class: Luminal_A 0.286 0.892 0.400 0.832 0.400 0.286 0.333

naive_bayes Class: Luminal_B 0.678 0.597 0.560 0.710 0.560 0.678 0.613

naive_bayes Class: HER_2 0.317 0.821 0.302 0.831 0.302 0.317 0.310

naive_bayes Class: Basal_like 0.306 0.908 0.407 0.863 0.407 0.306 0.349

regLogistic Class: Luminal_A 0.310 0.958 0.650 0.847 0.650 0.310 0.419

regLogistic Class: Luminal_B 0.867 0.387 0.517 0.793 0.517 0.867 0.647

regLogistic Class: HER_2 0.195 0.964 0.571 0.831 0.571 0.195 0.291

regLogistic Class: Basal_like 0.278 0.919 0.417 0.859 0.417 0.278 0.333
fron
The test set accuracy, sensitivity, recall and F1 of Random Forest(RF) are greater than those of other models.
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of the nomogrammodel almost achieved to 1. In addition, the c-index

of 0.732 after model correction was close to the c-index of 0.759

(Figure 7D). Further DCA demonstrated that the nomogram model

outweighed any single crucial feature by providing a superior net

benefit (Figure 7E).
4 Discussion

BC has the highest incidence rate among all female cancers

globally. The use of imaging genomics and machine learning to

construct novel cancer diagnostic models has been widely applied,

but there has been no complete report on its application in BC. In

our study, we developed a model with improved predictive

performance based on the specific molecular subtypes of BC to

meet the individualized treatment needs. We confirmed that

radiomics characteristics derived from DBT can predict the

manifestations of different molecular types of BC, thus providing

more value and information for patient personalized treatment. In

this study, we integrated imagomics with machine learning to

uncover five novel key features of BC. Based on these findings, we

constructed a nomogram model capable of predicting the risk level

in BC patients with acceptable accuracy. Furthermore, we devised a

combined radiomic model that integrates the radiomic features

derived from DBT with IHC results for personalized risk prediction.

This approach fully underscores the necessity and clinical

significance of establishing a robust BC risk prediction model.

Compared with clinical radiological nomogram, combined

radiomic nomogram has superior prognostic performance in

patients with different molecular types of BC.

Recent studies have revealed that the application of radiomics

holds promising potential in enhancing tumor prognosis. Notably,
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research has demonstrated that radiomics-based nomograms can

effectively predict the efficacy of neoadjuvant chemotherapy in BC

patients, utilizing pre-treatment magnetic resonance imaging as a

foundation (30, 31). In addition, radiomics signature (Rad-score)

was used to predict DFS in HER-2 positive invasive BC receiving

neoadjuvant chemotherapy, which may be used to personalize

treatment strategies (32). Exploration of tumor heterogeneity by

radiomics can be an alternative to genomic and transcriptomic

analysis (16, 33, 34). Radiomics of magnetic resonance imaging has

shown high performance and remains valid for radiomics of

mammography—a finding of great importance for studies related

to DBT (17, 35). Studies by Ma et al. (17) and Zhang et al. (35) have

demonstrated high accuracy in differentiating TN BC subtypes, with

Ma’s approach showing optimal TN discrimination (alongside

HER2 and luminal subtypes), while Zhang’s radiomics-based

method achieved comparable performance in digi ta l

mammography. However, all analyses relied on DM imaging, and

the replicability of these findings using DBT remains uncertain.

Some studies (7) have proposed using synthetic mammography

instead of original DBT images to plot ROI on synthetic

mammography in clinical practice, and suggested that it is

impractical to plot ROI on original DBT images, and the

reproducibility of ROI on original DBT images will be limited.

Although synthetic mammography may lose some tomographic

data, based on the current research status of DBT, a radiomic model

was constructed in this study. A total of 1175 imaging features

(candidate features) were extracted based on the fusion of 433 DBT

images in 4 groups of BC subtypes (luminal A-subtype, luminal B-

subtype, HER2-positive and basal-like BC). We identified five novel

key features of BC by integrating imagomics and machine learning.

Our study presents several significant advantages over previous

studies by constructing an ensemble learning model based on
TABLE 3 Single factor logistic regression model.

