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predicting positive surgical
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and Delin Wang1*
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University, Chongqing, China
Objective: This study aimed to develop and validate interpretable machine

learning (ML) models based on multi-dimensional fusion data for predicting

positive surgical margins (PSM) in robot-assisted radical prostatectomy (RARP).

Methods: Patients who underwent RARP at our institution between January 2016

and July 2025 were enrolled. Demographic, clinical, biopsy pathology data, and

MRI-derived anatomical features (measured using ITK-SNAP on axial, sagittal,

and coronal planes) were collected. Feature selection was performed using

intraobserver and interobserver correlation coefficients (ICCs), low-variance

filtering, univariable logistic regression, Spearman’s correlation analysis, the

least absolute shrinkage and selection operator (LASSO) algorithm, and the

Boruta algorithm. Six ML models were constructed, with performance

evaluated using area under the curve (AUC), calibration curves, and decision

curve analyses (DCA) to identify the optimal model. Five-fold and ten-fold cross-

validation were used to assess the optimal model’s generalizability, and its

interpretability was evaluated via Shapley Additive exPlanations (SHAP) analysis.

Results: A total of 347 patients were included, comprising a training set (n=193,

January 2016–December 2024), validation set (n=84, January 2016–December

2024), and test set (n=70, January 2025–July 2025). From 164 initial features, 7

key features were retained through a four-step screening. The Random Forest

(RF) model outperformed other models, achieving AUCs of 0.99 (95% CI: 0.97–

1.00) in the training set, 0.88 (95% CI: 0.80–0.95) in the validation set, and 0.97

(95% CI: 0.94–1.00) in the test set. Calibration curve and decision curve analyses
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confirmed its strong clinical utility. Five-fold cross-validation for the RF model

showed fold-specific AUCs of 0.82–0.92, with a mean AUC of 0.87 (95% CI:

0.84–0.90). Ten-fold cross-validation showed fold-specific AUCs of 0.80–0.99,

with a mean AUC of 0.88 (95% CI: 0.83–0.93). SHAP analysis revealed five novel

spatial anatomical features (such as Sagittal plane-posterior spatial anatomical

structure index, Coronal plane-Left anatomical structure interval) were

negatively associated with PSM risk, while the number of positive biopsy cores

and clinical tumor stage were positively associations.

Conclusions:Multi-dimensional fusion data combined with MLmodels improves

PSM prediction accuracy in RARP. The RFmodel, with excellent performance and

interpretability, shows promise for preoperative PSM risk stratification, facilitates

optimized clinical decision-making, and supports personalized treatment

discussions during preoperative planning, but requires prospective and external

validation before clinical implementation.
KEYWORDS

prostate cancer, robot-assisted radical prostatectomy (RARP), multi-dimensional fusion data,
multiparametric magnetic resonance imaging (mpMRI), machine learning, interpretation
Introduction

Prostate cancer (PCa) is one of the most common malignancies

in men worldwide and ranks fifth among cancer-related deaths in

males (1, 2). The “Cancer Statistics 2024” report estimates 299,010

new PCa cases and 35,250 related deaths in 2024 (2). Robot-assisted

radical prostatectomy (RARP) is the primary surgical treatment for

localized PCa and has become the gold standard for radical

prostatectomy (RP) (3, 4), significantly improving overall and

tumor-specific survival rates (5). By 2013, up to 80% of RPs in

the United States were RARP procedures (6).

Positive surgical margin (PSM) in the prostate specimen

following RP is a well-established predictor of biochemical

recurrence (BCR) (7, 8). The incidence of PSM is influenced by

multiple factors, including preoperative prostate-specific antigen

(PSA) levels, clinical tumor stage (cT stage), Gleason score/

International Society of Urological Pathology (ISUP) grade group,

pathological extension of the primary tumor, and others (9–15).

Patients with PSM face higher risks of BCR, disease progression,

additional treatments, and psychological distress, which negatively

impact quality of life (16–18). Given the diversity of RARP patients,

preoperative prediction of surgical complexity and prognostic

factors is critical for ensuring safety, optimizing scheduling,

enhancing care, and reducing costs (19, 20).

Due to the prostate’s deep location within the pelvic cavity,

RARP presents challenges such as limited surgical spatial related to

prostate size and pelvic anatomy (21, 22). Recent studies have

proposed pelvic measurement indicators to characterize pelvic

anatomy (21, 23–26) and demonstrated that artificial intelligence

(AI) models based on pelvic-prostate spatial features can predict RP

surgical difficulty (22, 27–29). However, the stability of AI models
02
depends on the quantity and quality of the training set, and existing

models lack integration of radiomics, clinical, and biopsy pathology

features, limiting their generalizability.

This study aimed to establish and validate a comprehensive

machine learning (ML) algorithm integrating multi-dimensional

fusion data (radiomics, prostate/pelvic measurements, clinical, and

biopsy pathology features) for preoperative PSM prediction

in RARP.
Materials and methods

Study cohorts

This retrospective single-center study was conducted at the

Department of Urology, The First Affiliated Hospital of Chongqing

Medical University, with collaborative support from co-authors at

other institutions for data analysis and imaging feature

quantification. This study was approved by the Institutional

Review Board (IRB) of our hospital (Approval No. K2023-599)

(Supplementary Material 1). As a retrospective study, informed

consent from patients was waived. All study protocols were in

accordance with the Declaration of Helsinki (30). Clinical data

(demographic and laboratory variables), mpMRI data (anatomical

features and relevant parameters), and biopsy pathological data

were anonymized prior to analysis. PSM was defined as tumor cells

at the inked surgical margin, regardless of anatomical location.

Training and validation sets
Patients who underwent RARP between January 2016 and

December 2024 were enrolled. Exclusion criteria: (1) Missing or
frontiersin.org
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poor-quality mpMRI (n=279); (2) Incomplete biopsy pathology

data (n=271); (3) Prior PCa treatment (androgen deprivation

therapy, radiotherapy and others; n=200); (4) Non-puncture

biopsy pathology diagnosis (such as transurethral resection of the

prostate (TURP) and light laser vaporization, which may cause

edema of the surrounding tissues) (n=70). (5) mpMRI performed

after biopsy (n=42); (6) Missing laboratory data (n=17); (7) Other

treated malignancies (n=13); (8) Distant metastases (n=4); (9)

mpMRI performed more than 5 months before RARP (n=2); (10)

Prostatic leiomyosarcoma (n=1); (11) TURP within 1 year (n=1).

Test set
Patients who underwent RARP between January 2025 and July

2025 were enrolled. Exclusion criteria: (1) Missing or poor-quality

mpMRI (n=54); (2) Incomplete biopsy pathology data (n=58); (3)

Prior PCa treatment (n=45); (4) Non-puncture biopsy pathology

diagnosis (n=14); (5) Other treated malignancies (n=2); (6) Distant

metastases (n=2); (7) mpMRI performed more than 5 months before

RARP (n=2); (8) prostatic leiomyosarcoma (n=0); (9) TURP within 1

year (n=0). The patient screening flowchart is shown in Figure 1.
Clinical, mpMRI, and biopsy pathology data
collection

Clinical data
A clinician blinded to mpMRI and pathology data extracted 49

features from electronic records, including demographics (age,

BMI), lifestyle factors (smoking status, alcohol consumption),

comorbidities (hypertension, diabetes), surgical details, laboratory

tests (complete blood count, biochemical function, coagulation),
Frontiers in Oncology 03
and PCa markers (total prostate-specific antigen (tPSA), free

prostate-specific antigen (fPSA), fPSA/PSA ratio).

mpMRI data
Imaging was performed using a 3.0 T MR scanner (GE

Discovery MR750W, General Healthcare, Milwaukee, USA) with

T2-weighted sequences (TR = 3,500 ms, TE = 85 ms, slice

thickness=3 mm) and diffusion-weighted imaging (b-values=0,

1,000 s/mm²). Measurements were manually performed by two

radiologists (Readers A and B, >8 years of PCa diagnosis

experience) using ITK-SNAP (http://www.itksnap.org/). They

were blinded to clinicopathological data and assessed Prostate

Imaging-Reporting and Data System (PI-RADS) scores, clinical

tumour stage, and measured pelvic, prostate, and tumor features.

Intraobserver and interobserver correlation coefficients (ICCs) for

MRI features ranged from 0.70 to 0.99, indicating good agreement

(Supplementary Table 1). Controversial cases were re-evaluated by

a senior radiologist (>15 years of experience).

Radiomics features (10 items): PI-RADS score, seminal vesicle

invasion (SVI), lymph-node invasion (LNI), lympho-vascular

invasion (LVI), perineural invasion, and others.

Anatomical measurements (97 items, Supplementary Table 2,

Supplementary Figure 1):
• Axial plane (26 items): thickness of right obturator internus

muscle (TROIM), thickness of left obturator internus muscle

(TLOIM), distance of outer of the levator ani muscle

(DOLAM), and others.

• Sagittal plane (31 items): prostatic urethral length (PUL),

membranous urethral length (MUL), membranous urethral

angle (MUA), and others.
FIGURE 1

Screening flowchart of patients in this study (January 1, 2016, to July 31, 2025). RARP, Robot-Assisted Radical Prostatectomy; mpMRI,
Multiparametric Magnetic Resonance Imaging; PCa, Prostate Cancer.
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• Coronal plane (12 items): right anal sphincter thickness

(RST), left anal sphincter thickness (LST), thickness of right

levator ani muscle (TRLAM), and others.

