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Curcumin triggers reactive
oxygen species-mediated
apoptosis and suppresses
tumor growth in metastatic
oral squamous cell carcinoma
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Background: Oral squamous cell carcinoma (OSCC) remains a major clinical

challenge with limited effective treatment options. In this context, several natural

compounds (NC), such as curcumin, have shown promising effects in OSCC.

However, there is still limited evidence about curcumin’s effects on cell death in

metastatic OSCC cells and its cytotoxicity in preclinical models. To address this

gap, this study aimed to evaluate the effects of curcumin on mitochondrial

stress–induced apoptotic cell death and its cytotoxicity in preclinical models.

Methods: Curcumin’s cytotoxicity was assessed in both 2D (monolayer) and 3D

(spheroid model) cell cultures using a luminescent assay. Additionally,

morphological parameters (FSC and SSC), apoptosis, and reactive oxygen

species (ROS) production were analyzed in 2D cell cultures by flow cytometry,

while morphological changes were evaluated in 3D cultures through

microscopy. The in vivo assay was performed using a xenograft model in mice

(C.B-17 SCID).

Results: Curcumin demonstrated cytotoxicity in 2D cell cultures, induced

apoptosis, and increased ROS production, effects that were confirmed with

antioxidant pretreatment (N-acetyl-L-cysteine). In the 3D cell culture,

curcumin caused loss of spheroid integrity, suppressed tumor growth, and

reduced tumor emboli and metastatic nodules in mice.
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Conclusion:Our findings suggest that curcumin induces cell death via apoptosis

mediated by oxidative stress and exhibits promising cytotoxic activity in the

spheroid model, while also inhibiting OSCC growth in mice.
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1 Introduction

Oral cancer is a serious global health concern and the 13th most

common type of tumor (1). Among oral cancers, oral squamous cell

carcinoma (OSCC) accounts for up to 90% of all cases (1, 2).

Despite improvements in treatment, the morbidity and mortality

rates remain high, mainly because of late diagnosis, with a five-year

survival rate of about 50% (3), significantly affecting patients’

quality of life (4). In addition, late diagnosis and drug resistance

in tumor cells are major challenges in cancer treatment (2, 5–7).

Currently, basic, translational, and clinical research efforts focus

on exploring tumor biology and developing new, effective therapies to

address these issues. In this scenario, natural compounds (NC) are

being investigated for their pharmacological potential in cancer

treatment, as many chemotherapy drugs used clinically, such as

paclitaxel, docetaxel, and vincristine, were derived from these

substances (8–10). Indeed, NC represent an important approach

for cancer therapy (10–14) and, in general, possible mechanisms of

action include DNA damage, induction of apoptosis, cell cycle arrest,

generation of reactive oxygen species (ROS), and the ability to

stabilize and inactivate free radicals (8–10, 12). Consequently,

demonstrating pharmacologically meaningful activity of NC

requires proper controls and a clear correlation between extract

activity and isolated pure compounds (15). Furthermore, it is

essential to use test concentrations that are realistically achievable

in vivo, avoiding effects observed only at artificially high doses (16).

In this effort, aiming to use an NC with fewer side effects, lower

cost, and promising results in OSCC, curcumin [1,7-bis (4-

hydroxy-3-methoxyphenyl) −1,6-heptadiene-3,5-dione)] stands

out (10, 17). The Curcuma genus has a long history of medicinal

applications, composed of approximately 120 species. Among the

Curcuma species, Curcuma longa L. is the most widely recognized

(18), and curcumin is a major constituent of turmeric (19). The

pharmacological activity of turmeric is mainly attributed to

curcuminoids consisting of curcumin and two related

compounds, namely dimethoxy curcumin [4-hydroxycinnamoyl-

(4-hydroxy-3-methoxyc innamoyl) methane] and bis-dimethoxy

curcumin [bis-(4-hydroxycinnamoyl) methane], which exhibit

varying degrees of antioxidant, anti-inflammatory, and anticancer

activities (19–21).

