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Development of a radiomics
and clinical feature-based
nomogram for preoperative
prediction of pathological
grade in bladder cancer
Qi Zhou1,2†, Lu Ma3†, Yanhang Yu1†, Chuanao Zhang1,
Jun Ouyang1, Caiping Mao2 and Zhiyu Zhang 1*

1Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China,
2Department of Reproductive Medicine Center, The First Affiliated Hospital of Soochow University,
Suzhou, China, 3Department of Urology, Tongren Hospital, Shanghai Jiao Tong University School of
Medicine, Shanghai, China
Introduction: This study aimed to develop a preoperative predictive model for

pathological grading of bladder urothelial carcinoma by integrating multi-

parameter, thin-slice enhanced computed tomography (CT) texture features

with relevant clinical indicators.

Methods: CT images and clinical data were retrospectively collected from 372

individuals diagnosed with bladder urothelial carcinoma at our institution

between January 2015 and October 2020. The cohort was categorized into

high-grade urothelial carcinoma (HGUC; n = 190) and low-grade urothelial

carcinoma (LGUC; n = 182). Participants were randomly assigned to a training

group (n = 259) and a validation group (n = 113) in a 7:3 ratio. Regions of interest

(ROIs) were delineated on all enhanced CT images using 3D-Slicer software, and

1,223 texture features encompassing first-order, second-order, high-order, and

filtered attributes were extracted. Features with an intraclass correlation

coefficient (ICC) above 0.75 were retained for further analysis via least absolute

shrinkage and selection operator (LASSO) regression. A logistic regression model

was constructed based on the selected features to develop a clinical prediction

tool. The model’s performance was evaluated using the concordance index (C-

index), calibration curve, receiver operating characteristic (ROC) curve, and

decision curve analysis (DCA).

Results: Eleven radiomics features demonstrated significant associations with

the pathological grade of bladder urothelial carcinoma. Among the models

evaluated, the logistic regression model exhibited the highest discriminative

power, with an area under the curve (AUC) of 0.858. Multivariate analysis

identified age and proteinuria as independent predictors. The integrated

model, incorporating both clinical and imaging features, outperformed models

based on clinical or radiomic data alone (AUC = 0.864).
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Conclusion: This study presents the first CT-based nomogram that integrates

multiparametric radiomic features with comprehensive clinical indicators to

preoperatively predict pathological grade in bladder urothelial carcinoma. The

model offers a robust, accurate, and non-invasive tool that can facilitate

individualized treatment planning and enhance clinical decision-making.
KEYWORDS

bladder urothelial carcinoma, pathological grade, radiomics, CT texture
analysis, nomogram
1 Introduction

Bladder cancer (BCa), which predominantly comprises

urothelial carcinoma, is a common and potentially lethal

malignancy of the urinary system (1, 2). Despite advances in

therapeutic strategies, the overall prognosis for individuals with

BCa remains poor (3). Accurate preoperative pathological grading

is essential for selecting appropriate treatment modalities, as high-

grade urothelial carcinoma is associated with a higher risk of muscle

invasion and recurrence (4, 5). Current diagnostic classifications

depend on invasive cystoscopic biopsy, which poses complications

such as infection and discomfort (6). Therefore, there is an urgent

clinical need for a non-invasive approach to predict pathological

grade and inform personalized treatment planning.

Consistent with the 2025 European Association of Urology

(EAU) guidelines, multiphasic computed tomography (CT)

urography and, when indicated, magnetic resonance imaging (MRI)

are recommended for pre-operative staging and risk stratification of

bladder cancer; nevertheless, these modalities still provide only

limited insight into tumor micro-architecture and molecular

heterogeneity (7, 8). Recently, radiomics, a method involving the

extraction of high-dimensional quantitative features from medical

images, has emerged as a powerful tool in oncology for diagnosis,

prognosis, and treatment response assessment (9, 10). When

integrated with machine learning algorithms, radiomics has shown

promise in tumor characterization and clinical decision support (11).

To date, most radiomics models for predicting pathological grading in

bladder cancer have relied on MRI, (12–14) while CT has been more

commonly used to evaluate the risk of muscle-invasive disease (15).

However, in China, CT is more accessible and cost-effective than

MRI, offering faster acquisition and superior lesion visualization (16).

Given these advantages, this study proposes a novel, non-invasive,

quantitative prediction model based on multiparametric thin-slice

enhanced CT and texture analysis. The model leverages machine

learning algorithms to estimate pathological grade in individuals with

bladder cancer. Additionally, we aim to construct a nomogram that

integrates radiomic and clinical features to further support

individualized clinical decision-making. Therefore, the objective of
02
this retrospective study was to develop and validate a machine-

learning-based nomogram that integrates radiomic features from

enhanced CT with relevant clinical parameters to non-invasively

predict pathological grade in individuals with bladder

urothelial carcinoma.
2 Materials and methods

2.1 Patient cohort and grouping
methodology

This study analyzed data from 372 individuals diagnosed with

urothelial carcinoma at our hospital between January 2015 and

October 2020. Of these, 182 had low-grade and 190 had high-grade

carcinoma. Inclusion criteria required a postoperative pathological

diagnosis, complete clinical records, and a contrast-enhanced CT

scan showing a bladder tumor of at least 1 cm in diameter.