• Calculated values (28 items): thickness of levator ani muscle

(TLAM), prostate-muscle index (PMI), roundness ratio

(RR), and others.
Biopsy pathology evaluation
All patients underwent transrectal ultrasound-guided prostate

biopsy by a single urologist. Biopsy pathology was reviewed by a

senior pathologist (>10 years of PCa experience), blinded to MRI

and postoperative pathology. Tumor classification was based on the

2016 WHO criteria, with grading via Gleason score and cancer

group grades (31, 32). Eight features were recorded, including

biopsy method, number of positive biopsy cores (PBC),

Percentage of PBC, and others.
Feature extraction and selection

Features with missing rates <10% were included. For

imputation, continuous variables were filled with median values,

and categorical variables with mode values to ensure comparability.

A four-step selection process was used: (1) Removal of low-

variance features (baseline analysis). (2) Initial screening using

univariable logistic regression. (3) Remove redundancy using

Spearman’s rank correlation analysis (r ≥ 0.7). (4) Select optimal

subsets via LASSO and Boruta algorithms, with the final features

being the intersection of both.
Hyperparameter tuning

To optimize each algorithm’s performance, we conducted

hyperparameter tuning (33). This modeling process utilized a

Bayesian hyperparameter search method (34), which systematically

evaluated a comprehensive set of hyperparameter values to identify

configurations maximizing efficiency and accuracy. Through this

detailed and iterative exploration of the hyperparameter space, we

were able to fine-tune the models effectively. This meticulous

adjustment ensures that our models are precisely calibrated,

significantly enhancing their ability to analyze and predict outcomes

accurately with the dataset at hand.
ML model construction, validation, and
testing

Six ML models for predicting PSM were built: Logistic Regression

(LR), Support Vector Machine (SVM), K-nearest Neighbor (KNN),

Decision Tree (DT), Random Forest (RF), and Extreme Gradient

Boosting (XGBoost). The receiver operating characteristic (ROC)

curve analysis, area under the ROC curve (AUC), accuracy (ACC),

sensitivity (SEN), specificity (SPE), positive predictive value (PPV),
tiers in Oncology 04
negative predictive value (NPV), and F1 score were calculated to

evaluate model performance. To compare the predictive performance

and clinical utility of the constructed ML models, the DeLong test,

calibration curve analysis with Brier score loss, and decision curve

analysis were conducted. A lower Brier score indicated superior

model calibration.
Cross-validation of the target model

To further validate model robustness, five-fold and ten-fold cross-

validation were performed for the optimal model. In N-fold cross-

validation, the dataset is divided into N equal folds; the model is trained

on N-1 folds and validated on the remaining fold in each iteration. This

process is repeated N times, with the final performance metric derived

by averaging results to ensure a robust assessment (35).
Machine learning model interpretation

The optimal model was interpreted using SHAP (Shapley Additive

exPlanations) analysis (36, 37). Based on cooperative game theory,

SHAP quantifies each feature’s contribution to model predictions by

evaluating its marginal impact across all feature combinations, ensuring

a balanced representation of feature importance. It provides

interpretability at two scales: (1) Local interpretability: clarifies

individual predictions by quantifying feature contributions; (2)

Global interpretability: synthesizes features’ relative impacts across

the entire dataset. The workflow is illustrated in Figure 2.
Statistical analysis

SPSS 25.0 (SPSS, Armonk, NY, USA), R software (version 4.3.1;

https://www.r-project.org/), and Python (version 3.8.0; https://

www.python.org/) were used for statistical analysis. Continuous

variables were presented as medians with interquartile ranges

(IQRs) and compared using Mann–Whitney U tests. Categorical

data were presented as counts (percentages) and compared using

chi-square, Fisher’s exact test, or Yates’ continuity correction.

Accuracy, sensitivity, specificity, PPV, and NPV based on the

optimal cutoff (Youden index) were calculated, with 95%

confidence intervals (CIs) estimated using 1,000 bootstraps. A

two-tailed P-value < 0.05 was considered statistically significant.
Results

Clinical characteristics

A total of 347 patients (median age: 70 years, IQR: 65.00-74.00

years) were included, with 238 (68.6%) negative surgical margins

(NSM) and 109 (31.4%) PSM. No significant differences in clinical,

mpMRI, or biopsy pathology features were observed between the

training and validation sets (all P > 0.05; Table 1).
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Features selection

Based on previous studies (9–15, 21–28) and the authors’

interests. From 164 initial features, 7 key features were retained

through four-step screening (Figure 3): (1) 8 low-variance features

were excluded (Supplementary Table 3). (2) 119 features unrelated

to PSM were excluded via univariable logistic regression analysis

(Supplementary Table 4). (3) 16 redundant features (r ≥ 0.7) were

removed via Spearman’s rank correlation analysis (Supplementary

Figure 2). (4) The LASSO logistic algorithm and the Boruta

algorithm retained 10 and 9 features (Supplementary Figure 3),

with final features as their intersection. The 7 features

(Supplementary Figure 3) included:
Fron
▪ Number of positive biopsy cores (Number of PBC).

▪ Clinical tumor stage (cT stage).

▪ Sagittal plane-posterior spatial anatomical structure index

(S-PSAI).

▪ Sagittal plane-total spatial anatomical structure index

(S-TSAI).

▪ Coronal plane-left anatomical structure interval (C-LAI).

▪ Coronal plane-right anatomical structure interval (C-RAI).

▪ Axial plane-inferior margin of symphysis pubis-bilateral

ischial spinous angle (A-SP-BIS Angle).
tiers in Oncology 05
No significant differences in these 7 features were observed

across the training, validation, and test sets (all P > 0.05; Table 2).
ML model establishment

Table 3 summarizes model parameters, adjustment ranges, and

optimal values via Bayesian optimization. Among the six models, KNN

and XGB showed high training-set AUCs of 1.00 (95% CI: 1.00-1.00),

suggesting overfitting. The RF model achieved optimal balanced

performance: (1) Training set: AUC of 0.99 (95% CI: 0.97–1.00),

accuracy of 0.94. (2) Validation set: AUC of 0.88 (95% CI: 0.80–

0.95), accuracy of 0.83. (3) Test set: AUC of 0.97 (95% CI: 0.94–1.00),

accuracy of 0.93. The DT, SVM, and LR models ranked as the second,

third, and fourth predictingmodels in the training set. The DT, LR, and

SVMmodels ranked as the second, third, and fourth predicting models

in the validation set. The LR, SVM, and DT models ranked as the

second, third, and fourth predicting models in the test set. Model

performance metrics are detailed in Table 4 and Figures 4A–F.
Comparison of ML models

DeLong tests confirmed the RF model outperformed LR, SVM,

and DT in the training set (all P < 0.05) but not KNN/XGB
FIGURE 2

The overall workflow of this study. LASSO, Least Absolute Shrinkage and Selection Operator; SHAP, Shapley Additive exPlanations; ROC, Receiver
Operating Characteristic Curve.
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TABLE 1 Baseline characteristics (training vs. validation sets).

Characteristics [ALL] N=277 [Training set] N=193 [Validation set] N=84 P-value

Positive surgical margin (PSM), n(% ) : 0.837

No 192 (69.3%) 135 (69.9%) 57 (67.9%)

Yes 85 (30.7%) 58 (30.1%) 27 (32.1%)

Demographic and medical history data:

Age, median (IQR) (year): 69.0 [65.0;74.0] 70.0 [65.0;74.0] 68.5 [64.0;73.0] 0.32

Body mass index, median (IQR) (kg/m2): 24.2 [22.4;25.7] 23.9 [22.0;25.7] 24.5 [23.0;25.7] 0.145

Family history of PCa, n(% ) : 0.303

No 276 (99.6%) 193 (100%) 83 (98.8%)

Yes 1 (0.36%) 0 (0.00%) 1 (1.19%)

Abdominal surgery, n(% ) : 0.634

No 208 (75.1%) 147 (76.2%) 61 (72.6%)

Yes 69 (24.9%) 46 (23.8%) 23 (27.4%)

TURP, Over 1 year, n(% ) : 0.177

No 267 (96.4%) 188 (97.4%) 79 (94.0%)

Yes 10 (3.61%) 5 (2.59%) 5 (5.95%)

Smoking, n(% ) : 0.882

No 168 (60.6%) 116 (60.1%) 52 (61.9%)

Yes 109 (39.4%) 77 (39.9%) 32 (38.1%)

Drinking, n(% ) : 0.801

No 186 (67.1%) 131 (67.9%) 55 (65.5%)

Yes 91 (32.9%) 62 (32.1%) 29 (34.5%)

Hypertension, n(% ) : 1

No 160 (57.8%) 111 (57.5%) 49 (58.3%)

Yes 117 (42.2%) 82 (42.5%) 35 (41.7%)

Diabetes, n(% ) : 0.953

No 222 (80.1%) 154 (79.8%) 68 (81.0%)

Yes 55 (19.9%) 39 (20.2%) 16 (19.0%)