Curcumin has a well-established safety record in both animals

and humans, even at doses up to 8 g/day, and is recognized as GRAS
02
(generally recognized as safe) by the FDA (18). Despite its well-

established safety, some reports have highlighted mild side effects

under certain conditions. In humans, doses of 0.45–12 g/day have

been associated with gastrointestinal symptoms, headache, rash,

and transient increases in liver enzymes (22). Similarly, patients

receiving 1.5 g/day for 4 weeks reported minor effects such as

constipation and stomachache, without major toxicity (23).

Moreover, curcumin at 3.6 g/day for 6 months was well-tolerated

in leukoplakia patients, with no severe adverse effects reported

(24).On the other hand, the hydrophobic nature of curcumin after

oral administration triggers a poor absorption rate by the

gastrointestinal (GI) tract may limit its therapeutic use in clinical

practice (18).

Regarding anticancer effects, several activities have been

reported, including the suppression of cell proliferation,

inhibition of angiogenesis, and induction of cell death in various

malignancies, such as colorectal (25), breast (26), biliary (27), and

prostate cancers (28). Moreover, extensive research has elucidated

multiple molecular mechanisms through which curcumin exerts

anticancer effects. Curcumin promotes apoptosis by upregulating

pro-apoptotic proteins and downregulating anti-apoptotic proteins

(29), elevates ROS levels via mitochondrial dysfunction and DNA

damage (30–32), and induces G2/M phase arrest in various cancer

cell lines (31–33). Additionally, curcumin downregulates the Wnt/

b-catenin signaling pathway, which is involved in maintaining

stemness and promoting proliferation in cancer cells (34), and

inhibits enzymes associated with extracellular matrix degradation

and tumor invasion (35).

Considering that the literature is still limited regarding the

effects of curcumin in oral cancer (10, 17, 36, 37), this study

hypothesizes that curcumin exerts promising cytotoxic activity

against metastatic OSCC cells by reducing cell proliferation and

inducing apoptosis through an oxidative stress–mediated

mechanism, in addition, exhibit cytotoxic effects in the 3D cell

culture (spheroids), which mimics several features of the tumor

microenvironment, enabling evaluation of drug resistance. Thus,

curcumin exhibits antitumor effects in a xenograft mice model,

which offers greater complexity and translational relevance.

Accordingly, this study aimed to evaluate the effects of curcumin

on mitochondrial stress–induced apoptotic cell death in 2D cell

culture and its cytotoxic effects in a 3D cell culture, as well as in a

xenograft model of OSCC.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1668271
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Ramos et al. 10.3389/fonc.2025.1668271
2 Materials and methods

2.1 Experimental study

The workflow summarized in Figure 1 outlines the methods

applied in this study. Briefly, after cell culture and maintenance

(Section 2.3), cytotoxicity was assessed in 2D cell culture (Section

2.4), and flow cytometry was used to evaluate cell viability, death

patterns, morphology (Section 2.5), and ROS production (Section

2.6). Next, 3D cell culture was applied (Section 2.7), followed by

cytotoxicity assessment (Section 2.4) and morphology evaluation

(Section 2.7). Finally, the in vivo assay was conducted in mice

(Section 2.8), with tumor growth (Section 2.8), toxicological and

hematological evaluation (Section 2.8.1) and histological analyses

(Section 2.8.2).
2.2 Drug specifications

In this study, curcumin (C1386, Sigma-Aldrich, São Paulo,

Brazil) and 5-fluorouracil (5-FU, Sigma-Aldrich, St. Louis, MO,

USA) were individually weighed (5 mg), and dissolved in DMSO

(C2H6OS, Dimethyl sulfoxide, Panreac) to prepare stock solutions

(5 mg/mL) and then diluted to obtain working solutions at 1 mg/

mL. All stock solution aliquots were stored at −80°C, while working

solutions were kept at −20°C.
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2.3 Cell culturing and maintenance