Exclusions included prior neoadjuvant therapy, inadequate

bladder filling, tumors <1 cm, organ insufficiencies, inflammatory

bladder disease, psychiatric disorders, and other malignancies.

Patients were split into training and validation groups in a 7:3

ratio, as shown in Figure 1.
2.2 Collection of clinical and imaging data

Collected clinical data included height, age, sex, urinary pH,

weight, presence of metabolic syndrome (MS), history of

hypertension, urinary tract infections, and body mass index

(BMI). It also included hematuria, urinary protein, high-density

lipoprotein cholesterol (HDL-C), and tumor location, number, and

size (maximum diameter). Additional data included diabetes

mellitus (DM), triglyceride levels (TG), pathological grade, past

medical history, and family history. Imaging data comprised thin-

slice contrast-enhanced CT images of the venous and arterial

phases, taken within a month prior to surgery, clearly showing

bladder tumors without artifacts.
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2.3 CT scanning procedure

All participants underwent abdominal and pelvic (bladder)

arteriovenous CT scans using a Siemens 64-slice spiral CT

scanner. Reconstructed images were uploaded in uncompressed

DICOM format to the Picture Archiving and Communication

System (PACS). Arterial and venous phase thin-layer image data

were then downloaded from the PACS system.
2.4 Delineation of image region of interest

Arterial and venous phase images were fused using the 3D Slicer

image processing software. Two radiology residents, each with over

three years of experience in urinary system imaging interpretation,

independently delineated the ROI using the Threshold and Sphere

Brush functions, without prior knowledge of pathological results.

Semi-automatic, continuous-slice ROI delineation was performed

to encompass the entire bladder tumor lesion. To ensure

morphological consistency, contours were smoothed after

segmentation. The ROI delineation process is illustrated in

Figure 2. Furthermore, to encompass the entire bladder tumor as

accurately as possible, the delineation line is maintained

approximately 1–2 mm from the tumor’s edge. In cases of

multiple foci, only the largest focus is included in the study to

account for individual variability.
Frontiers in Oncology 03
2.5 Image processing and data acquisition

Radiomic feature extraction was carried out with the Radiomics

module in 3D Slicer, which calls PyRadiomics v3.0 and fully

implements Image Biomarker Standardization Initiative (IBSI)

definitions. To minimize inter-scanner variability, all CT volumes

were (i) resampled to isotropic 1 × 1 × 1 mm³ voxels, (ii) z-score

intensity-normalized, and (iii) further harmonized across scanners

using the ComBat algorithm. IBSI-compliant features were then

generated, including first-order statistics, shape descriptors

(Shape2D, Shape3D), and higher-order texture matrices—gray-

level co-occurrence (GLCM), run-length (GLRLM), size-zone

(GLSZM), dependence (GLDM), and neighboring gray-tone

difference (NGTDM). Multiscale information was captured with

log-sigma filters (s = 1.0, 1.5, 2.0, 2.5) and wavelet decompositions.
2.6 Preprocessing of texture feature data

The radiomic feature extraction process began with the use of

3D Slicer software (www.slicer.org/) to derive features from tumor

image data. Using the Radiomics module, three-dimensional image

features such as first-order, second-order, high-order, and filtering

features were extracted (13, 14). First-order features describe global

gray-level characteristics such as intensity distribution and energy.

Second-order features quantify local gray-level dependencies,
FIGURE 1

Flowchart of the enrolled patients. A total of 372 patients with bladder cancer who met the inclusion criteria were identified through the hospital’s
case retrieval system and the Picture Archiving and Communication System (PACS).
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including autocorrelation, contrast, correlation, difference average,

and difference entropy. High-order features reflect complex textural

attributes, such as coarseness and heterogeneity. A total of 80

feature types were computed from each tumor ROI: first-order

(18 features), 3D shape (16 features), 2D shape (14 features), gray-

level co-occurrence matrix (24 features), gray-level run length

matrix (16 features), gray-level size zone matrix (16 features),

neighboring gray-tone difference matrix (5 features), and gray-

level dependence matrix (14 features), yielding 1,223 total

radiomic features. Preprocessing was performed to ensure feature

quality and model compatibility. Initially, null values were imputed

using the median. Features were then filtered using the intraclass

correlation coefficient (ICC > 0.75) to retain those with high

reproducibility. Finally, all retained features were normalized

using Z-score transformation to a range of (−1, 1).
2.7 Extraction and screening of texture
features

Effective radiomics features were selected from the training set

using the Least Absolute Shrinkage and Selection Operator

(LASSO) regression. Models were built using logistic regression,

decision trees, support vector machines, and AdaBoost. Models

were evaluated using accuracy, sensitivity, and specificity.
2.8 Selection and assignment of clinical
factors