Cardiovascular disease, n(% ) : 0.359

No 234 (84.5%) 160 (82.9%) 74 (88.1%)

Yes 43 (15.5%) 33 (17.1%) 10 (11.9%)

Variables of laboratory data, Preoperative:

Urinalysis white blood cell, median (IQR) (cell/ul): 2.00 [1.00;6.00] 2.00 [1.00;6.00] 2.00 [1.00;5.00] 0.972

Platelet, median (IQR) (109/L): 184 [156;212] 183 [157;210] 185 [155;217] 0.870

Hematocrit, median (IQR) (%): 42.5 [40.2;44.6] 42.6 [40.4;44.8] 42.0 [40.0;44.3] 0.157

Hemoglobin, median (IQR) (g/L): 141 [132;148] 140 [132;149] 141 [131;147] 0.519

White blood cell, median (IQR) (109/L): 5.68 [4.96;6.82] 5.68 [4.97;6.72] 5.84 [4.96;6.84] 0.602

Lymphocyte, median (IQR) (109/L): 1.61 [1.31;1.97] 1.60 [1.31;1.90] 1.65 [1.36;2.03] 0.461

Monocyte, median (IQR) (109/L): 0.47 [0.39;0.56] 0.47 [0.39;0.55] 0.46 [0.39;0.58] 0.603

(Continued)
F
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TABLE 1 Continued

Characteristics [ALL] N=277 [Training set] N=193 [Validation set] N=84 P-value

Variables of laboratory data, Preoperative:

Neutrophil, median (IQR) (109/L): 3.36 [2.69;4.26] 3.32 [2.62;4.22] 3.42 [2.73;4.32] 0.371

Neutrophil percentage, median (IQR) (%): 59.1 [53.4;64.1] 59.1 [53.0;64.0] 59.2 [54.9;64.9] 0.517

Neutrophil-to-lymphocyte ratio, median (IQR) : 2.06 [1.60;2.72] 2.06 [1.57;2.72] 2.07 [1.63;2.70] 0.753

Lymphocyte-to-monocyte ratio, median (IQR) : 3.50 [2.82;4.32] 3.52 [2.82;4.24] 3.48 [2.84;4.60] 0.905

Platelet-to-lymphocyte ratio, median (IQR) : 116 [90.1;139] 118 [90.9;139] 112 [85.2;138] 0.592

Monocyte-to-lymphocyte ratio, median (IQR) : 0.29 [0.23;0.35] 0.28 [0.24;0.35] 0.29 [0.22;0.35] 0.905

SII, median (IQR) : 372 [269;546] 370 [267;546] 377 [271;555] 0.619

Fasting blood glucose, median (IQR) (mmol/L): 5.40 [5.00;6.00] 5.40 [5.00;6.00] 5.40 [5.00;6.00] 0.655

Aspartate aminotransferas, median (IQR) (IU/L): 20.0 [17.0;24.0] 20.0 [16.0;25.0] 21.0 [17.0;24.0] 0.792

Alanine aminotransferase, median (IQR) (IU/L) : 19.0 [14.0;25.0] 18.0 [14.0;24.0] 19.5 [15.0;25.2] 0.300

DeRitis ratio, median (IQR) : 1.05 [0.85;1.29] 1.04 [0.85;1.31] 1.05 [0.85;1.25] 0.475

Blood urea nitrogen, median (IQR) (mmol/L) : 5.90 [4.90;7.00] 5.90 [5.00;7.00] 6.05 [4.70;7.12] 0.975

Serum creatinine, median (IQR) (umol/L): 81.0 [74.0;94.0] 81.0 [73.0;93.0] 83.5 [74.8;96.0] 0.191

eGFR, median (IQR) (ml/min/1.73m2): 88.4 [74.4;98.2] 88.9 [76.9;97.4] 87.5 [73.0;99.8] 0.545

Uric acid, median (IQR) (umol/L): 350 [302;399] 345 [296;400] 359 [312;398] 0.346

Prothrombin time, median (IQR) (s): 12.9 [12.3;13.5] 12.9 [12.3;13.4] 13.1 [12.5;13.6] 0.279

APTT, median (IQR) (s): 35.0 [32.4;37.5] 34.9 [32.5;37.8] 35.0 [32.4;37.3] 0.604

Fibrinogen, median (IQR) (g/L): 2.87 [2.55;3.23] 2.86 [2.57;3.25] 2.88 [2.47;3.20] 0.736

Thrombin time, median (IQR) (s): 17.6 [17.0;18.4] 17.7 [17.1;18.4] 17.4 [16.8;18.5] 0.122

International normalized ratio, median (IQR): 0.99 [0.95;1.04] 0.99 [0.94;1.04] 1.01 [0.96;1.05] 0.050

D-dimer, median (IQR) (mg/L): 0.34 [0.20;0.71] 0.34 [0.21;0.67] 0.34 [0.20;0.85] 0.851

fPSA, median (IQR) (ng/ml): 1.46 [0.93;2.54] 1.42 [0.91;2.48] 1.49 [0.94;2.71] 0.647

tPSA, median (IQR) (ng/ml): 13.6 [9.06;25.0] 13.6 [8.86;26.3] 13.8 [9.71;22.1] 0.943

fPSA/tPSA 0.10 [0.07;0.14] 0.10 [0.07;0.13] 0.11 [0.08;0.16] 0.074

Biopsy pathology:

Biopsy Methods, n(% ): 0.091

Conventional 60 (21.7%) 47 (24.4%) 13 (15.5%)

Systematic biopsy 157 (56.7%) 110 (57.0%) 47 (56.0%)

MRI-ultrasound fusion-guided targeted biopsy 60 (21.7%) 36 (18.7%) 24 (28.6%)

Number of biopsy cores, median (IQR): 12.0 [12.0;12.0] 12.0 [12.0;12.0] 12.0 [12.0;12.0] 0.407

Number of positive biopsy cores, median (IQR): 5.00 [3.00;7.00] 5.00 [3.00;7.00] 5.00 [2.75;7.00] 0.459

Percentage of PBC, median (IQR) (%): 41.7 [22.2;58.3] 41.7 [22.2;58.3] 41.4 [25.0;60.9] 0.646

Primary Gleason grade, n(% ): 0.409

3 150 (54.2%) 102 (52.8%) 48 (57.1%)

4 118 (42.6%) 86 (44.6%) 32 (38.1%)

5 9 (3.25%) 5 (2.59%) 4 (4.76%)

Secondary Gleason grade, n(% ): 0.854
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TABLE 1 Continued

Characteristics [ALL] N=277 [Training set] N=193 [Validation set] N=84 P-value

Biopsy pathology:

3 139 (50.2%) 99 (51.3%) 40 (47.6%)

4 113 (40.8%) 77 (39.9%) 36 (42.9%)

5 25 (9.03%) 17 (8.81%) 8 (9.52%)

Gleason score, n(% ): 0.749

3+3 78 (28.2%) 55 (28.5%) 23 (27.4%)

3+4, 4+3 128 (46.2%) 90 (46.6%) 38 (45.2%)

3+5, 4+4, 5+3 43 (15.5%) 30 (15.5%) 13 (15.5%)

4+5, 5+4 25 (9.03%) 15 (7.77%) 10 (11.9%)

5+5 3 (1.08%) 3 (1.55%) 0 (0.00%)

Gleason grade group, n(% ): 0.914

1 80 (28.9%) 55 (28.5%) 25 (29.8%)

2 68 (24.5%) 47 (24.4%) 21 (25.0%)

3 58 (20.9%) 43 (22.3%) 15 (17.9%)

4 43 (15.5%) 30 (15.5%) 13 (15.5%)

5 28 (10.1%) 18 (9.33%) 10 (11.9%)

MRI data:

PI-RADS v2, n(% ): 0.627

2 27 (9.75%) 20 (10.4%) 7 (8.33%)

3 21 (7.58%) 14 (7.25%) 7 (8.33%)

4 54 (19.5%) 34 (17.6%) 20 (23.8%)

5 175 (63.2%) 125 (64.8%) 50 (59.5%)

Lymph-node invasion: 0.587

No 273 (98.6%) 191 (99.0%) 82 (97.6%)

Yes 4 (1.44%) 2 (1.04%) 2 (2.38%)

Lympho-vascular invasion: 0.357

No 265 (95.7%) 183 (94.8%) 82 (97.6%)

Yes 12 (4.33%) 10 (5.18%) 2 (2.38%)

Perineural invasion: 0.892

No 258 (93.1%) 179 (92.7%) 79 (94.0%)

Yes 19 (6.86%) 14 (7.25%) 5 (5.95%)

Urethral invasion: 0.398

No 193 (69.7%) 131 (67.9%) 62 (73.8%)

Yes 84 (30.3%) 62 (32.1%) 22 (26.2%)

External urethral sphincter invasion: 0.521

No 265 (95.7%) 186 (96.4%) 79 (94.0%)

Yes 12 (4.33%) 7 (3.63%) 5 (5.95%)

Seminal vesicle invasion: 0.182

(Continued)
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TABLE 1 Continued

Characteristics [ALL] N=277 [Training set] N=193 [Validation set] N=84 P-value

MRI data:

No 266 (96.0%) 183 (94.8%) 83 (98.8%)