This study focused on the highly metastatic HSC3 cells (Human

oral squamous carcinoma cell line). HSC3 cells (JCRBCell Bank, Osaka,

Japan) were placed in flasks (75 cm3, 250 mL volume) containing

DMEM medium (Gibco, Life Technologies, Gaithersburg, MD, USA)

supplemented with 10% fetal bovine serum (FBS, Gibco, Life

Technologies, Gaithersburg, MD, USA), 1% penicillin, 1%

streptomycin (Gibco, Life Technologies, Gaithersburg, MD, USA),

and 0.8% hydrocortisone (Sigma-Aldrich, St Louis, MO, USA). Cells

were cultured and kept in incubators, under an atmosphere of 5% CO2

at 37 °C. To monitor cell growth, an inverted microscope (EVOS™,

Invitrogen™) was used daily and trypsin (0.5% Trypsin-EDTA) (Gibco,

Life Technologies, Gaithersburg, MD, USA) was used to dissociate cells

when cell growth reached the necessary confluence (70-80% of the total

culture flask volume). The HSC3 cell line was tested periodically for

mycoplasma using a luminometer, according to theMycoAlert™ PLUS

Mycoplasma Detection Kit (Lonza Bioscience, Morrisville, NC, USA).
2.4 Cytotoxicity assessment (2D/3D
models)

To determine the EC50 (50% effective concentration), cellular ATP

levels were measured using luminescence (CellTiter-Glo® kit,

Promega, Madison, WI, USA). For 2D monolayer and 3D spheroid
FIGURE 1

Flowchart depicting in vitro and in vivo experimental design. Created with BioRender.com.
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cultures, cells were seeded at 0.7 × 105 cells/mL and 5 × 10³ cells/well in

96-well plates, respectively (see Section 2.8 for 3D culture details). Cells

were exposed to compounds, medium, or vehicle controls for 24 hours.

In monolayers, curcumin and 5-FU were tested in serial dilutions from

0.19 to 25 μg/mL, while in spheroids, curcumin was tested from 0.14 to

300 μg/mL. Following treatment, cells were transferred to opaque 96-

well plates (SPL, 30396), and viability was assessed using CellTiter-

Glo® 2.0 (monolayers) or CellTiter-Glo® 3D (spheroids) at a 1:1 ratio

with the culture medium, following the manufacturer’s instructions.

Plates were shaken for 5 minutes to mix, incubated at room

temperature in the dark for 25 minutes, and luminescence was

recorded using a multimode microplate reader (FilterMax F3,

Molecular Devices) with SoftMax Pro software (v6.2.1). Three

independent experiments were carried out, each in three replicates

per experiment.
2.5 Evaluation of curcumin treatment on
cell viability, pattern of death, and
morphology in monolayer culture

To assess cell viability and death after 24 and 48 hours of

treatment, HSC3 cells (0.7 × 105 cells/2 mL in 6-well plates) were

stained with annexin V-FITC and propidium iodide (PI) following

the manufacturer’s instructions (BD Biosciences, Franklin Lakes, NJ,

USA). After centrifugation, 100 μL of binding buffer containing 2 μL

each of annexin V-FITC and PI was added, followed by a 15-minute

incubation in the dark and addition of 100 μL binding buffer.

Forward scatter (FSC) and side scatter (SSC) were analyzed using a

BD LSRFortessa® flow cytometer (FACSDiva v6.2), and FlowJo (v10,

FlowJo LLC, Ashland, OR, USA) was used to quantify apoptotic cells

and evaluate morphology. Cellular debris was excluded, and 10,000

events were collected per sample. Three independent experiments

were carried out, each in two replicates per experiment.
2.6 Assessment of curcumin-induced pro-
oxidant activity and reactive oxygen
species production in monolayer culture

To evaluate the pro-oxidant effect of curcumin after 24 hours of

treatment, HSC3 cells (0.7 × 105 cells/2 mL) were seeded in 6-well

plates. The fluorogenic probe MitoSOX™ (1 μM; Thermo Fisher

Scientific, Waltham, MA, USA) was added to detect mitochondrial

superoxide anion. To assess whether an antioxidant could block

curcumin-induced cell death, cells were pretreated with 5 mM N-

acetyl-L-cysteine (NAC; Sigma-Aldrich, St. Louis, MO, USA) for 1

hour before curcumin exposure. All samples were analyzed by flow

cytometry as described in section 2.5. Three independent

experiments were performed, each in two replicates.
2.7 3D cell culture

For spheroid formation, a protocol for homotypic OSCC spheroids

was applied (38). Briefly, HSC3 cells were magnetized (Nanoshuttle-

PL, Greiner Bio One) and, after successive centrifugations, were seeded
Frontiers in Oncology 04
(5 × 103 cells/well) in a 96-well repellent plate (Ultra-Low Attachment

Surface, Costar®). Next, a magnet (96 neodymium magnets, Nano3D

Biosciences) was used to induce aggregation and print a spheroid at the

bottom of each well. Spheroids were supplied and maintained as

previously described in topic 2.3.