Variable Coefficient OR (95% CI for OR) p.value

gradient_glszm_SmallAreaLowGrayLevelEmphasis -0.54 0.58(0.43-0.79) 0.00049

log_sigma_1_0_mm_3D_glcm_Idmn 0.51 1.7(1.3-2.1) 4.20E-05

logarithm_glrlm_RunLengthNonUniformityNormalized -0.29 0.75(0.6-0.93) 0.0093

logarithm_ngtdm_Busyness -1.1 0.34(0.23-0.49) 1.10E-08

logarithm_ngtdm_Contrast -0.44 0.64(0.39-1.1) 0.091

original_shape_SurfaceVolumeRatio -1.6 0.2(0.08-0.52) 0.00097

squareroot_glcm_Imc1 0.23 1.3(1-1.6) 0.041

wavelet_HHH_firstorder_RobustMeanAbsoluteDeviation 0.083 1.1(0.88-1.3) 0.45

wavelet_LHH_firstorder_Entropy 0.43 1.5(1.2-2) 0.00078

wavelet_LHH_ngtdm_Busyness -0.39 0.68(0.51-0.9) 0.0073

wavelet_LLH_firstorder_InterquartileRange 0.3 1.3(1.1-1.7) 0.0069

wavelet_LLL_glcm_Idm -0.28 0.76(0.6-0.96) 0.024

wavelet_LLL_glszm_SizeZoneNonUniformityNormalized 0.074 1.1(0.87-1.3) 0.51
The odd ratio (OR) value is the relative risk, also known as the odds ratio, which refers to the ratio of the exposed and non-exposed people in the case group divided by the ratio of the exposed and
non-exposed people in the control group.
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FIGURE 7

(A) Single factor logistic regression model forest map; (B) Multifactor logistic regression model forest map; (C) The nomogram predicted the relative
risk of patients; (D) Nomogram calibration curve; (E) Decision curve. (A) A single factor logistic regression model was constructed based on the 14
image omics features of the training set, and the risk forest map was drawn according to the model. The results of 10 features in the model were
significant (p < 0.05); (B) A multi-factor logistic regression model was constructed based on the 14 image-omics features of the training set, and the
risk forest map was drawn according to the model. The results of 5 features in the model were significant (p < 0.05); (C) Multivariate logistic
regression analysis was performed to obtain five significant factors and a column graph was constructed. Each factor corresponds to a score. The
total score of each factor was added to correspond to the total score, and the relative risk (Odds Ratio) of the patient was predicted according to
the total score; (D) Based on the above nomogram prediction model, the calibration curve was drawn. The closer the slope is to 1, the more
accurate the prediction is. In addition, the c-index of the model was 0.759, and the corrected c-index was 0.732, indicating that the column-line
model was well fitted and the prediction results of our logistic regression model were quite good, which can be used in clinical diagnosis; (E) The
horizontal coordinate is the threshold probability: In the risk assessment tool, the probability that patient i is diagnosed with the disease is denoting
Pi; When Pi reaches a certain threshold (denoted as Pt), the case is defined as positive and treatment is administered. There will be patient benefit
(benefit), non-patient harm (harm) and patient loss (harm) if the patient is not treated. The ordinate is the Net Benefit (NB) after subtracting the
disadvantages from the advantages. In addition to the curved lines that represent different models of clinical diagnosis (identified by the legend),
there are two lines that represent the two extremes. The horizontal one indicates that all samples are negative (Pi < Pt), all are untreated, and the net
benefit is 0. The slanted one means that all the samples were positive, all of them were treated, and the net benefit is a negative backslash. As can
be seen from the figure, within the Pt [0-1] interval, the benefits of the imaging features, clinical features and Nomogram are all higher than those of
the extreme curves, so the optional Pt ranges are relatively large and safe.
Frontiers in Oncology frontiersin.org11

https://doi.org/10.3389/fonc.2025.1661116
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Xue et al. 10.3389/fonc.2025.1661116
mammography and IHC through radiomic analysis of

mammography to predict risk models based on molecular

subtypes, thus providing enhanced value for personalized

treatment. In contrast, prior studies solely relied on routine

clinical and radiological features, lacked precise subtype analyses,

or utilized only imaging omics methods.

In the realm of medical imaging holography, machine-learning

methods hold the potential to attain greater precision while

integrating diverse types of information for a broad array of

applications, such as disease diagnosis and prognosis evaluation.

Research (8) has indicated that machine-learning models possess a

marginally superior edge over traditional risk factor-based models

in predicting future BC risk. Furthermore, neural network-based

BC risk prediction models that incorporate imaging features

demonstrate outstanding performance. This finding implies that

the integration of imaging inputs within machine-learning models

can provide more precise breast cancer risk prediction. Prior BC

risk assessments have already acknowledged the significance of

imaging features in mammography (9, 36). Nevertheless, the

existing model was grounded on the underlying pattern visually

assessed by radiologists, and the whole image was subjectively

summarized as a density score on mammography as the model

input (37). Some studies have developed a novel LASSO-logic

modeling approach to perform initial variable screening and

eliminate relatively insignificant coefficients of independent

variables in the model (38). Thus, regression analysis effectively

addresses variable collinearity, particularly in high-dimensional

screening scenarios (39). 8 machine learning models were

referenced in this study, with the LASSO model used to identify

features strongly correlated with BC (LASSO features). LASSO

logistic regression was then applied to each mammary gland

category, and the category with the highest probability was

selected through 10x cross-validation calculations for

classification. Following a comprehensive parameter analysis, the

random forest algorithm was chosen as the best performing

machine learning method. The optimal algorithm was determined
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and the image holographic score (Rad_score) was calculated. The

features of the random forest model were ranked by importance,

resulting in 14 significant image group features.