Yes 11 (3.97%) 10 (5.18%) 1 (1.19%)

Rectal invasion: 1.000

No 276 (99.6%) 192 (99.5%) 84 (100%)

Yes 1 (0.36%) 1 (0.52%) 0 (0.00%)

Anterior Fibromuscular Stroma invasion: 0.291

No 192 (69.3%) 138 (71.5%) 54 (64.3%)

Yes 85 (30.7%) 55 (28.5%) 30 (35.7%)

Clinical primary tumor Stage (cT stage), n(%): 0.963

1 27 (9.75%) 19 (9.84%) 8 (9.52%)

2 168 (60.6%) 118 (61.1%) 50 (59.5%)

3 68 (24.5%) 47 (24.4%) 21 (25.0%)

4 14 (5.05%) 9 (4.66%) 5 (5.95%)

Axial plane

A-TROIM, median (IQR) (mm): 19.5 [17.5;21.5] 19.6 [17.4;21.6] 19.2 [17.5;21.2] 0.570

A-TLOIM, median (IQR) (mm): 19.2 [17.2;21.1] 19.0 [17.2;20.8] 19.4 [17.3;21.5] 0.376

A-DOLAM, median (IQR) (mm): 40.8 [38.3;43.0] 40.7 [38.6;43.0] 40.8 [38.1;43.1] 0.615

A-DILAM, median (IQR) (mm): 15.2 [14.0;16.6] 15.2 [13.9;16.6] 15.2 [14.1;16.7] 0.894

A-UW, median (IQR) (mm): 1.28 [1.14;1.41] 1.27 [1.13;1.41] 1.31 [1.18;1.45] 0.361

A-UWT, median (IQR) (mm): 1.93 [1.72;2.29] 1.98 [1.76;2.29] 1.87 [1.63;2.33] 0.071

A-TMUT, median (IQR) (mm): 7.69 [6.76;8.63] 7.65 [6.69;8.67] 7.77 [6.84;8.56] 0.895

A-APMUT, median (IQR) (mm): 7.64 [6.84;8.59] 7.48 [6.74;8.57] 7.77 [7.04;8.67] 0.209

A-RLP, median (IQR) (mm): 4.93 [3.75;6.62] 4.86 [3.71;6.50] 5.12 [4.01;6.74] 0.247

A-LLP, median (IQR) (mm): 4.92 [3.78;6.53] 4.71 [3.68;6.58] 5.06 [4.01;6.45] 0.309

A-LLD, median (IQR) (mm): 18.1 [10.9;27.9] 18.7 [10.8;27.8] 16.8 [11.4;28.8] 0.683

A-CCL-PZ, median (IQR) (mm): 14.0 [0.00;33.9] 15.3 [0.00;34.9] 11.8 [0.00;32.1] 0.434

A-OID, median (IQR) (mm): 73.1 [65.4;81.6] 72.9 [65.4;81.3] 73.6 [65.7;82.4] 0.908

A-AAI, median (IQR) (mm): 9.84 [7.57;13.0] 9.80 [7.62;12.8] 9.91 [7.56;13.6] 0.803

A-ISD, median (IQR) (mm): 92.0 [88.1;96.2] 92.1 [88.1;97.5] 91.2 [88.2;94.8] 0.317

A-SW, median (IQR) (mm): 79.4 [68.2;86.3] 80.0 [68.9;86.0] 76.3 [66.9;87.2] 0.212

A-BFW, median (IQR) (mm): 95.2 [91.1;99.5] 95.2 [91.2;99.2] 95.2 [91.0;100] 0.829

A-ITD, median (IQR) (mm): 118 [112;125] 119 [113;125] 116 [111;123] 0.154

A-ASP, median (IQR) (°): 73.3 [68.8;77.5] 73.7 [69.3;77.5] 72.4 [68.2;77.9] 0.285

A-SP-BIS Angle, median (IQR) (°): 56.4 [52.8;60.1] 56.9 [52.9;60.6] 55.8 [52.8;58.6] 0.183

A-PTD, median (IQR) (mm): 49.0 [45.6;53.1] 48.9 [46.0;53.0] 49.2 [44.6;53.5] 0.924

A-PAD, median (IQR) (mm): 49.0 [45.6;53.2] 48.6 [45.8;53.0] 49.3 [44.6;53.8] 0.696

A-LAI, median (IQR) (mm): 5.24 [3.86;7.61] 5.18 [3.92;7.45] 5.54 [3.67;7.74] 0.903
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TABLE 1 Continued

Characteristics [ALL] N=277 [Training set] N=193 [Validation set] N=84 P-value

Axial plane

A-RAI, median (IQR) (mm): 5.42 [3.63;7.65] 5.28 [3.47;7.26] 5.76 [3.87;8.02] 0.180

A-NTL, n(%): 0.874

0 40 (14.4%) 27 (14.0%) 13 (15.5%)

1 179 (64.6%) 126 (65.3%) 53 (63.1%)

2 45 (16.2%) 32 (16.6%) 13 (15.5%)

≥3 13 (4.69%) 8 (4.15%) 5 (5.95%)

A-TLI , n(%): 0.891

No 40 (14.4%) 27 (14.0%) 13 (15.5%)

Yes 237 (85.6%) 166 (86.0%) 71 (84.5%)

Sagittal plane

S-PUL, median (IQR) (mm): 45.0 [41.4;49.6] 44.2 [41.3;49.3] 46.0 [41.8;51.2] 0.151

S-MUL, median (IQR) (mm): 15.0 [14.0;15.9] 15.0 [14.0;15.8] 15.2 [14.1;16.1] 0.306

S-MUA, median (IQR) (°): 122 [116;128] 122 [116;129] 121 [117;128] 0.568

S-LASP, median (IQR) (mm): 40.8 [38.3;43.6] 40.9 [38.8;43.7] 39.9 [37.6;43.1] 0.050

S-API, median (IQR) (mm): 110 [103;116] 110 [104;116] 110 [103;116] 0.571

S-APM, median (IQR) (mm): 107 [103;112] 108 [103;112] 106 [101;111] 0.167

S-APO, median (IQR) (mm): 86.9 [81.4;91.5] 87.1 [81.7;91.4] 85.5 [81.0;92.1] 0.728

S-PD, median (IQR) (mm): 124 [118;131] 124 [119;131] 124 [117;132] 0.544

S-SD, median (IQR) (mm): 33.2 [28.6;37.6] 33.6 [28.3;38.4] 32.1 [29.0;36.6] 0.208

S-S1AMCAL, median (IQR) (mm): 125 [118;133] 127 [118;133] 124 [117;132] 0.453

S-AVPJ, median (IQR) (mm): 16.0 [12.3;20.4] 16.8 [12.3;20.9] 14.9 [12.0;18.5] 0.033

S-AD, median (IQR) (mm): 33.4 [30.1;37.3] 33.4 [30.1;37.6] 33.4 [29.8;36.9] 0.688

S-BH, median (IQR) (mm): 12.4 [6.89;18.1] 12.1 [6.84;17.6] 12.7 [7.34;18.9] 0.345

S-IPPH, median (IQR) (mm): 0.00 [0.00;5.22] 1.23 [0.00;5.33] 0.00 [0.00;5.17] 0.405

S-UUP, median (IQR) (mm): 6.55 [2.66;11.1] 6.35 [2.52;10.4] 7.12 [2.88;13.3] 0.107

S-DUP, median (IQR) (mm): 30.6 [27.5;34.3] 30.6 [27.6;34.5] 30.3 [26.7;34.0] 0.491

S-SA, median (IQR) (°): 39.1 [35.9;42.4] 38.6 [35.1;42.3] 39.3 [37.2;42.9] 0.180

S-RMA, median (IQR) (°): 155 [146;163] 155 [145;163] 157 [148;163] 0.343

S-PIA, median (IQR) (°): 69.1 [66.0;72.7] 69.1 [66.2;72.8] 69.0 [66.0;72.4] 0.631

S-LASP-APO Angle, median (IQR) (°): 130 [126;135] 130 [126;135] 130 [126;134] 0.967

S-LASP-API Angle, median (IQR) (°): 101 [95.7;105] 100 [95.3;105] 101 [96.3;105] 0.479

S-LASP-PD Angle, median (IQR) (°): 59.4 [55.9;62.6] 59.9 [55.9;63.1] 58.8 [56.4;61.7] 0.474

S-APO-API Angle, median (IQR) (°): 51.2 [45.9;56.5] 51.2 [45.6;56.5] 51.3 [47.8;56.3] 0.581

S-MTSP-IMSPA Angle, median (IQR) (°): 130 [122;137] 131 [122;137] 128 [120;134] 0.053

S-SP-PA-S1 Angle, median (IQR) (°): 74.8 [67.8;81.3] 74.7 [67.5;80.9] 75.0 [69.7;82.6] 0.334

S-SP-PA-S5 Angle, median (IQR) (°): 131 [124;140] 131 [124;139] 132 [123;142] 0.595

S-SP-PA-CA Angle, median (IQR) (°): 148 [139;159] 149 [138;158] 146 [140;160] 0.914
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TABLE 1 Continued

Characteristics [ALL] N=277 [Training set] N=193 [Validation set] N=84 P-value

Sagittal plane

S-PAD, median (IQR) (mm): 36.8 [33.0;40.8] 37.0 [33.0;41.3] 36.5 [33.2;40.4] 0.562