To evaluate the viability after 24 hours of treatment, the cellular

ATPmetabolism using luminescence (CellTiter-Glo® 3D, Promega,

Madison, Wisconsin, USA) was applied. The reagent was applied as

previously described in section 2.4. Three independent experiments

were carried out, each in two replicates per experiment.
2.8 Human OSCC xenograft model

The in vivo assessment was carried out as previously described

(39). A total of 24 C.B-17 severe combined immunodeficient

(SCID) mice (females, 25-30g) were obtained and kept at the

animal facilities of the Gonçalo Moniz Institute-FIOCRUZ

(Salvador, Bahia, Brazil). All animals were housed in cages with

free access to food and water. The animal ethics committee of the

Gonçalo Moniz Institute (CEUA, IGM, FIOCRUZ, Bahia) approved

the experimental protocol used (number 001/2021).

Curcumin was dissolved in DMSO and diluted in distilled water

(obeying the proportion of 5% DMSO), and the treatment was carried

out intraperitoneally, once a day, for 21 days. The mice were divided

into three groups: Group 1 (negative control group) - animals treated

with 5% DMSO vehicle; Group 2 (positive control group) - animals

treated with 5-FU (15 mg/kg); Group 3 - animals treated with

Curcumin (50 mg/kg), and the treatments started 24 hours after

inoculation. At the end of treatment, peripheral blood samples from

the mice were collected for hematological analysis. The euthanasia of

the animals was performed through an intraperitoneal injection with

the anesthetic thiopental, and the tumors were removed and weighed,

in addition to the liver, lung, heart, and kidneys of the mice. Treatment

effects were expressed as the percentage inhibition of control.

2.8.1 Toxicological and hematological evaluation
Mice were weighed at both the beginning and end of the

experiment. Throughout the study, all animals were monitored

for clinical signs of abnormality. The liver, kidneys, lungs, and heart

were collected, weighed, and examined for lesions, discoloration, or

hemorrhage. Hematological parameters were also evaluated,

including total erythrocyte and leukocyte counts, as well as

differential leukocyte counts (neutrophils, lymphocytes, and

monocytes). Additionally, hemoglobin concentration and mean

corpuscular volume were measured.
2.8.2 Histological analysis
Tumors and organs were fixed in 10% buffered formalin and

subsequently processed for histological analysis. Sections of 4 μm

thickness were prepared from paraffin-embedded blocks and stained

with hematoxylin and eosin (H&E). Histological evaluation was

performed by an experienced pathologist using light microscopy

(Olympus BX41) at magnifications of 4×, 100×, 200×, and 400×

when necessary. Histological features were graded as negative (0),
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mild (+1), moderate (+2), or intense (+3). Tumor characteristics and

histopathological changes were assessed through H&E staining, and

histological grading was performed based on the World Health

Organization Classification (WHO, 2022).

Liver sections were additionally stained with periodic acid–

Schiff (PAS) to enhance detection of glycogen content and confirm

the presence of hydropic degeneration. Histopathological changes

in the heart, lungs, and kidneys were evaluated using H&E staining.
2.9 Statistical analyses

All results were compiled and analyzed statistically using

GraphPad Prism software (version 8.4.2; GraphPad Software, Inc.,

San Diego, USA), based on data distribution assessed by the Gaussian

curve. EC50 values were calculated by non-linear regression of the

relative light units (RLU) using the formula: RLU (Drug)/RLU

(Vehicle). Differences between groups were evaluated by analysis of

variance (ANOVA), followed by the Student–Newman–Keuls post

hoc test. Statistical significance was considered for p-values ≤ 0.05.
3 Results

3.1 Curcumin exerts cytotoxicity and
reduces cell viability in the OSCC
monolayer cell culture

In the 2D cell culture model, curcumin and 5-FU exhibited

cytotoxicity in the HSC3 cell line, with EC50 values of 8.3 μM and

21.26 μM, respectively (Supplementary Figure S1). Additionally,

curcumin significantly reduced the viability of HSC3 cells after 24

and 48 hours compared to the negative control (Figure 2).
3.2 Curcumin increases apoptosis and
promotes changes in cell morphology