To develop a robust and efficient predictive model for the

pathological grade of bladder cancer, diverse clinical factors were

integrated. These included sex, age, height, weight, history of

hypertension, urine pH, urinary tract infection, hematuria,

urinary protein levels, triglycerides, BMI, diabetes, tumor

location, tumor number, HDL-C, tumor size (maximum

diameter), pathological grade, MS, past medical history, and

family history. Given the data-intensive and complex nature of

this study, categorical parameters were assigned numerical values to

enhance computational efficiency and clarity in display. For

instance, low-grade urothelial carcinoma was assigned a value of
Frontiers in Oncology 04
“0,” while other classifications were marked as “1.” For further

details on the assignment of clinical factors, please refer to Table 1.
2.9 Construction of predictive models:
comparing four algorithms

Initially, four predictive models were developed to classify the

pathological grade of bladder cancer using the pre-divided training

set. Accuracy, sensitivity, specificity, and the area under the receiver

operating characteristic curve (AUC) were used to compare model

performance. To assess the predictive power of these models, a 10-

fold cross-validation procedure with 100 iterations was employed.

In parallel, comparisons were made with a clinical feature-based

prediction model to identify the model with superior

predictive capability.
2.10 Statistical analysis

The software utilized in this study included 3D Slicer (version

4.10.2 for Windows 64-bit), RStudio (version 1.2.1335), and
TABLE 1 Clinical factor assignment.

Clinical factor Assignment”0” Assignment”1”

Gender Female Male

Urinary tract infection No Yes

Hematuria (%) No Yes

Proteinuria No Yes

Number Single Multiple (>=2)

Metabolic syndrome (MS) No Yes

BMI BMI<25 BMI≥25

Triglyceride <1.7 ≥1.7

High blood pressure (HBP) No Yes

Diabetes mellitus (DM) No Yes
Definition: yes = 1, no = 0.
BMI normal value = 18.5- 23.9. Triglyceride normal value = 0.45~1.69mmol/L. High-Density
Lipoprotein(HDL) normal value = 0.7~2.0mmol/L. Urine pH normal value = 6.0- 6.5.
FIGURE 2

Delineation of Image Region of Interest (ROI). Semi-manual three-dimensional segmentation of the tumor, the tumor in 3D form, and the cutting of
the tumor for smoothing.
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associated software packages. SPSS 22.0 (IBM) was used to analyze

clinical variables, with continuous data expressed as mean ±

standard deviation (x ± s). Independent samples t-tests were used

to compare two groups of continuous variables, while chi-square

tests were applied to categorical data. Logistic regression was used to

identify independent risk factors. The effectiveness of radiological

features in distinguishing between NMIBC and MIBC was

evaluated using one-way analysis of variance. The LASSO

regression model was implemented using the “glmnet” package,

and ROC curves were plotted using the “pROC” package.

Differences in AUC values between models were tested using the

DeLong test, with statistical significance set at P < 0.05 (two-sided).

Model performance was assessed using the concordance index (C-

index), and decision curve analysis (DCA) was performed to

evaluate clinical utility.
3 Results

The results are presented in five parts: analysis of clinical

variables, imaging feature selection, construction and comparison

of prediction models, performance evaluation of the integrated

model, and development of a radiomic nomogram. All findings

are reported based on analyses performed in the training and

validation datasets.
3.1 Correlation analysis of clinical features

This study included 372 patients with bladder cancer. Of the

participants, 301 were male and 71 were female, aged 26 to 95 years,

with a mean age of 65.48 ± 12.39 years. The cohort comprised 182

individuals with low-grade urothelial carcinoma (LGUC) and 190

with high-grade urothelial carcinoma (HGUC). Table 2 presents the

clinical characteristics of the high- and low-grade groups, as well as

the overall cohort. Patients were randomly assigned to a training

group (n = 259) and a validation group (n = 113) in a 7:3 ratio.

Table 3 summarizes HGUC and LGUC data in both groups.

Univariate analysis revealed statistically significant associations

for age, urinary tract infection, hematuria, proteinuria, and tumor

diameter (P < 0.05). Multivariate analysis identified age and

proteinuria as independent risk factors in the clinical prediction

model (P < 0.01).
3.2 Selection of imaging features

A total of 699 radiomic features demonstrated strong inter- and

intra-observer reproducibility, with ICC values of 0.75 or higher

(mean ICC = 0.748; median = 0.807) (see Figure 3a). One-way

ANOVA identified 651 features with significant differences between

HGUC and LGUC (P < 0.05), which were subsequently entered into

a LASSO regression model for feature selection (see Figure 3b).