S-PCD, median (IQR) (mm): 45.3 [41.2;51.3] 45.2 [41.1;50.4] 45.6 [41.5;52.5] 0.433

S-AAI, median (IQR) (mm): 13.2 [10.3;16.4] 13.5 [10.8;16.6] 11.8 [9.32;16.1] 0.084

S-PAI, median (IQR) (mm): 2.51 [1.89;3.35] 2.51 [1.94;3.34] 2.50 [1.80;3.40] 0.973

Coronal plane

C-RST, median (IQR) (mm): 7.31 [6.15;8.81] 7.38 [6.12;8.78] 7.30 [6.20;8.84] 0.763

C-LST, median (IQR) (mm): 7.39 [6.14;8.75] 7.39 [6.11;8.75] 7.39 [6.16;8.70] 0.895

C-TRLAM, median (IQR) (mm): 4.84 [4.03;5.42] 4.89 [4.06;5.42] 4.64 [4.00;5.38] 0.179

C-TLLAM, median (IQR) (mm): 4.74 [4.16;5.52] 4.81 [4.21;5.66] 4.64 [4.08;5.26] 0.104

C-TVPJ, median (IQR) (mm): 20.1 [15.3;25.2] 20.2 [15.5;25.6] 19.8 [15.1;24.4] 0.415

C-IPPH, median (IQR) (mm): 2.79 [0.00;6.24] 2.79 [0.00;6.49] 2.87 [0.00;6.07] 0.733

C-TIP, median (IQR) (mm): 111 [106;116] 111 [106;116] 110 [106;116] 0.667

C-TTP, median (IQR) (mm): 104 [100.0;108] 104 [101;108] 104 [99.8;106] 0.429

C-PTD, median (IQR) (mm): 49.3 [46.0;53.1] 49.3 [46.2;53.1] 49.4 [45.8;53.1] 0.735

C-PCD, median (IQR) (mm): 41.8 [37.6;47.7] 41.5 [37.4;47.5] 42.8 [38.1;48.6] 0.380

C-LAI, median (IQR) (mm): 4.32 [2.94;6.10] 4.22 [2.87;6.10] 4.36 [3.06;6.09] 0.495

C-RAI, median (IQR) (mm): 4.62 [3.17;6.36] 4.62 [3.06;6.21] 4.64 [3.26;6.84] 0.343

Calculated value

A-TLAM, median (IQR) (mm): 12.6 [11.6;13.9] 12.6 [11.6;14.0] 12.5 [11.5;13.7] 0.642

A-PMI, median (IQR) (mm): 23.1 [17.8;31.2] 23.1 [17.6;30.9] 23.1 [17.9;32.2] 0.814

A-RR, median (IQR): 0.78 [0.72;0.85] 0.79 [0.72;0.85] 0.78 [0.72;0.84] 0.757

A-TAI, median (IQR) (mm): 10.7 [7.83;14.4] 10.6 [7.70;14.1] 10.8 [8.18;15.3] 0.366

A-LSAI, median (IQR): 0.11 [0.07;0.16] 0.11 [0.07;0.15] 0.11 [0.07;0.16] 0.846

A-RSAI, median (IQR): 0.11 [0.07;0.15] 0.11 [0.07;0.15] 0.12 [0.08;0.16] 0.186

A-TSAI, median (IQR): 0.22 [0.15;0.31] 0.22 [0.15;0.30] 0.24 [0.17;0.32] 0.358

S-RR, median (IQR): 0.80 [0.74;0.87] 0.81 [0.75;0.87] 0.78 [0.73;0.85] 0.057

S-TAI, median (IQR) (mm): 16.0 [12.8;19.3] 16.3 [13.3;19.3] 15.0 [11.6;19.2] 0.167

S-ASAI, median (IQR): 0.36 [0.27;0.46] 0.37 [0.28;0.47] 0.32 [0.25;0.41] 0.071

S-PSAI, median (IQR): 0.07 [0.05;0.09] 0.07 [0.05;0.09] 0.07 [0.05;0.09] 0.962

S-TSAI, median (IQR): 0.43 [0.33;0.53] 0.44 [0.34;0.53] 0.39 [0.32;0.49] 0.115

C-RR, median (IQR): 0.85 [0.77;0.92] 0.84 [0.76;0.92] 0.88 [0.78;0.92] 0.153

C-TAI, median (IQR) (mm): 9.19 [6.78;12.2] 9.15 [6.73;11.7] 9.25 [6.94;12.8] 0.440

C-LSAI, median (IQR): 0.09 [0.06;0.13] 0.08 [0.06;0.12] 0.09 [0.06;0.13] 0.403

C-RSAI, median (IQR): 0.09 [0.06;0.12] 0.09 [0.06;0.12] 0.10 [0.07;0.13] 0.243

C-TSAI, median (IQR): 0.18 [0.13;0.25] 0.18 [0.13;0.24] 0.19 [0.14;0.26] 0.319

A-CSAMU, median (IQR) (mm2): 46.0 [36.6;57.1] 45.3 [34.8;54.9] 46.9 [37.6;57.4] 0.498

MUV, median (IQR) (mm3): 678 [541;839] 669 [523;811] 708 [563;870] 0.266
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TABLE 1 Continued

Characteristics [ALL] N=277 [Training set] N=193 [Validation set] N=84 P-value

Calculated value

PV, median (IQR) (ml): 44.2 [36.0;57.8] 44.2 [36.4;57.8] 44.3 [34.5;58.9] 0.833

PSAD, median (IQR) (ng/ml/ml): 0.33 [0.19;0.59] 0.34 [0.19;0.58] 0.32 [0.22;0.59] 0.827

PCI, median (IQR) (mm): 80.9 [76.6;85.4] 81.3 [76.4;85.8] 80.1 [76.6;83.6] 0.188

PV/PCI, median (IQR), median (IQR) (mm2): 0.54 [0.44;0.72] 0.53 [0.44;0.70] 0.56 [0.42;0.73] 0.823

S-BH/AD, median (IQR) (mm): 0.38 [0.21;0.57] 0.37 [0.21;0.56] 0.38 [0.21;0.62] 0.318

BWI, median (IQR): 2.86 [2.55;3.14] 2.86 [2.54;3.14] 2.85 [2.61;3.15] 0.637

SWI, median (IQR) : 2.30 [2.01;2.63] 2.30 [2.02;2.65] 2.31 [2.00;2.60] 0.541

PDI , median (IQR) (mm): 2.77 [2.49;3.08] 2.74 [2.49;3.08] 2.81 [2.48;3.07] 0.878

PDI/PV, median (IQR) (/ml): 0.06 [0.05;0.08] 0.06 [0.05;0.08] 0.06 [0.05;0.08] 0.947

Robot-assisted radical prostatectomy (RARP) , n(%):

TI-MRI-PB, (IQR) (day): 3.00 [1.00;7.00] 3.00 [1.00;7.00] 3.00 [1.75;5.00] 0.308

TI-PB-S, median (IQR) (day): 14.0 [10.0;20.0] 14.0 [10.0;21.0] 12.5 [8.00;16.0] 0.056

Inpatient ward, n(% ): 0.784

1 138 (49.8%) 95 (49.2%) 43 (51.2%)

2 113 (40.8%) 81 (42.0%) 32 (38.1%)

3 26 (9.39%) 17 (8.81%) 9 (10.7%)

Surgeons: 0.208

1 89 (32.1%) 68 (35.2%) 21 (25.0%)

2 46 (16.6%) 30 (15.5%) 16 (19.0%)

3 45 (16.2%) 34 (17.6%) 11 (13.1%)

4 40 (14.4%) 27 (14.0%) 13 (15.5%)

Others 57 (20.6%) 34 (17.6%) 23 (27.4%)

Concomitant surgical procedures : 0.165

No 272 (98.2%) 191 (99.0%) 81 (96.4%)

Yes 5 (1.81%) 2 (1.04%) 3 (3.57%)

Number of laparoscopic incisions : 0.835

5 128 (46.2%) 87 (45.1%) 41 (48.8%)

6 145 (52.3%) 103 (53.4%) 42 (50.0%)

Others 4 (1.44%) 3 (1.55%) 1 (1.19%)

Surgical approach: 0.055

Intraperitoneal 201 (72.6%) 133 (68.9%) 68 (81.0%)

Extraperitoneal 76 (27.4%) 60 (31.1%) 16 (19.0%)

Lymph node dissection, n(% ): 0.12

No 209 (75.5%) 140 (72.5%) 69 (82.1%)

Yes 68 (24.5%) 53 (27.5%) 15 (17.9%)
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TURP, Transurethral resection of the prostate; SII, Systemic immune-inflammation index; Neutrophil* Platelet/Lymphocyte; DeRitis ratio=Aspartate aminotransferas/Alanine aminotransferase;
eGFR, Estimated glomerular filtration rate; fPSA, Free prostate-specific antigen; tPSA, Total prostate-specific antigen; APTT, Activated partial thromboplastin time; Percentage of PBC,
Percentage of positive biopsy cores; PI-RADS v2, Prostate imaging reporting and data system version 2; TI-MRI-PB, The time interval of MRI to prostate biopsy; TI-PB-S, The time interval of
prostate biopsy to surgery; MRI measurement abbreviations, names, and definitions were detailed in Supplementary Table 2.
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(overfitting models). In validation and test sets, RF outperformed all

five other models (positive Z-scores). In the validation set, RF

showed non-significant differences vs. LR/XGB (P > 0.05) but

superiority vs. SVM/KNN/DT (P < 0.05). In the test set, RF
Frontiers in Oncology 13
showed non-significant differences vs. LR/SVM/XGB (P > 0.05)

but superiority vs. KNN/DT (P < 0.05) (Table 5).