After 24 hours, curcumin markedly increased late apoptosis in

HSC3 cells, while at 48 hours, both curcumin and 5-FU significantly

elevated early and late apoptosis (Figure 3). Notably, no rise in

necrosis was observed under either treatment (Supplementary

Figure S2). In parallel, curcumin induced cell shrinkage, reflected

by reduced forward scatter (FSC), and nuclear condensation,

evidenced by increased side scatter (SSC). Similarly, 5-FU, used as

a positive control, triggered morphological alterations consistent

with apoptosis. These effects proved to be both concentration- and

time-dependent (Supplementary Figure S3).
3.3 Curcumin triggers ROS-mediated cell
death in the OSCC, reduced by NAC
pretreatment

Curcumin promoted a significant increase in mitochondrial

superoxide in HSC3 cells (Figure 4). To confirm ROS involvement,
Frontiers in Oncology 05
cells were pretreated with the antioxidant N-acetylcysteine (NAC).

NAC attenuated curcumin-induced ROS generation, supporting

that its cytotoxic effects are mediated, at least in part, by oxidative

stress, as shown in Figure 5.
3.4 Curcumin exerts cytotoxicity and
reduces the viability in the OSCC 3D cell
culture

A homotypic spheroid formation assay with HSC3 cells was

used to assess curcumin’s cytotoxicity. Curcumin reduced cell

viability after 12 and 24 hours of exposure, with an EC50 of 19.5

μM at 24 hours (Figures 6A, B). Morphological analysis revealed

marked structural disruption, including cell disaggregation, loss

of spheroid organization, and destruction of the outer
FIGURE 2

Analysis of cell viability through the Annexin V/Propidium iodide
assay in HSC3 cells treated for 24 (A) and 48 (B) hours with
Curcumin. Curcumin significantly decreased the viability of HSC3
cells after 24 hours of treatment (A) and after 48 hours of treatment
(B). The negative control was treated with the vehicle (DMSO) used
to solubilize and dilute the substances, and 5-FU was used as a
positive control. Data are representative of three independent
experiments carried out, each in two replicates per experiment.
Cellular debris was omitted from analysis, and 10,000 events were
analyzed per sample. Viable cells were negative for the fluorogens
Annexin V and Propidium iodide. (*) p ≤ 0.05 when compared to the
negative control (DMSO) and (#) when compared to HSC3-NT
(non-treated cells) by ANOVA (analysis of variance) followed by
Student Newman-Keuls test.
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proliferative layers (Figure 6C), supporting its cytotoxic activity

in 3D culture.
3.5 Curcumin suppresses tumor growth in
a xenotransplant model of OSCC

The CB17 SCIDmice were inoculated with HSC3 cells. 24 hours

later, treatment was initiated for 21 consecutive days. The animals

were treated with curcumin at a dose of 50 mg/kg. Figure 7 shows

that Curcumin promoted a significant reduction in tumor growth

compared to the negative control.

Histological analysis showed that HSC3 tumors displayed

features typical of OSCC, including marked cellular and nuclear

pleomorphism, hyperchromatism, abnormal mitotic figures,

hyperkeratosis, and squamous-like cells. Tumor grading ranged

from moderately to well-differentiated in the negative control and

5-FU treatment groups, while tumors in the curcumin group were
Frontiers in Oncology 06
consistently well-differentiated. In all groups, tumor cells formed

nodules or cords, surrounded by a poorly vascularized collagen

matrix. Additionally, granulation tissue was present at the tumor

edges, and areas of coagulative necrosis (comedonecrosis) were

often seen, especially in the central tumor regions. Inflammatory

infiltrates, mainly mononuclear cells, were primarily located next to

necrotic areas. Invasion into nearby adipose tissue, muscle, and

nerves was observed across all groups (Figure 8).

Histological examination of the organs showed that the heart

and kidneys retained their tissue architecture (Data not shown).