Using the minimum criterion from 10-fold cross-validation, 11

features were ultimately selected to build the predictive model (see
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Figures 3b, c). Feature selection and modeling were performed

using the “glmnet” and “pROC” packages in R.
3.3 Model construction and evaluation

Eleven radiomic features were finally selected for model

construction: three first-order statistics (Entropy, Kurtosis, Skewness),

five texture descriptors (GLCM_Contrast, GLCM_DifferenceVariance,

GLRLM_LongRunEmphasis, GLDM_DependenceNonUniformity,

NGTDM_Coarseness), and three shape indices (LongestAxisLength,

SurfaceArea-to-Volume Ratio, Sphericity). Biologically, higher Entropy

and Kurtosis indicate a disordered and peaked intensity distribution,

often reflecting necrosis and marked cellular atypia characteristic of

high-grade tumors. Texture metrics such as GLCM_Contrast and

GLRLM_LongRunEmphasis quantify fine-scale grey-level fluctuations

that mirror micro-architectural heterogeneity created by variable cell

density, stromal content, and angiogenesis. Shape features capture

macroscopic invasiveness; for example, an increased LongestAxis

Length and reduced Sphericity signify elongation and irregular growth

patterns commonly observed in aggressive lesions. Using these 11

features, four classifiers were evaluated—logistic regression, support

vector machine (SVM), AdaBoost, and decision tree. Logistic

regression showed the best overall clinical utility. In the training

cohort, the AUCs were 0.858 (logistic regression), 0.872 (decision

tree), 0.852 (SVM), and 0.789 (AdaBoost). For logistic regression,

sensitivity, specificity, and accuracy in the training set were 75.40%,

82.71%, and 79.15%, respectively (95% CI: 0.812–0.903). In the

validation set these metrics were 76.36%, 68.97%, and 72.57% (95%

CI: 0.719–0.881). Thus, logistic regression maintained balanced, high

diagnostic performance across both cohorts (AUC = 0.858 training;

0.800validation;Figure4).Although theAUCdeclined from0.858 in the

training set to 0.800 in the internal validation set, the overlapping 95%

confidence intervals and well-aligned calibration curves suggest that

significantoverfittingdidnotoccur.Thismodest reduction likely reflects

normal sampling variability and underscores the importance of the

forthcoming external validation study. Table 4 summarizes the

diagnostic metrics for all models.
3.4 Predictive model development and
analysis

Univariate and multivariate analyses identified age and

proteinuria as independent risk factors for bladder cancer

pathological grade. A clinical prediction model incorporating

these two variables was developed in the training group and

compared with a radiomics-only model. The AUC values for the

radiomics and clinical models were 0.858 and 0.650, respectively,

with a statistically significant difference between them (P = 0.001).

Figure 5 presents ROC curves for the clinical, radiomics, and

combined models. The radiomics model outperformed the clinical

model in predicting pathological grade. A comprehensive model

integrating radiomics and clinical factors achieved improved

performance (AUC = 0.864).
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TABLE 2 General information of patients in training group and verification group.

Clinical factor LGUC (N=182) HGUC (N=190) U/c2 P

Age (c±S, year) 61.98 ± 12.29 68.85 ± 11.91 11574 <0.0001

Gender (%) 2.733 0.0983

Male 141 (77.5%) 160 (84.2%)

Female 41 (22.5%) 30 (15.8%)

BMI (c±S, kg/m2) 23.56 ± 3.275 23.42 ± 3.243 17190 0.9235

Urine PH (c±S) 6. 052 ± 0.7187 6.079 ± 0.7376 16860 0.6699

Urinary infection (%) 13.78 0.0002

Yes 81 (44.5%) 121 (63.7%)

No 101 (55.5%) 69 (36.3%)

Hematuria (%) 18.44 <0.0001

Yes 105 (57.7%) 149 (78.4%)

No 77 (42.3%) 41 (21.6%)

Proteinuria (%) 42.12 <0.0001

Yes 52 (28.6%) 118 (62.1%)

No 130 (71.4%) 72 (37.9%)

Tumor location (%) 6.487 0.2617

Left side wall 69 (37.9%) 86 (46.8%)

Right side wall 49 (26.9%) 55 (28.9%)

Bladder triangle 12 (6.6%) 9 (4.7%)

Front wall 7 (3.8%) 11 (5.8%)

Posterior wall 39 (21.4%) 25 (13.2%)

Bladder vault 5 (3.4%) 4 (6%)

Tumor number (%) 0.4112 0.5213

single 162 (89%) 165 (86.8%)

Multiple (>=2) 20 (11%) 25 (13.2%)

Tumor size (c±S, mm) 19.65 ± 11.27 24.94 ± 15.05 13804 0.0007

MS (%) 0.4207 0.5166

Yes 50 (27.5%) 58 (30.5%)

No 132 (72.5%) 132 (69.5%)

HBP (%) 1.210 0.2714

Yes 74 (40.7%) 88 (46.3%)

No 108 (59.3%) 102 (53.7%)

Triglycerides (c±S) 1.443 ± 0.8769 1.415 ± 0.8038 16390 0.3853

HDL-C (c±S) 1.201 ± 0.3570 1.204 ± 0.3159 16933 0.7305

DM (%) 2.599 0.1070

Yes 30 (16.5%) 44 (23.2%)

No 152 (83.5%) 146 (76.8%)
F
rontiers in Oncology
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LGUC, Low-grade urothelial carcinoma; HGUC, Low-grade urothelial carcinoma; BMI, Body mass index; MS, Metabolic syndrome; HBP, high blood pressure; HDL-C, High density lipoprotein
cholesterol; DM, Diabetes mellitus.
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TABLE 3 Comparison of the characteristics of HGUC and LGUC in the training group and the training group.

