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Purpose: To develop and validate an integrated intra-tumoral (ITR) and
peritumoral (PTR) radiomics-deep learning model based on ultrasound (US)
imaging for accurately differentiating fibroadenomas (FA) from phyllodes
tumors (PT) and further classifying PT into benign, borderline, and
malignant subtypes.

Methods: This multicenter retrospective study enrolled 300 patients (141 FA, 159
PT) from three institutions. US images were analyzed using manual segmentation
of ITR and PTR (4mm, 8mm, 12mm, 16mm expansions). A total of 114 radiomics
features were extracted per region using PyRadiomics. Five deep learning models
(CNN, MLP, ViT, GAN, RNN) and six machine learning classifiers were evaluated.
Optimal features were selected via LASSO and Boruta algorithms. Integrated
models combining radiomics (ITR + PTR) with clinical factors (diameter, Bi-RADS)
were developed. Performance was assessed using AUC, accuracy, sensitivity,
specificity, F1-score, and biopsy reduction rate. Internal validation used a 7:3
random split stratified by center and pathology. External validation was
performed on a per-center hold-out basis.

Results: The combined model (ITR + 8mm PTR + clinical) achieved the highest
performance for FA/PT differentiation (AUC: 0.960; accuracy: 96.0%; sensitivity:
96.0%; specificity: 94.5%). For PT subtyping (benign/borderline/malignant), the
model attained an AUC of 0.874 (accuracy: 77.2%). The integrated model
significantly reduced unnecessary biopsy rates by 11.7% overall (18.1% for PT
cases). Peritumoral analysis (8mm PTR) contributed critically to model
performance, likely capturing stromal interactions at the tumor periphery.
Conclusion: Integrating intra-tumoral, peritumoral (8mm), and clinical US
radiomics features enables highly accurate non-invasive differentiation of FA
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and PT and stratification of PT subtypes. This approach reduces diagnostic
ambiguity in Bi-RADS 4 lesions and decreases unnecessary biopsies,
demonstrating significant clinical utility for precision diagnosis of breast
fibroepithelial tumors.

fibroadenoma, phyllodes tumor, intratumoral, peritumoral, radiomics, deep

learning, ultrasound

1 Introduction

Accurate differential diagnosis of breast tumors remains a core
clinical challenge. Radiomics, through high-throughput extraction
of medical imaging features, has established a new paradigm for
non-invasive diagnosis (1, 2). Our previous research developed a
differentiation model between benign and malignant breast tumors
using multimodal deep learning radiomics (including
mammography, MRI, and ultrasound), addressing the
fundamental classification issue (3). However, for common
benign breast tumors such as fibroadenomas (FA) and potentially
malignant phyllodes tumors (PT), there exist distinct subtypes with
significant differences in biological behavior and prognosis (4, 5).
Breast ultrasound plays a crucial role in differentiating between FA
and PT (6).

Breast fibroepithelial lesions encompass a heterogeneous group
of biphasic tumors, including FA and PT. PTs were first identified
in 1838 and described as cystosarcomas phyllodes due to their leaf-
like appearance (7, 8). These tumors account for 2.5% of all breast
fibroepithelial lesions and represent less than 1% of all breast
tumors (9, 10). Notably, PT exhibits higher incidence rates in
Asian populations, particularly among young women. Based on
histological features (stromal cellularity, atypia, mitotic activity,
stromal overgrowth, and margin characteristics), PTs are
classified into three subtypes: benign, borderline, and malignant
(5, 11). PT typically recurs locally within 2-3 years after diagnosis,
with total recurrence rates of 10-17% for benign, 14-25% for
borderline, and 23-30% for malignant PTs (12, 13).