Also, RF had the lowest Brier scores (except overfitted KNN/

XGB models) and well-matched calibration curves (Figures 5A–C),
FIGURE 3

Screening flowchart of key features for model establishment in this study. cT stage, Clinical primary tumor stage. Number of PBC, Number of
positive biopsy cores. S-PSAI, Sagittal plane-Posterior spatial anatomical structure index. S-TSAI, Sagittal plane-Total spatial anatomical structure
index. C-LAI, Coronal plane-Left anatomical structure interval. C-RAI, Coronal plane-Right anatomical structure interval. A-SP-BIS Angle, Axial plane-
Inferior margin of symphysis pubis - bilateral ischial spinous angle. LASSO, the least absolute shrinkage and selection operator.
TABLE 2 Key features comparison in the training, validation, and test sets.

Characteristics [ALL] N=347 [Training set] N=193 [Validation set] N=84 [Test set] N=70 P-value

Positive surgical margin (PSM), n(% ) : 0.797

No 238(68.6%) 135 (69.9%) 57 (67.9%) 46(65.7%)

Yes 109 (31.4%) 58 (30.1%) 27 (32.1%) 24 (34.3%)

Age, median (IQR) (year): 70.0 [65.0;74.0] 70.0 [65.0;74.0] 68.5 [64.0;73.0] 71.0 [67.0;76.0] 0.088

A-SP-BIS Angle (IQR) (°): 56.6 [53.2;60.2] 56.9 [52.9;60.6] 55.8 [52.8;58.6] 57.0 [54.8;60.7] 0.102

C-RAI, median (IQR) (mm): 4.73 [3.24;6.48] 4.62 [3.06;6.21] 4.64 [3.26;6.84] 5.07 [3.82;6.64] 0.161

C-LAI, median (IQR) (mm): 4.32 [3.09;6.10] 4.22 [2.87;6.10] 4.36 [3.06;6.09] 4.36 [3.43;6.07] 0.488

S-PSAI, median (IQR): 0.07 [0.05;0.09] 0.07 [0.05;0.09] 0.07 [0.05;0.09] 0.07 [0.05;0.09] 0.907

S-TSAI, median (IQR): 0.43 [0.33;0.54] 0.44 [0.34;0.53] 0.39 [0.32;0.49] 0.48 [0.35;0.57] 0.109

cT stage, n(%): 0.694

1 36 (10.4%) 19 (9.84%) 8 (9.52%) 9 (12.9%)

2 216 (62.2%) 118 (61.1%) 50 (59.5%) 48 (68.6%)

3 79 (22.8%) 47 (24.4%) 21 (25.0%) 11 (15.7%)

4 16 (4.61%) 9 (4.66%) 5 (5.95%) 2 (2.86%)

Number of PBC, median (IQR): 5.00 [3.00;7.00] 5.00 [3.00;7.00] 5.00 [2.75;7.00] 5.00 [3.00;7.00] 0.320
cT stage, Clinical primary tumor Stage; Number of PBC, Number of positive biopsy cores; MRI measurement abbreviations, names, and definitions were detailed in Supplementary Table 2.
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with the highest net benefit in most threshold probabilities at

decision curve analysis (Figures 5D–F).
Robustness checks

Five-fold cross-validation for RF showed fold-specific AUCs of

0.82–0.92, with a mean AUC of 0.87 (95% CI: 0.84–0.90). Ten-fold

cross-validation showed fold-specific AUCs of 0.80–0.99, with a

mean AUC of 0.88 (95% CI: 0.83–0.93), indicating stable

performance (Figure 6).
SHAP interpretation of the RF model

Feature importance rankings were consistent across the training

and validation datasets: S-PSAI > C-LAI > S-TSAI > A-SP-BIS Angle

> C-RAI > Number of PBC > cT stage (Figures 7A, B). In the test set,
Frontiers in Oncology 14
the ranking in the test set was: S-SPAI > S-TSAI > C-LAI > A-SP-BIS

Angle > C-RAI > Number of PBC > cT stage (Figures 7A-C). Five

spatial features (S-PSAI, C-LAI, S-TSAI, A-SP-BIS Angle, C-RAI)

were negatively associated with PSM risk, while Number of PBC and

cT stage were positively associated (Figures 7D–F). The SHAP

decision plot illustrates the influences of all contributing features

on the final predicted probability (Figures 7G-I). SHAP dependence

plots further clarified feature relationships (Figure 8). Representative

cases (NSM vs. PSM) illustrated feature contributions of each of the 7

key features within the RF model (Figure 9).
Discussion

To our knowledge, this is the first study to investigate ML

models that integrate clinical, mpMRI, and biopsy pathology data

for predicting PSM before RARP. The RF model exhibited excellent
TABLE 3 Model parameters screening via Bayesian analysis.

Models Parameter and adjustment range Optimal parameters

LR
C': (0.01, 5) 4.664

penalty': ['l1', 'l2'] l1'

SVM

C': (0.01, 5), 4.397

kernel': ['linear', 'rbf'], 'linear'

gamma': (0.001, 1.0, 'log-uniform') 0.013

KNN

n_neighbors': (3, 20) 9

weights': ['uniform', 'distance'] distance'

p': (1, 2) 2

DT

max_depth': (2, 8), 4

min_samples_split': (2, 10), 10

min_samples_leaf': (1, 5) 1

RF

n_estimators': (10, 100), 76

max_depth': (2, 8), 8

min_samples_split': (2, 10), 10

min_samples_leaf': (1, 5), 4

bootstrap': [True, False], TRUE

XGB

n_estimators': (10, 100), 88

max_depth': (2, 8), 8

learning_rate': (0.01, 0.5, 'log-uniform'), 0.047

subsample': (0.7, 1.0), 0.828

colsample_bytree': (0.7, 1.0) 0.873
LR, Logistic Regression; SVM, Support Vector Machine; KNN, K-Nearest Neighbors; DT, Decision Tree; RF, Random Forest; XGB, Extreme Gradient Boosting.
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performance across the training, validation, and test sets, with its

robustness validated via cross-validation. SHAP analysis identified

the feature importance rankings, thereby improving model

transparency. This innovative approach will improve preoperative

surgical risk stratification, optimize clinical decision-making

processes, and establish a framework for automated robotic

surgery case screening, ultimately advancing the precision and

individualization of RARP therapeutic strategies.

Previous studies have identified predictors of PSM, including

surgical experience, body mass index (BMI), tPSA, extracapsular

extension (ECE), neurovascular bundle (NVB) invasion, cT stage,

percentage of positive biopsy cores, number of positive biopsy cores,

Gleason score (GS), pathological stage (pT stage), time interval

between prostate biopsy and surgery, among others (9–14), but

these studies focused on single feature types. Multiparametric MRI

(mpMRI), a standard PCa imaging tool (38–41), provides critical

anatomical insights, with prior studies linking prostate and pelvic

dimensions (e.g., prostate volume (PV), pelvic dimension index

(PDI)/PV ratio, prostate-muscle index (PMI), apical depth (AD),

symphysis angle (SA), transverse diameter of the pelvic entrance

and intertuberous distance (ITD), among others) to PSM risk (21–
Frontiers in Oncology 15
24, 26, 28, 42, 43). However, focusing exclusively on a single

category of features while neglecting their holistic nature when

evaluating PSM in RARP offers a limited perspective. This study

addressed this limitation by integrating 164 features across multiple

domains and screening 7 key predictors through a rigorous multi-

step selection process, thereby ensuring the scientific validity and

rigor of the selected features.

Optimal hyperparameter tuning is critical for ML performance

(44). Data-efficient optimization algorithms, such as Bayesian

optimization (44), were employed to automate this process,

screening both the parameter adjustment range and optimal

parameters. Based on evaluation metrics, KNN and XGB

approached or reached a value of 1 for accuracy, AUC, and other

metrics, indicating overfitting. The KNN and XGB regression

methods were susceptible to overfitting and fit discontinuity,

which remain significant challenges in the field (45). In contrast,

the RF model obtained suitable AUCs of 0.99 (95% CI: 0.97-1.00),

0.88 (95% CI: 0.80-0.95), and 0.97 (95% CI: 0.94-1.00) in the

training, validation, and test sets. The RF outperformed LR, SVM,

and DT, indicating superior generalization. Its high accuracy (0.94,

0.83, 0.93), specificity (0.96, 0.86, 0.93), and sensitivity (0.91, 0.78,
TABLE 4 Predictive performance of six ML models.