Clinical factor
Training group (259)

U/c2 P
Validation group (113)

U/c2 P
HGUC (126) LGUC (133) HGUC (64) LGUC (49)

Age (c±S, year) 68.83 ± 12.07 61.53 ± 12.61 5656 <0.0001 68.91 ± 11.68 63.20 ± 11.43 1046 0.002

Gender (%) 0.735 0.39 2.746 0.097

Male 103 103 57 38

Female 23 30 7 11

BMI (c±S, kg/m2) 23.42 ± 3.37 23.28 ± 3.12 8133 0.68 23.44 ± 2.99 24.32 ± 3.58 1401 0.335

Urine PH (c±S) 6.04 ± 0.67 6.06 ± 0.73 8368 0.98 6.14 ± 0.71 6.02 ± 0.66 1446 0.467

Urinary infection (%) 14.62 0.0001 5.470 0.019

Yes 82 55 44 23

No 44 78 20 26

Hematuria (%) 21.43 <0.0001 7.846 0.005

Yes 103 64 51 27

No 23 69 13 22

Proteinuria (%) 34.71 <0.0001 7.942 0.004

Yes 80 36 38 16

No 46 97 26 33

Tumor location (%) 4.755 0.446 9.543 0.089

Left side wall 59 53 27 16

Right side wall 37 32 18 17

Bladder triangle 7 11 2 1

Front wall 4 7 7 0

Posterior wall 17 26 8 13

Bladder vault 2 4 2 2

Tumor number (%) 0.690 0.405 3.205 0.073

single 114 116 51 45

Multiple (>=2) 12 17 13 4

Tumor size (c±S, mm) 25.30 ± 15.62 18.57 ± 9.82 6320 0.0006 28.20 ± 15.99 21.76 ± 12.11 1206 0.035

MS (%) 0.302 0.582 0.094 0.758

Yes 38 36 20 14

No 88 97 44 35

HBP (%) 0.378 0.5385 0.0029 0.956

Yes 54 52 34 30

No 72 81 30 27

Triglycerides (c±S) 1.42 ± 0.80 1.46 ± 0.97 7996 0.525 1.40 ± 0.81 1.37 ± 0.54 1455 0.513

HDL-C (c±S) 1.21 ± 0.31 1.23 ± 0.38 8332 0.937 1.18 ± 0.31 1.11 ± 0.23 1465 0.553

DM (%) 0.709 0.399 0.430 0.511

Yes 48 44 22 14

No 78 89 42 35
F
rontiers in Oncology
 07
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LGUC, Low-grade urothelial carcinoma; HGUC, High-grade urothelial carcinoma; BMI, Body mass index; MS, Metabolic syndrome; HBP, High blood pressure; HDL-C, High-density
lipoprotein cholesterol; DM, Diabetes mellitus.
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3.5 Development of a radiomic nomogram
with clinical integration

A radiomic nomogram was developed by integrating clinical

factors (age and proteinuria) with the radiomics score (Rad-Score),

as shown in Figure 6. DCA indicated that the radiomics + clinical

model demonstrated the highest net clinical benefit (Figure 7). The

calibration curve assessed the nomogram’s goodness of fit, where
Frontiers in Oncology 08
the 45° dashed line represents the ideal predictive model and the

solid black line reflects the nomogram’s actual performance

(Figure 8). Closer proximity of the black line to the ideal diagonal

indicates higher calibration accuracy.

To improve the clinical interpretability and predictive efficiency

of the radiomics model, it was merged with the clinical model to

generate a more intuitive and practical nomogram. Due to the

complexity of incorporating 11 radiomic features individually,
FIGURE 3

Cross-validation and feature selection for radiomic analysis. (a) 669 radiomic features proved to have good inter-group and intra-group consistency.
(b) Cross-validation is used to filter the coefficient of each feature at the best logarithm (l). As the value of l increases, the number of features
becomes less and less. (c) Use cross-validation to generate coefficients corresponding to the logarithmic (l) value (minimum variance). Draw vertical
lines with 11 selected radiological features.
FIGURE 4

Model Construction and Evaluation. Four predictive models were constructed using the training set. Logistic regression achieved the best diagnostic
performance, with area under the ROC curve (AUC) values of 0.858 in the training cohort (a) and 0.800 in the validation cohort (b), demonstrating
strong model generalizability.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1661979
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhou et al. 10.3389/fonc.2025.1661979
dimensionality was reduced by summarizing these features into a

composite Rad-Score. The Rad-Score was calculated using the

following formula:

Rad-scores: Log-sigma-1-0-mm-3D_glcm_Autocorrelation*1.03823

-Log-sigma-1-5-mm-3D_firstorder_Kurtosis*0.11197

+Log-sigma-2-0-mm-3D_glcm_JointAverage*0.12997

-Log-sigma-2-5-mm-3D_gldm_LowGrayLevelEmphasis*

-0.38671-Wavelet-LHH_glcm_Autocorrelation*1.72581

-Wavelet-LHH_glszm_SmallAreaHighGrayLevelEmphasis*0.88659

+Wavelet-LHL_gldm_LargeDependence*0.45270
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+Wavelet-LLH_glcm_JointAverage*3.25086

-Original_shape_MajorAxisLength*0.05676

+Original_shape_MinorAxisLength*0.57564

+Original_shape_Maximum2DDiameterSlice*0.87998
4 Discussion

Bladder tumors are among the most common malignant

tumors of the urinary system worldwide, with high incidence and
TABLE 4 Comparison of four algorithm models based on the training group.