The lung parenchyma exhibited partial preservation with thickened

alveolar septa and moderate atelectasis. Inflammatory infiltrates,

characterized by a predominance of polymorphonuclear cells and

intense vascular hyperemia, were observed across all experimental

groups. Tumor nodules and emboli were particularly noted in the

lungs of the negative control group (Figure 8). The liver showed

partial preservation of architecture, with notable moderate vascular

hyperemia and mild hydropic degeneration. Inflammatory cells,
FIGURE 3

Analysis of apoptosis induced by Curcumin in HSC3 cells, after 24 and 48 hours of treatment. The negative control was treated with the vehicle
(DMSO) used to solubilize and dilute the substances, and 5-FU was used as a positive control. Data are representative of three independent
experiments carried out, each in two replicates per experiment. Cellular debris was omitted from analysis, and 10,000 events were analyzed per
sample. (*) p ≤ 0.05 when compared to the negative control (DMSO) and (#) when compared to HSC3-NT (non-treated cells) by ANOVA (analysis of
variance) followed by Student Newman-Keuls test.
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both polymorphonuclear and mononuclear, were found adjacent to

hepatic sinusoids and portal vessels. These pathological changes

were particularly pronounced in the livers of animals treated with

curcumin and 5-FU.

The systemic toxic effects of curcumin were assessed after

treatment. No significant differences were seen in body and organ

wet weights (Supplementary Figure S4). Among the hematological

parameters analyzed, such as erythrocytes, hemoglobin, and mean

corpuscular volume (Supplementary Figure S5), no differences were

observed, but animals treated with 5-FU (15 mg/kg) showed
Frontiers in Oncology 07
significant leukopenia and neutropenia compared to the negative

control (Supplementary Figure S6).
4 Discussion

To contribute to the investigation of NC with potential for

chemotherapy in OSCC, this study shows that curcumin exerts

cytotoxic activity by inducing ROS-mediated apoptosis and

effectively suppresses tumor growth in vivo. This investigation is

the first to describe how curcumin promotes apoptosis induced by

oxidative stress in metastatic OSCC, as well as its effects on cell

viability in a 3D scaffold-free model and on tumor growth in an in

vivo model.

First, the cytotoxicity of curcumin was tested in HSC3 cells

cultured in a monolayer. This compound showed a significantly

lower EC50 value compared to the positive control, reinforcing its

therapeutic potential and suggesting the possibility of minimizing

side effects. According to a prior study (10), a lower effective

concentration of a compound enhances its therapeutic potential

by reducing adverse effects associated with systemic drug

administration. In addition, studies with other OSCC cell lines

found higher concentrations of curcumin, including the YD10B,

SCC-15, and Hep-2 cells that exhibited an IC50 of 10 μM (36, 40),

and the H-314 and ORL-15 cell lines, where the IC50 was

determined to be 50 μM (41).

Curcumin markedly reduced HSC3 cell numbers and induced

concentration- and time-dependent morphological alterations,

including cell shrinkage and enhanced granularity, consistent

with apoptosis. These results are consistent with studies that

demonstrated the potential of curcumin to induce apoptosis in

OSCC cell lines (41–43). In the present study, treatment with

curcumin resulted in an increased proportion of cells undergoing
FIGURE 5

Effect of Curcumin (48 hours of treatment) on reactive oxygen species levels in HCS3 cells determined by flow cytometry with NAC pretreatment.
The negative control was treated with the Vehicle (DMSO) used to solubilize and dilute the test substances. Cellular debris was omitted from
analysis, and 10,000 events were analyzed per sample. Values respond to the mean ± S.E.M. of three independent experiments carried out, each in
two replicates per experiment. (*) p ≤ 0.05 when compared to the negative control (DMSO) and (#) When compared to HSC3-NT (non-treated
cells). (**) comparisons between Curcumin and Curcumin+NAC. Statistical analyses were performed using ANOVA (analysis of variance) followed by
Student Newman-Keuls test.
FIGURE 4

The effects of Curcumin on mitochondrial superoxide production in
HSC3 cells, determined by the MitoSOX Assay, after 24 hours of
treatment. The negative control was treated with the vehicle
(DMSO) used to solubilize and dilute the substances, and 5-FU was
used as a positive control. Values respond to the mean ± S.E.M. of
three independent experiments carried out, each in two replicates
per experiment. Cellular debris was omitted from analysis, and
10,000 events were analyzed per sample. (*) p ≤ 0.05 when
compared to the negative control (DMSO) and (#) when compared
to HSC3-NT (non-treated cells) by ANOVA (anal ysis of variance)
followed by Student Newman-Keuls test.
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late apoptosis. These findings are consistent with previous studies

(40, 41), which also reported enhanced apoptosis after 24 hours of

exposure to curcumin.