Data set Models Accuracy AUC (95% CI) Sensitivity Specificity PPV NPV F1 score

Training set

LR 0.83 0.89 (0.84-0.93) 0.78 0.86 0.7 0.9 0.74

SVM 0.84 0.86 (0.80-0.91) 0.72 0.89 0.74 0.88 0.73

KNN 1.00 1.00 (1.00-1.00) 1.00 1.00 1.00 1.00 1.00

DT 0.89 0.93 (0.89-0.97) 0.88 0.90 0.78 0.95 0.83

RF 0.94 0.99 (0.97-1.00) 0.91 0.96 0.9 0.96 0.91

XGB 0.99 1.00 (1.00-1.00) 1.00 0.99 0.97 1.00 0.98

Validation set

LR 0.75 0.84 (0.75-0.92) 0.89 0.68 0.57 0.93 0.70

SVM 0.70 0.80 (0.70-0.89) 0.96 0.58 0.52 0.97 0.68

KNN 0.73 0.68 (0.56-0.81) 0.67 0.75 0.56 0.83 0.61

DT 0.82 0.78 (0.66-0.89) 0.78 0.84 0.70 0.89 0.74

RF 0.83 0.88 (0.80-0.95) 0.78 0.86 0.72 0.89 0.75

XGB 0.85 0.87 (0.77-0.94) 0.78 0.88 0.75 0.89 0.76

Test set

LR 0.91 0.94 (0.86-0.99) 0.83 0.96 0.91 0.92 0.87

SVM 0.89 0.90 (0.80-0.97) 0.79 0.93 0.86 0.90 0.83

KNN 0.74 0.66 (0.51-0.79) 0.42 0.91 0.71 0.75 0.53

DT 0.84 0.79 (0.65-0.90) 0.71 0.91 0.81 0.86 0.76

RF 0.93 0.97 (0.94-1.00) 0.92 0.93 0.88 0.96 0.90

XGB 0.87 0.94 (0.89-0.98) 0.96 0.83 0.74 0.97 0.84
PPV, Positive Predictive Value; NPV, Negative Predictive Value; LR, Logistic Regression; SVM, Support Vector Machine; KNN, K-Nearest Neighbors; DT, Decision Tree; RF, Random Forest;
XGB, Extreme Gradient Boosting.
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0.92) across datasets confirm its predictive reliability. Overall, these

results confirm that the RF model is the optimal classifier,

consistent with previous studies (46, 47).

Notably, the DeLong test confirmed that in the training set, the

AUCs of the RF model were superior to those of LR, SVM, and DT,

but lower than those of KNN and XGB. Given that KNN and XGB

are overfitting models, these comparisons lack practical

significance. The AUCs of the RF model were comparable to

those of LR and XGB in the validation set, but superior to those

of SVM, KNN, and DT. The AUCs of the RF model were

comparable to those of LR, SVM, and XGB in the test set, but

superior to those of KNN and DT. The DeLong test confirmed that

the overall advantage of the RF model holds, but this advantage has

practical value for high-variance models (KNN/DT/SVM models).

For LR and XGB models in the validation and test sets, the RF

model does not exhibit a significant advantage, which may be

attributed to the insufficient sample size of the current validation

and test sets. In addition, the RF model exhibited the optimal

calibration (lower Brier score, well-aligned calibration curves) and

the highest net benefit across most threshold probabilities (decision

curve analysis). In conclusion, the RF model demonstrated excellent

performance in terms of sensitivity, specificity, accuracy, ROC, and

F1 score across the three sets, affirming its predictive reliability and

clinical decision-support value. Five-fold and ten-fold cross-

validation confirmed the stable performance of the RF model.
FIGURE 4

Predictive performance of six ML models. This figure presents the Receiver Operating Characteristic (ROC) curve analysis of the established models
in the training (A), validation (B), and test (C) sets, as well as the radar plots of the models’ prediction metrics in the training (D), validation (E), and
test (F) sets. LR, Logistic Regression; SVM, Support Vector Machine; KNN, K-Nearest Neighbors; DT, Decision Tree; RF, Random Forest; XGB,
Extreme Gradient Boosting; AUC, Area Under the ROC Curve; PPV, Positive Predictive Value; NPV, Negative Predictive Value.
TABLE 5 Results of DeLong’s test analysis comparing AUCs of the RF
model with those of other ML models.

Data set Models Z-score P-value

Training set

RF vs. LR 4.6157 0.0000

RF vs. SVM 4.6805 0.0000

RF vs. KNN -2.4243 0.0153

RF vs. DT 3.0600 0.0022

RF vs. XGB -2.4662 0.0137

Validation set

RF vs. LR 1.3588 0.1742

RF vs. SVM 2.1151 0.0344

RF vs. KNN 3.7698 0.0002

RF vs. DT 2.7313 0.0063

RF vs. XGB 0.9903 0.3220

Test set

RF vs. LR 1.1390 0.2547

RF vs. SVM 1.9091 0.0562

RF vs. KNN 4.6554 0.0000

RF vs. DT 3.1687 0.0015

RF vs. XGB 1.8528 0.0639
LR, Logistic Regression; SVM, Support Vector Machine; KNN, K-Nearest Neighbors; DT,
Decision Tree; RF, Random Forest; XGB, Extreme Gradient Boosting.
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These results suggest that the RF model could facilitate the

identification of surgical difficulty, guide personalized surgical

planning, and optimize resource allocation (such as assigning

experienced surgeons), thereby reducing the risk of biochemical

recurrence after surgery.

ML models are often criticized as “black boxes” (48, 49), which

limits their clinical acceptance, particularly in critical applications
Frontiers in Oncology 17
such as healthcare, where transparency and reliability in clinical

decision-making tools are crucial (50, 51). To address this challenge,

researchers have focused on developing methods to improve the

interpretability of these models, such as SHapley Additive

exPlanations (SHAP) analysis, which assigns contribution values

to individual features in the dataset to indicate the extent of each

feature’s influence on predicted outcomes. This holistic approach
FIGURE 6

Five-fold and ten-fold cross-validation of the RF model. (A) Five-fold cross-validation ROC curves of the RF model (AUC values range from 0.82 to
0.92, mean AUC = 0.87, 95% CI: 0.84–0.90); (B) Ten-fold cross-validation ROC curves of the RF model (AUC values range from 0.80 to 0.99, mean
AUC = 0.88, 95% CI: 0.83–0.93). The dashed line represents chance (AUC = 0.5). RF, Random Forest; AUC, Area Under the ROC Curve; CI,
Confidence Interval.
FIGURE 5

Clinical utility evaluation via calibration and decision curves. Calibration curve analysis of the six models in the training (A), validation (B) and test (C)
sets. Decision curve analysis of the six models in the training (D), validation (E) and test (F) sets. "Treat All" and "Treat None" are baselines. Different
colors represent models. Brier score, measure of calibration (lower = better).
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enables researchers to identify which features most significantly

impact outcomes and whether their influence is positive or negative,

thereby promoting the acceptance of ML-based diagnostic or

predictive tools in clinical settings (47, 52–56). To our knowledge,

this is the first study to investigate ML models based on multi-

dimensional fusion data that use SHAP methods for PSM

prediction. The contribution relationships of the 7 selected

features were successfully visualized using SHAP bar plots, bee-

swarm plots, and decision plots. As a result, our study identified that

5 newly discovered spatial features were negatively associated with

PSM, with S-PSAI being the most influential. In preoperative PSM

prediction, the RF model assigns the highest importance to this

feature. Specifically, lower values of S-PSAI, S-TSAI, C-LAI, and C-

RAI indicate limited surgical space, which increases surgical

difficulty and the risk of tumor residue, prompting surgeons to

adjust dissection techniques (such as expanding the resection range

or performing more meticulous operations) or assign experienced

surgeons. A narrow A-SP-BIS Angle could inform surgical planning

(such as adjusting port placement to improve access). However, the

number of PBC and cT stage are positively correlated with PSM,

consistent with previous studies (11, 12, 15). Surgeons can use
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feature contributions to prioritize intraoperative vigilance in high-

risk regions. SHAP visualizations enhance transparency, thereby

improving trust in model-derived decisions and patient

understanding and compliance.