Therefore, extensive local resection is required for malignant
PT. Metastasis in PT indicates poor prognosis, increased mortality
risk, and reduced survival rates. In patients with benign or
borderline PT, distant metastasis is extremely rare. The
occurrence of distant metastasis in benign or borderline PT is
likely due to insufficient sample size and misclassification. Thus,
precise tumor grading, particularly accurate diagnosis of malignant
PT, becomes crucial. Patients with malignant PT should consider
systemic treatments such as chemotherapy or targeted therapy,
while those with borderline PT have minimal or no metastatic risk,
allowing safe surgical intervention (14). Accurate preoperative
diagnosis of FA, PT cell tumors, and adenomas not only aids in
formulating precise surgical plans and determining appropriate
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tumor margins and axillary dissection but also helps avoid
overtreatment or under-treatment (15). Currently, histological
morphology remains the sole diagnostic criterion for malignant
PT. However, since PT themselves represent a continuous disease
spectrum with overlapping histological features, and given the
numerous subjective evaluation parameters used in current
grading systems, pathologists lack consensus in classifying
malignant PT, which may not fully align with their biological
behavior. Previous studies have shown that older age, rapid
growth of lesions, and tumors larger than 3 cm are more likely to
become borderline and malignant PT (16).Another study observed
that there was about 60% inconsistency between biopsy pathology
and resection pathology, which may be attributed to insufficient
sample size and tumor heterogeneity (17). Therefore, the existing
grading criteria for FA and PT are challenged, and accurate and
reproducible grading is worth further exploration.

The characteristics of tumor heterogeneity are hemorrhagic
areas, cystic changes, high cell density, necrosis and mucinous
changes (18). In recent years, with the development of
radiological examination techniques, including breast ultrasound,
mammography and magnetic resonance imaging have been widely
used in the diagnosis and treatment evaluation of FA and PT of the
breast. However, traditional ultrasound imaging demonstrates
limited potential in predicting FA and PT, and its classification.
At present, tumor cells and tumor microenvironment (Tumor
microenvironment, TME) are considered to be the key factors in
cancer occurrence and development, as well as potential targets for
treatment (19).Tumor cells coexist with a variety of cellular
components in the tumor microenvironment, forming a more
complex tumor immune microenvironment composed of immune
infiltrating cells than normal healthy tissues, which has become a
hot spot in the diagnosis and treatment of breast tumors (20).

Building on previous research, we integrate radiomics and deep
learning to comprehensively evaluate tumor sites using ultrasound
imaging for distinguishing these challenging entities. This study
explores the deep information mining capabilities of ultrasound,
integrating intra-tumor (ITR) and peritumoral (PTR) data to
achieve precise differentiation between FA and PT and subtyping
of PT. The novelty of this work lies in: 1) the multicenter design; 2)
the combined analysis of ITR, PTR (across multiple expansions),
and clinical features; 3) the direct comparison of radiomics and
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deep learning approaches; and 4) the analysis of potential
biopsy reduction.

2 Materials and methods
2.1 Patient population and study design

This retrospective, multicenter study was reviewed and approved
by the Ethics Committee of the General Hospital of the Northern
Theater Command (Approval No.: Y (2404)-030). The need for
informed consent was waived. Data were extracted from ultrasound
imaging and clinical pathology records of three medical centers
(General Hospital of the Northern Theater Command, Liaoning
Provincial Cancer Hospital, and The Fourth Affiliated Hospital of
China Medical University) between January 2018 and May 2024.

Inclusion criteria were: (1) Complete availability of imaging and
clinical data; (2) No prior treatment before ultrasound examination; (3)
No measurement markers in ultrasound grayscale images; (4) All cases
underwent biopsy or surgical resection with pathological confirmation;
(5) Pathological diagnosis of PT could clearly define subtypes: benign,
borderline, and malignant. Exclusion criteria included:(1) Small ROI
(<100 pixels); (2) Measurement markers in images; (3) Poor tumor
segmentation due to blurred borders; (4) Unclear pathological diagnosis;

10.3389/fonc.2025.1668793

(5) Lack of definitive pathological results. Based on these criteria, 300
female breast tumor patients were enrolled: 141 with FA and 159 with
PT. The patient enrollment flowchart is shown in Figure 1.