Here, mitochondrial superoxide levels were measured in OSCC

cells, revealing a significant increase after curcumin treatment. This

finding is supported by studies that show curcumin is associated with

ROS production (25, 40, 42, 44). Additionally, pretreatment with the

antioxidant NAC reduced both early and late apoptosis in OSCC cells.

Similar results were reported by Kim et al. (2012) (40), who observed

that ROS production induced by curcumin (10 μM) in YD10B OSCC

cells was nearly completely inhibited in the presence of NAC.
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For the 3D model, a previously published protocol was applied to

obtain a three-dimensional (3D) culture of OSCC, using a scaffold-

free/magnetic technique (38). HSC3 cells were incubated with

biocompatible NanoShuttle™ (magnetic nanoparticles) composed

of iron oxide, gold, and poly-l-lysine. These nanoparticles do not

promote any effect on cell morphology, viability, or function, even in

activating important processes such as oxidative stress or

inflammatory response, as previously described (45–47). Here,

Curcumin exhibited greater toxicity in the 3D cell culture

compared to 2D cell cultures, corroborating the greater therapeutic

resistance described for this model (48, 49). According to Hoarau-
FIGURE 6

(A)The EC50 graded dose-response curves for Curcumin after 24h of treatment in a three-dimensional model. Data represented with EC50 values in
µM with a 95% confidence interval obtained by non-linear regression of three independent experiments carried out, each in three replicates per
experiment, using the reagent CellTiter-Glo® 3D. Values of luminescence (RLU) were calibrated using the negative control (DMSO). (B) Cytotoxic
effect of Curcumin in OSCC 3D model after 12 and 24 hours of treatment. Values respond to the mean ± S.E.M. of three independent experiments
carried out in duplicate. (*) p ≤ 0.05 when compared to the negative control (DMSO) by ANOVA (analysis of variance) followed by Student Newman-
Keuls test. (C) Morphological aspects of the spheroids after 24 hours of treatment with Curcumin. Spheroids treated with curcumin exhibited cellular
disaggregation, disorganization of the spheroidal structure, and destruction of the outermost layers of the proliferative zone (EVOS,Thermo Fisher
Scientific, 20x).
FIGURE 7

In vivo antitumor activity of Curcumin in C.B-17 SCID mice with HSC3 cell xenografts. Quantification of tumor weight and tumor inhibition. A
heterotopic xenograft model was employed to evaluate in vivo antitumor effects, with 24 mice receiving subcutaneous injections of HSC-3 cells (1 ×
107 cells/500 mL) in the left axilla. The negative control (CTL) was treated with the vehicle (5% DMSO) used for diluting the compounds tested, and 5-
fluorouracil was used as a positive control. Data are presented as themeans ± S.E.M. of 7–9 animals. (*) p ≤ 0.05 compared with the negative control
by ANOVA, followed by the Student–Newma–Keuls test.
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Véchot (2018) (50), in the 3D model, cells are more resistant to the

action of drugs because they present behavior closer to that observed

in vivo. Therefore, due to the configuration and cellular interactions of

the 3D system, drugs tend to present a higher effective concentration
Frontiers in Oncology 09
in this model when compared to the monolayer culture. Thus,

spheroids treated with curcumin displayed cellular disaggregation,

reflecting its cytotoxic effects, consistent with observations from other

studies employing spheroid models for drug screening (51, 52).
FIGURE 9

Overview of curcumin’s therapeutic effects in vitro and in vivo on HSC-3 cells. Created with BioRender.com..
FIGURE 8