This study has several key strengths: (1) Robust data quality:

Strict inclusion and exclusion criteria were applied, and enrolled

cases underwent rigorous screening; (2) Comprehensive feature

integration: Integration of radiomics, prostate and pelvic

measurements, clinical, and biopsy pathological features,

comprehensively covering factors influencing PSM; (3) Scientific

rigor in feature screening: A four-step screening process (low-

variance elimination, univariate regression, Spearman correlation-

based redundancy removal, and intersection of LASSO and Boruta

algorithms) was applied to 164 initial features; (4) Model diversity

and validation: Six ML algorithms were used to develop models,

and stable predictive models were identified through comparison,

with robustness confirmed via sensitivity analysis and N-fold (5-

fold and 10-fold) cross-validation; (5) Model interpretability: The

SHAP method was employed to clarify the model’s decision-

making process , providing valuable insights into i ts

predictive mechanism.
FIGURE 7

The SHAP analysis of the RF model. Bar plot of mean SHAP values (feature importance) in the training, validation and test sets (A–C); Bee-swarm
plot of SHAP values (color gradients represent feature value by impact) in the training, validation and test sets (D–F); Parallel plot of model output
values and feature impact in the training, validation and test sets (G–I); SHAP, Shapley Additive exPlanations; RF, Random Forest; S-PSAI, Sagittal
plane-posterior spatial anatomical structure index; C-LAI, Coronal plane-left anatomical structure interval; S-TSAI, Sagittal plane-total spatial
anatomical structure index; A-SP-BIS Angle, Axial plane-inferior margin of symphysis pubis-bilateral ischial spinous angle; C-RAI, Coronal plane-right
anatomical structure interval; Number of PBC, Number of positive biopsy cores; cT stage, Clinical primary tumor Stage.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1661695
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Liu et al. 10.3389/fonc.2025.1661695
FIGURE 8

SHAP dependence plots for seven features. SHAP dependence plot is a visualization tool in SHAP tools used to analyze the influence of a single
feature on model prediction and its interaction with other features, which reveals the direct impact (positive or negative) and nonlinear relationship
of features on the prediction results by presenting the relationship between feature values and the corresponding SHAP values.
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FIGURE 9

Representative NSM (A, C, E) and PSM (B, D, F) cases predicted by the RF model. Representative NSM (negative surgical margin) case in the training
(A), validation (C) and test (E) sets; Representative PSM (positive surgical margin) case in the training (B), validation (D) and test (F) sets. The distinct
contributions of each feature within the RF model for individual predictions are illustrated using the SHAP waterfall plot. RF, random forest. SHAP,
SHapley Additive exPlanations.
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Several limitations of this study should be acknowledged. (1)

Retrospective bias: The retrospective design introduced inevitable

selection bias, highlighting the need for prospective studies with

predefined criteria. (2) Selection bias: The high exclusion rate

(primarily due to missing data) may introduce selection bias, as

patients with complete data may differ from those excluded. (3)

Limited generalizability: Although the dataset is larger than those in

previous studies, the single-center Chinese cohort limits global

applicability, necessitating external and multi-ethnic validation.

(4) Automation limitations: Automatic mpMRI feature

recognition is lacking and will be addressed in future work. (5)

Restricted surgical scope: Patients undergoing laparoscopic RP were

excluded because the surgical assistant’s experience level may

impact outcomes, and thus the generalizability of the RF model to

RP patients requires further investigation. (6) Data limitations:

Genomic data (e.g., PTEN deletion) were not included; future

iterations will integrate genomic data and long-term functional

outcomes to provide a more comprehensive risk assessment.

In conclusion, ML models based on multi-dimensional fusion data

improve PSM prediction in RARP. The RF model, with robust

performance and SHAP-based interpretability, enhances preoperative

risk stratification, optimizes decision-making, and supports

personalized treatment, thereby improving patient treatment

compliance and potentially enhancing patient outcomes. Prospective

and external validation are required prior to clinical implementation.
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SUPPLEMENTARY FIGURE 1

Definitions and images of parameters in MRI measurements. Note: MRI
measurement abbreviations, names, and definitions were detailed in

Supplementary Table 2.

SUPPLEMENTARY FIGURE 2

Feature elimination via Spearman’s rank correlation analysis. Note: A-RSAI, Axial

plane-Right spatial anatomical structure index. A-RAI, Axial plane-Right

anatomical structure interval. A-SP-BIS Angle, Axial plane-Inferior margin of
symphysis pubis - bilateral ischial spinous angle. A-ASP, Axial plane-The angle of

the symphysis pubis. C-TSAI, Coronal plane-Total spatial anatomical structure
index. C-RSAI, Coronal plane-Right spatial anatomical structure index. C-LSAI,

Coronal plane-Left spatial anatomical structure index. C-TAI, Coronal plane-
Total anatomical structure interval. C-RAI, Coronal plane-Right anatomical

structure interval. C-LAI, Coronal plane-Left anatomical structure interval. S-

TSAI, Sagittal plane-Total spatial anatomical structure index. S-PSAI, Sagittal
plane-Posterior spatial anatomical structure index. S-ASAI, Sagittal plane-

Anterior spatial anatomical structure index. S-TAI, Sagittal plane-Total
anatomical structure interval. S-PAI, Sagittal plane-Posterior anatomical

structure interval. S-AAI, Sagittal plane-Anterior anatomical structure interval.
S-SP-PA-CA Angle, Sagittal plane-Symphysis pubis-prostate apical-coccyx

apical angle. S-SP-PA-S5 Angle, Sagittal plane-Symphysis pubis-prostate

apical-S5 angle. S-SP-PA-S1 Angle, Sagittal plane-Symphysis pubis-prostate
apical-S1 angle. S-MTSP-IMSPA Angle, Sagittal plane-Angle between themedial

tangent of the symphysis pubis, and the line connecting the inferior margin of
the symphysis pubis and the prostate apical. S-LASP-API Angle, Sagittal plane-

Angle between the long axis diameter of the symphysis pubis and
anteroposterior diameter of the pelvic outlet angle. PSAD, Total prostate-

specific antigen density. AFSI, Anterior fibromuscular stroma invasion. UI,

Urethral invasion. A-CCL-PZ, Axial plane-Cumulative contact length-prostate
peripheral zone. A-LLD, Axial plane-Largest lesion diameter. cT stage, Clinical

primary tumor stage. GGG, Gleason grade group. GS, Gleason score. PGG,
Primary Gleason grade. tPSA, Total prostate-specific antigen. fPSA, Free

prostate-specific antigen. ALT, Alanine aminotransferase. AST, Aspartate
aminotransferas. LND, Lymph node dissection.

SUPPLEMENTARY FIGURE 3

Feature screening via LASSO and Boruta algorithms. Note: LND, Lymph node

dissection. A-ASP, Axial plane-The angle of the symphysis pubis. A-RAI, Axial
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plane-Right anatomical structure interval. PGG, Primary Gleason grade. S-
LASP-API Angle, Sagittal plane-Angle between the long axis diameter of the

symphysis pubis and anteroposterior diameter of the pelvic outlet angle. fPSA,
Free prostate-specific antigen. AFSI, Anterior fibromuscular stroma invasion.

S-SP-PA-S5 Angle, Sagittal plane-Symphysis pubis-prostate apical-S5 angle.

AST, Aspartate aminotransferas. S-MTSP-IMSPA Angle, Sagittal plane-Angle
between the medial tangent of the symphysis pubis, and the line connecting

the inferior margin of the symphysis pubis and the prostate apical. UI, Urethral
invasion. cT stage, Clinical primary tumor stage. PSAD, Total prostate-specific

antigen density. Number of PBC, Number of positive biopsy cores. A-LLD,
Axial plane-Largest lesion diameter. C-RAI, Coronal plane-Right anatomical

structure interval. C-LAI, Coronal plane-Left anatomical structure interval. S-

TSAI, Sagittal plane-Total spatial anatomical structure index. A-SP-BIS Angle,
Axial plane-Inferior margin of symphysis pubis - bilateral ischial spinous angle.

S-PSAI, Sagittal plane-Posterior spatial anatomical structure index. LASSO,
the least absolute shrinkage and selection operator.

SUPPLEMENTARY FIGURE 4

Definitions and images of five key features in MRI measurements. Note: (A)
Axial plane of MRI on T2 showing the maximum area of the prostate. A-SP-
BIS-Angle was defined as the angle between the lines connecting the inferior

margin of the symphysis pubis to the medial aspects of the bilateral ischial
spinous processes. (B) Sagittal plane of MRI on T2 showing themaximum area

of the prostate. Prostate maximum anteroposterior diameter(PAD) was
defined as The maximum anteroposterior diameter at the largest area of

the prostate(bc). Prostate maximum craniocaudal diameter(PCD) was defined

as The maximum craniocaudal diameter at the largest area of the prostate(ef).
Anterior anatomical structure interval diameter(S-AAI) was defined as the

horizontal distance between the posterior margin of the symphysis pubis and
the anterior margin of the prostate, which was measured at the level of the

maximum anteroposterior diameter with the largest area of the prostate (ab).
Posterior anatomical structure interval diameter(S-PAI) was defined as the

horizontal distance between the posterior margin of the prostate and the

anterior margin of the rectum, which was measured at the level of the
maximum anteroposterior diameter with the largest area of the prostate

(cd). Posterior spatial anatomical structure index(S-PSAI), Calculated based
on the formula: (S-RAI) / (S-PAD); Total spatial anatomical structure index(S-

TSAI), Calculated based on the formula: ('S-AAI'+'S-PAI') / (S-PAD). (C)
Coronal plane of MRI on T2 showing the maximum area of the prostate.

Prostate transverse diameter(C-PTD) was defined as the maximum transverse
diameter at the largest area of the prostate(bc). Prostate craniocaudal

diameter(C-PCD) was defined as the maximum craniocaudal diameter at

the largest area of the prostate and the inner edge of the left obturator
internus muscle(ef). Left anatomical structure interval(C-LAI) was defined as

the horizontal distance between the left edge at the maximum transverse
diameter of the prostate and the inner edge of the left obturator internus

muscle(cd). Right anatomical structure interval(C-RAI) was defined as the
horizontal distance between the horizontal distance between the right edge

at the maximum transverse diameter of the prostate and the inner edge of the

right obturator internus muscle(ab). P, prostate. SP, symphysis pubis. OIM,
obturator internus muscle. Fe, femoral bone. R, rectum. Bl, bladder.
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