2.2 Ultrasound image acquisition and
preprocessing

Breast ultrasound examinations were performed by specialists
using systems(Mindray DC-7, GE Logiq E9, GE Voluson E8, Philips
IU22, GE Logiq E20) equipped with 3-13 MHz linear array
transducers. Examination followed ACR BI-RADS 5th edition
guidelines (21). Scanning parameters (depth: 4-5 cm; gain: 10-25
dB; dynamic range: 70 dB; frame rate: 26 fps) were adjusted per patient
based on habitus and lesion location, following standard clinical
protocols at each center. Patients were positioned supine or lateral.
The focal area was centered on the lesion. Images were stored in PACS.
For each lesion, a specialist selected five representative images (longest
axis, perpendicular, three other clear angles).

ROI delineation and image segmentation were performed
manually using ITK-SNAP (v3.80) by three ultrasound specialists
with >10 years of experience, guided by a senior physician (>20
years experience). Inter- and intra-observer variability was assessed
using Dice Similarity Coefficient (DSC) and Intraclass Correlation

Patiets with breast mass in centers1
from January 2018 to October 2023

(n1=1134) 2024(n2=890)

Patiets with breast mass in centers
2 from May 2018 to March

Patiets with breast mass in centers
3 from June 2019 to May 2024
(n3=983)

Inclusion criteria:

(1) complete imaging and clinical data availability;
(2) without treatment before the US examination;
(3) there were no measurement labels in the
greyscale images;

(4) all cases were surgically resected and
pathologically diagnosed;

Exclusion criteria:

(1) with very small region of interest in the US images (<100 pixels)
(n=845);

(2) there were measurement labels in greyscale images(n=726);

(3) poor image tumor segmentation due to blurred

(5) clear definitions of benign, malignant, and
borderline in the pathological diagnosis of PTs
were able to be obtained.

boundaries(n=357);

(4) no clear definitions of benign, malignant, and borderline lesions in
the pathological diagnosis of PT were available(n=414);

(5) absence of pathological results(n=365)

PT (n=159) and FA

300 patients were recruited with
(n=141)

Training dataset
(n=210)

Testing dataset
(n=90)

FA=89 PT=121 FA=52 PT=38
FIGURE 1
The patient enrollment flowchart.
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Coefficient (ICC); results indicated good to excellent agreement (DSC:
0.78-0.93, ICC: 0.832-0.949), and no statistically significant bias was
found in feature extraction between observers (p > 0.05 for most
features). The ITR was delineated layer-by-layer, avoiding necrosis.
PTR was generated by expanding the ITR outward by 4mm, 8mm,
12mm, and 16mm using the Onekey Al platform (22) and MATLAB
2016b (23). The rationale for selecting these PTR thicknesses was based
on prior literature suggesting stromal involvement within these
distances (24, 25) and exploratory analysis showing varying
predictive power across these ranges (see Sensitivity Analysis in
Section 2.6). PTR extending beyond breast parenchyma was
manually removed. Disagreements were resolved by consensus.
Examples are shown in Figures 2-4.

2.3 Feature extraction

Using PyRadiomics (v3.0.1) (26), 114 radiomics features were
extracted per ROI: 18 first-order statistics, 14 shape-based, 75
textural features (GLCM, GLRLM, GLSZM, GLDM, NGTDM) (21,
27). Feature extraction settings were default PyRadiomics parameters
unless otherwise specified (binWidth: 25; force2D: True).

2.4 Feature selection and model
construction

High-dimensional features underwent dimensionality reduction to
prevent overfitting. Z-score normalization was applied. The Boruta

10.3389/fonc.2025.1668793

algorithm (22) was used for feature selection, comparing original
features against shadow features. LASSO regression was also
employed for optimal feature subset selection.