Algorithm models Group Accuracy (%) Sensitivity (%) Specificity (%) 95% CI AUC

Logistic regression
Train 79.15 75.40 82.71 0.812-0.903 0.858

Test 72.57 76.36 68.97 0.719-0.881 0.800

Decision tree
Train 83.79 80.16 87.22 0.829-0.914 0.872

Test 73.45 74.55 72.41 0.573-0.784 0.679

SVM
Train 75.68 65.08 85.71 0.806-0.898 0.852

Test 69.03 65.45 72.41 0.729-0.887 0.808

ADABOST
Train 78.76 84.92 72.93 0.740-0.839 0.789

Test 69.03 85.45 53.44 0.615-0.775 0.695
SVM, Support vector machine; ADABOOST, Adaptive boosting; CI, Confidence interval; AUC, Area under the receiver operating characteristic curve.
FIGURE 5

Predictive Model Development and Analysis. Receiver operating characteristic (ROC) curves comparing the three models show a significant
difference between the radiomics model and the clinical model. The comprehensive model (radiomics + clinical) performs slightly better than the
radiomics model alone, though the difference is minimal.
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mortality rates (1, 2). Pathological grading is a crucial prognostic

indicator that guides clinical treatment decisions (4, 5). The World

Health Organization (WHO) introduced a histological grading

system in 1973, which was later refined into low-grade (LG) and

high-grade (HG) categories in the 2004 and 2016 classifications to

improve prognostic stratification (17). High-grade tumors are

associated with significantly greater risks of muscle invasion and
Frontiers in Oncology 10
metastasis, reducing the 5-year survival rate by 30% to 50%

compared with low-grade tumors (18). Therefore, tumor grade

not only reflects biological aggressiveness but also informs

individualized treatment strategies such as intravesical therapy or

radical cystectomy (19).

However, accurate preoperative prediction of pathological grade

remains challenging. Due to the spatial heterogeneity of bladder

tumors, biopsy samples may not adequately represent the entire

tumor, with approximately 20% of postoperative grades differing

from preoperative assessments (20). Moreover, diagnostic variation

among pathologists can reach 18.5% due to the subjective nature of

morphological evaluation (21). Molecular studies have shown that

tumors of the same pathological grade may exhibit divergent

behavior, influenced by molecular markers such as FGFR3 and

TP53 mutations, which are not captured by conventional grading

(22, 23). These limitations may delay timely intervention for high-risk

patients or lead to overtreatment of low-risk individuals.

Radiomics has recently emerged as a promising tool in precision

oncology, involving the high-throughput extraction of quantitative

features from medical images combined with machine learning to

build predictive models (9–11). Numerous studies have

demonstrated that radiomics can capture tumor heterogeneity,

aiding in prognosis prediction, molecular subtyping, and

treatment response assessment across various malignancies (24–

26). In lung cancer, a CT-based radiomic model predicted overall

survival in non-small cell lung cancer (NSCLC) patients with a

concordance index (C-index) of 0.69, outperforming the traditional

TNM staging system (C-index = 0.58) (24). This finding

underscores radiomics ’ abil ity to reflect intratumoral

heterogeneity, supporting personalized treatment planning. In

glioma research, Parmar et al. successfully differentiated IDH-

mutant from wild-type tumors using MRI-based radiomics,

achieving 89% concordance with genetic testing (AUC = 0.85),
FIGURE 6

The nomogram to predict the probability of clinically high-grade urothelial carcinoma. Note: Each variable is plotted on its corresponding axis. To
calculate a score, draw a vertical line from the variable value to the ‘Score’ axis. Sum the individual scores and locate the total on the ‘Total Score’
axis. Drawing a vertical line downward from this point yields the predicted probability of high-grade urothelial carcinoma.
FIGURE 7

Decision Curve Analysis (DCA) of the models. The DCA shows that
the combined radiomics and clinical model provides the greatest
net benefit compared to the clinical-only and radiomics-only
models.”.
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thereby reducing the need for invasive biopsy (25). Similarly, in

breast cancer, advanced radiomics based on dynamic contrast-

enhanced MRI (DCE-MRI) predicted axillary lymph node

metastasis with an AUC of 0.82, providing a non-invasive tool for

surgical decision-making (26). Collectively, these studies highlight

radiomics’ potential to extend beyond traditional imaging by

characterizing tumors at functional and molecular levels.