In oncology research, nomogram models utilizing multivariate

regression analysis (particularly logistic/Cox regression) are widely

adopted for predicting clinical outcomes such as tumor recurrence,

metastasis, and mortality (40–42). These tools transform identified risk

factors into visual scoring systems, with multivariate regression serving

as their computational foundation. Compared to conventional

methods, nomograms provide enhanced predictive accuracy and

interpretability (42, 43), as evidenced by their capacity to quantify

variable contributions through graphical outputs. Our implementation

aligns with established methodological frameworks in the field: we

constructed predictive models and nomographs based on patients’ risk

factors and verified their accuracy and validity to predict the risk of

these patients, and evaluated the diagnostic accuracy and clinical value

of the models using decision curve analysis. Although this model has

certain predictive capabilities, it is not yet suitable for standalone

clinical decision-making, such as replacing invasive biopsy to

confirm subtypes. Instead, its primary clinical value lies in providing

complementary information to guide preliminary treatment planning

until the accuracy is further improved.

This study has several limitations that warrant discussion. First, the

inherent constraints associated with its single-center retrospective

design must be acknowledged, which may limit the generalizability

of our findings to other populations or institutions due to potential

variations in patient demographics, imaging protocols, and

pathological practices. Second, the training and validation of the five

key features necessitated a vast amount of medical image data. During

this process, machine learning algorithms might absorb biases present

in the data, potentially leading to skewed prediction outcomes.

Nevertheless, our commitment to the subtype research and diagnosis

of BC remains unwavering. Third, we did not analyze the

morphological characteristics of the four subtypes in this study,

leaving room for future studies to explore this relevant content. And

also, we did not handle the potential class imbalance among the four
TABLE 4 Multiple logistic regression models.

Variable Coefficient OR (95% CI for OR) p.value

gradient_glszm_SmallAreaLowGrayLevelEmphasis -0.12 0.89(0.59-1.3) 0.57

log_sigma_1_0_mm_3D_glcm_Idmn 0.18 1.2(0.82-1.8) 0.35

logarithm_glrlm_RunLengthNonUniformityNormalized -0.38 0.68(0.49-0.95) 0.022

logarithm_ngtdm_Busyness -0.88 0.41(0.27-0.63) 5.30E-05

original_shape_SurfaceVolumeRatio -1.2 0.3(0.1-0.88) 0.029

squareroot_glcm_Imc1 -0.082 0.92(0.62-1.4) 0.69

wavelet_LHH_firstorder_Entropy -0.43 0.65(0.38-1.1) 0.12

wavelet_LHH_ngtdm_Busyness -0.2 0.82(0.54-1.2) 0.34

wavelet_LLH_firstorder_InterquartileRange 0.38 1.5(1.1-1.9) 0.0077

wavelet_LLL_glcm_Idm -0.26 0.77(0.56-1.1) 1.40E-06
The odd ratio(OR) value is the relative risk, also known as the odds ratio, which refers to the ratio of the exposed and non-exposed people in the case group divided by the ratio of the exposed and
non-exposed people in the control group.
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BC subtypes in themodel training. Strategies should be implemented to

further improve the model’s robustness and generalizability across all

subtypes. Fourth, radiomics features were extracted based onmanually-

drawn ROIs. To mitigate potential issues, features with poor inter-

observer reproducibility were excluded from the analysis. Fifth, another

limitation of this study is the lack of external validation on an

independent cohort, which would strengthen the generalizability of

our findings; future studies should include multi-center external

validation to confirm model robustness. Sixth, although the radiomic

features identified exhibit statistical significance for predicting BC

subtypes, their specific pathophysiological implications remain

unclear, resulting in limited clinical interpretability. Seventh,

although this study constructed a risk model applicable to the

clinical diagnosis of BC patients and screened five key features for

constructing the nomogram through univariate and multivariate

regression analysis, which does possess certain clinical value, we will

continue to expand the sample size in subsequent studies to further

verify these key features.
5 Conclusions

In summary, this study analyzed Luminal A, Luminal B, HER-2

positive and TN types of BC patients by means of imaging omics

analysis and a variety of machine learning methods, Based on our

validation results, these models demonstrate high reproducibility in BC

patients. Additionally, we have identified potential prognostic variables

in patients with BC, with the aim of identifying an optimal

classification model and providing new insights for the diagnosis and

clinical treatment of BC.
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