Representative photomicrographs of OSCC tumors, lungs, and livers of animals treated with curcumin. Histological sections were stained with
hematoxylin-eosin and analyzed by light microscopy. A heterotopic xenograft model was employed to evaluate in vivo antitumor effects, with 24
mice receiving subcutaneous injections of HSC-3 cells (1 × 107 cells/500 mL) in the left axilla. The negative control (CTL) was treated with the vehicle
(5% DMSO) used for diluting the compounds tested, and 5-fluorouracil was used as a positive control.
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Considering that 3D culture is an alternative but does not

replace animal models (50, 53) and given the lack of in vivo

studies using OSCC cells, the effect of curcumin was evaluated in

an in vivo model. In this study, Curcumin (50 mg/kg) significantly

reduced tumor growth, likely due to apoptosis, as we previously

showed in monolayer culture. Prior studies (10, 13, 25) have also

established this correlation in animals. Additionally, histological

analysis showed variability in the grading of OSCC tumors within

the same experimental group, supporting the findings of Kakhet

et al. (2020) (25).

The antitumor potential of Curcumin has been applied in a

range of studies, not only in vitro (41–43, 49) but also in vivo (10,

12, 25) and clinical trials (54, 55). There is no consensus on

concentration limits for testing NC. However, the pharmaceutical

industry commonly adopts EC50<10 mM, and concentrations above

30–50 mM are discouraged (16). In this way, many reported doses

may not be pharmacologically meaningful, and the various activities

described in the literature are dose and time-dependent. Moreover,

it is important to monitor the activity of NC (extracts, fractions,

purified compounds) through at least three purification steps in

order to establish the correlation between chemical purity and

biological activity (15). In addition, bioactivity claims for NC are

meaningful when a clear relationship to the activity of isolated pure

compounds is established, highlighting the need to correlate the

observed effects with isolated NC to validate their bioactivity (56,

57). In the last years, bioavailability, effectiveness, side effects

and patient trials undergoing chemo-radiotherapy have been

developed and data obtained confirm that curcumin has potential

in the treatment of cancer patients (25–27). Nevertheless, poor

aqueous solubility, bioavailability, and pharmacokinetic profiles

limit curcumin’s therapeutic usage. In order to improve its

bioavailability, different formulation techniques have been

investigated (10, 58, 59). Furthermore, well-controlled clinical

trials that demonstrate efficacy, safety, optimal dosing, and

pharmacokinetics in humans are still required to validate its

therapeutic potential and to translate preclinical findings into

clinical practice (60). Thus, the scarcity of in vivo studies with

OSCC cells and the absence of clinical trials have restricted

understanding of Curcumin’s role in oral cancer, and it remains

uncertain whether long-term treatment would produce

similar benefits.

These results provide evidence for the oxidative potential of

Curcumin in metastatic oral cancer cell lines, while also

underscoring the need for further research to confirm its role as

an adjuvant in chemotherapy. Study limitations include the lack of

assessment of curcumin in non-tumor cell lines (to calculate the

selectivity index) and evaluation in only a single metastatic cell line,

without including non-metastatic cells to better replicate the tumor

microenvironment. Future studies are recommended to investigate

the efficacy and bioavailability of different curcumin dosages and

formulations, as well as potential synergistic effects with established

chemotherapeutic agents. Ultimately, well-designed, large-scale

clinical trials are essential to establish the safety, tolerability, and

efficacy of curcumin alongside standard antineoplastic therapies,

which may benefit patients undergoing treatment for various
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cancers, including OSCC, a disease characterized by significant

resistance to conventional treatments, leading to high morbidity

and mortality.
5 Conclusion

Based on the results obtained, curcumin demonstrated

promising cytotoxic activity against metastatic OSCC cells in both

2D and 3D models, with the effect being concentration- and time-

dependent, and with tumor spheroids exhibiting greater resistance

to treatment. Furthermore, this compound induced apoptosis

mediated by increased reactive oxygen species (ROS) production

and morphological alterations, as well as reduced tumor formation

in vivo (Figure 9). Despite these encouraging findings, curcumin is

not, to date, an FDA-approved drug for cancer treatment, and its

clinical relevance remains uncertain. The mechanistic connection

between curcumin and OSCC is not yet fully understood, and

significant limitations such as its poor bioavailability, instability,

and variability across formulations must be critically addressed.

Therefore, although this study highlights the potential antitumor

activity of curcumin in preclinical models, more rigorous

pharmacological, toxicological, and clinical investigations are

essential before considering curcumin as a viable therapeutic

candidate for oral cancer.
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