With advances in multiparametric MRI and CT technologies,

radiomics is demonstrating strong potential in predicting the

pathological grade of bladder cancer. Li et al. (12) developed a

non-invasive preoperative nomogram based on a multiparametric

MRI radiomics approach (T2WI, DWI, ADC maps) to distinguish

low-grade from high-grade tumors in NMIBC. Their radiomics

model achieved an AUC of 0.910, while a combined model

incorporating clinical indicators increased performance to an AUC

of 0.931. In contrast, CT-based radiomics studies have primarily

focused on predicting muscle invasion in bladder cancer (13). Zhang

et al. (13) reported a radiomics model derived from arterial-phase

CT images that accurately predicted muscle invasion, achieving an
Frontiers in Oncology 11
AUC of 0.89, with a sensitivity of 84.3% and a specificity of 81.9%.

Similarly, another study developed and validated a CT-based

radiomics model to predict muscle invasion in bladder cancer,

demonstrating good diagnostic performance with AUCs of 0.885

(training), 0.820 (internal testing), and 0.784 (external testing),

suggesting its potential for preoperative evaluation (27).

Few studies have investigated CT-based radiomics for predicting

pathological grade in bladder cancer. While some studies, such as

Zhang et al. (28), have explored CT-based radiomics for this purpose,

they often focus solely on imaging features without fully leveraging the

potential of integrated clinical information. In our study,we developed

a predictive model by integrating multiparametric thin-slice CT-

derived radiomics features with clinical indicators such as age and

hematuria severity. The combined model achieved an AUC of 0.864,

significantly outperforming the radiomics-only model (AUC = 0.858,

p = 0.012) and the clinical-only model (AUC = 0.650, p < 0.001). The

model’s overall predictive accuracy reached 79.15%, likely driven by

two complementary mechanisms: First, advanced radiomic

descriptors capture spatial heterogeneity and invasive morphology:
FIGURE 8

The calibration curve of the nomogram. The curve illustrates the agreement between predicted probabilities and actual outcomes for high-grade
urothelial carcinoma. A 2,000-sample bootstrap was used to generate a bias-corrected curve. The 45° diagonal line represents perfect calibration.
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high-order texture metrics such as GLCM_Contrast and

GLDM_DependenceNonUniformity, together with first-order

Kurtosis, quantify the abrupt grey-level transitions produced by

intermixed necrotic, haemorrhagic, and highly cellular regions, while

shape indices showing reduced sphericity and increased major-axis

length recreate the irregular, finger-like invasion characteristic of

aggressive tumors. Second, the incorporated clinical indicators—

most notably persistent macroscopic haematuria—directly reflect

biological aggressiveness through their association with ongoing

mucosal injury and an inflammatory micro-environment. By

harmonizing these radiomic and clinical signatures, the model

integrates micro-architectural complexity with patient-level disease

activity, thereby achieving robust discrimination between low- and

high-grade lesions. By integrating multidimensional clinical and

imaging data, this model improves the accuracy of preoperative

grading (AUC=0.864 vs. standalone imaging model AUC=0.858)

and may help identify hidden high-grade components, thereby

supporting individualized treatment decisions, such as the selection

of candidates for neoadjuvant chemotherapy.

Meanwhile, the decision curve analysis indicates that our

nomogram could provide meaningful clinical benefit by

improving individualized risk assessment for patients with

bladder cancer. Integrated into the clinical workflow, the

nomogram may assist clinicians in identifying high-risk patients

who could benefit from more aggressive management, thereby

supporting more precise and personalized treatment decisions.

In this study, we developed a combined preoperative pathological

grading prediction model for bladder cancer by integrating

multiparametric CT-based radiomics features with key clinical

indicators. This comprehensive model significantly outperformed

single-source models , providing a non-invasive and

multidimensional tool to inform personalized treatment decisions.

However, this study has some limitations. First, the retrospective

design introduces potential selection bias, and reliance on single-

center data may limit generalizability. Although internal validation

confirmed model stability (cross-validation AUC = 0.864), an

independent, multi-center validation study is currently being

planned to confirm the nomogram’s robustness across different

institutions and imaging protocols. Second, radiomics feature

extraction depends heavily on image preprocessing steps such as

registration and normalization; differences in acquisition parameters

across institutions may affect feature reproducibility. Standardizing

image acquisition and processing workflows should be prioritized in

future research. Lastly, the model does not incorporate molecular

biomarkers, despite evidence that molecular alterations may

complement imaging and clinical data to improve the detection of

occult high-grade components (29). Future work should involve

prospective multicenter studies that integrate molecular multi-

omics data, enabling the development of a comprehensive imaging-

clinical-molecular fusion model to support a “holographic”

assessment system for bladder cancer grading. This would enhance

precision oncology by making predictions more interpretable,

actionable, and broadly applicable. With further validation and

refinement, this model has the potential to support more precise,

individualized treatment decisions in bladder cancer management.
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21. Compérat E, Larré S, Roupret M, Neuzillet Y, Pignot G, Quintens H, et al.
Clinicopathological characteristics of urothelial bladder cancer in patients less than 40
years old. Virchows Arch. (2015) 466:589–94. doi: 10.1007/s00428-015-1739-2

22. Robertson AG, Kim J, Al-Ahmadie H, Bellmunt J, Guo G, Cherniack AD, et al.
Comprehensive molecular characterization of muscle-invasive bladder cancer. Cell.
(2017) 171:540–556.e25. doi: 10.1016/j.cell.2018.07.036

23. Sanli O, Dobruch J, Knowles MA, Burger M, Alemozaffar M, Nielsen ME, et al.
Bladder cancer. Nat Rev Dis Primers. (2017) 3:17022. doi: 10.1038/nrdp.2017.22

24. Aerts HJ, Velazquez ER, Leijenaar RT, Parmar C, Grossmann P, Carvalho S,
et al. Decoding tumor phenotype by noninvasive imaging using a quantitative
radiomics approach. Nat Commun. (2014) 5:4006. doi: 10.1038/ncomms5006

25. Parmar C, Leijenaar RT, Grossmann P, Rios Velazquez E, Bussink J, Rietveld D,
et al. Radiomic feature clusters and prognostic signatures specific for Lung and Head &
Neck cancer. Sci Rep. (2015) 5:11044. doi: 10.1038/srep11044

26. Wang Y, Liu W, Yu Y, Liu JJ, Xue HD, Qi YF, et al. CT radiomics nomogram for
the preoperative prediction of lymph node metastasis in gastric cancer. Eur Radiol.
(2020) 30:976–86. doi: 10.1007/s00330-019-06398-z

27. Zhang G,Wu Z, Zhang X, Xu L, Mao L, Li X, et al. CT-based radiomics to predict
muscle invasion in bladder cancer. Eur Radiol. (2022) 32:3260–8. doi: 10.1007/s00330-
021-08426-3

28. Zhang G, Xu L, Zhao L, Mao L, Li X, Jin Z, et al. CT-based radiomics to predict
the pathological grade of bladder cancer. Eur Radiol. (2020) 30:6749–56. doi: 10.1007/
s00330-020-06893-8

29. Dreyer T, Brandt S, Fabrin K, Azawi N, Vásquez JL, Ernst A, et al. Use of the Xpert
bladder cancer monitor urinary biomarker test for guiding cystoscopy in high-grade non-
muscle-invasive bladder cancer: results from the randomized controlled DaBlaCa-15 trial.
Eur Urol. (2025) 8:23-30. doi: 10.1016/j.eururo.2025.03.018
frontiersin.org

https://doi.org/10.3322/caac.21708
https://doi.org/10.3390/bios13010106
https://doi.org/10.3389/fimmu.2025.1549647
https://doi.org/10.3389/fimmu.2025.1549647
https://doi.org/10.1038/s41598-025-95684-6
https://doi.org/10.3322/caac.21660
https://doi.org/10.3322/caac.21660
https://doi.org/10.1186/s12894-025-01783-x
https://doi.org/10.1097/RLU.0000000000005889
https://doi.org/10.1016/j.eururo.2025.02.019
https://doi.org/10.1111/jtxs.70022
https://doi.org/10.4103/jmp.jmp_115_24
https://doi.org/10.1007/s00330-018-5632-7
https://doi.org/10.1007/s00330-018-5632-7
https://doi.org/10.3389/fonc.2023.1025972
https://doi.org/10.1007/s00261-017-1079-6
https://doi.org/10.1002/jmri.25669
https://doi.org/10.1007/s00330-021-08426-3
https://doi.org/10.1007/s00330-021-08426-3
https://doi.org/10.1186/s12880-022-00745-1
https://doi.org/10.1016/j.eururo.2016.02.028
https://doi.org/10.1016/j.eururo.2021.08.010
https://doi.org/10.1016/j.eururo.2021.08.010
https://doi.org/10.1016/j.euo.2025.03.007
https://doi.org/10.1016/j.euo.2025.03.007
https://doi.org/10.1111/j.1464-410X.2009.09100.x
https://doi.org/10.1007/s00428-015-1739-2
https://doi.org/10.1016/j.cell.2018.07.036
https://doi.org/10.1038/nrdp.2017.22
https://doi.org/10.1038/ncomms5006
https://doi.org/10.1038/srep11044
https://doi.org/10.1007/s00330-019-06398-z
https://doi.org/10.1007/s00330-021-08426-3
https://doi.org/10.1007/s00330-021-08426-3
https://doi.org/10.1007/s00330-020-06893-8
https://doi.org/10.1007/s00330-020-06893-8
https://doi.org/10.1016/j.eururo.2025.03.018
https://doi.org/10.3389/fonc.2025.1661979
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

	Development of a radiomics and clinical feature-based nomogram for preoperative prediction of pathological grade in bladder cancer
	1 Introduction
	2 Materials and methods
	2.1 Patient cohort and grouping methodology
	2.2 Collection of clinical and imaging data
	2.3 CT scanning procedure
	2.4 Delineation of image region of interest
	2.5 Image processing and data acquisition
	2.6 Preprocessing of texture feature data
	2.7 Extraction and screening of texture features
	2.8 Selection and assignment of clinical factors
	2.9 Construction of predictive models: comparing four algorithms
	2.10 Statistical analysis

	3 Results
	3.1 Correlation analysis of clinical features
	3.2 Selection of imaging features
	3.3 Model construction and evaluation
	3.4 Predictive model development and analysis
	3.5 Development of a radiomic nomogram with clinical integration

	4 Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References