A two-stage classification model was developed: 1) Diagnostic
network differentiating FA from PT using ITR, PTR, and combined
features; 2) Grading network classifying PT into benign, borderline,
malignant. The models were constructed using six machine learning
classifiers: Random Forest (RF; n_estimators=100), Support Vector
Machine (SVM; kernel=rbf, C = 1.0), XGBoost (XGB; max_depth=6,
learning rate=0.1), LightGBM (LGBM; num_leaves=31), Decision
Tree (DT; max_depth=5), and Logistic Regression (LR;
solver=Tiblinear’). Hyperparameters were optimized using 5-fold
cross-validation GridSearch within the training set. Five deep
learning models [CNN (28), MLP (29), ViT (17), GAN (30), RNN
(31)] were also implemented using standard architectures and trained
from scratch using Adam optimizer (learning rate=0.001), batch
size=16, for 100 epochs with early stopping.

2.5 Data split and validation strategy

To mitigate the risk of data leakage, patient-level splitting was
strictly enforced. The dataset was first stratified by center and
pathology label (FA, PT benign, PT borderline, PT malignant).
Patients were then randomly split 7:3 into training (210 patients)
and internal testing (90 patients) sets, ensuring no patient’s images
appeared in both sets. For external validation, each center’s data was
held out iteratively: models trained on data from two centers were
tested on the third center’s data. This per-center hold-out test provides

RO 5 Features Extraction Model building
segmentation - )
———— . Classifiers
o Radiomics features Early-Fusion
(intratumoral and SVM
periumoral)
Early-Fusion KNN
Transformer deep learning Decision
features
Early-Fusion [~ RF
Clinical Features XGBoost
Early-Fusion LightGBM
late-Fusion-
Ensemble
Late-Fusion-

FIGURE 2

Stacking

The workflow of ROl extraction and preprocessin DLR: conventional radiomic features were extracted from US datas. Feature selection and fusion
techniques were applied to reduce dimensionality and integrate complementary information. Classification modeling was done using 6 machine

learning algorithms.
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FIGURE 3

Workflow for delineating ITR and PTR in FA and PT patients under different ROl segmentation schemes: FA (a) and PT (b); red areas represent TR,
yellow-green areas represent 4 mm, 8 mm, 12 mm, and 16 mm PTR in FA (c) and PT (d). ITR: intratumoral area; PTR: peritumoral area.

a robust estimate of generalizability. The sample size of 300 patients
was based on a pragmatic sample availability from the collaborating
centers over the study period. A post-hoc power analysis based on the
observed AUC (0.96) for the primary outcome (FA vs. PT) indicated
sufficient power (>0.95) at alpha=0.05. Performance was assessed via
AUC, accuracy, sensitivity, specificity, Fl-score. Calibration was
evaluated using Hosmer-Lemeshow test and calibration curves.
Decision curve analysis (DCA) assessed clinical utility. Five-fold
cross-validation was performed on the training set for
hyperparameter tuning and internal performance estimation.

2.6 Statistical analysis and sensitivity
analysis

Statistical analysis used R (v4.3.1) and SPSS (v26.0). Non-normal
continuous data summarized as median (IQR); compared using Mann-
Whitney U/Kruskal-Wallis tests. Categorical variables as n (%);
compared using Chi-square/Fisher’s exact test. Model performance
metrics reported with 95% confidence intervals (CI) calculated via
bootstrap (2000 repetitions). AUC comparisons used DeLong test.
Inter-observer agreement used ICC and Cohen’s Kappa. P<0.05
significant. A sensitivity analysis was performed for the PTR thickness

Frontiers in Oncology

parameter. Models were built and evaluated using only ITR, and ITR
combined with each PTR thickness (4, 8, 12, 16 mm). The 8mm PTR
expansion yielded the highest average AUC across classifiers for the FA
vs. PT task (See Supplementary Table S1), justifying its selection as the
optimal PTR width for the combined model.

3 Results
3.1 Clinical data characteristics

Among the 300 breast mass patients enrolled in the study, 141
were ultimately diagnosed with FA and 159 with PT through
postoperative pathological examination. A randomized 7:3 split
was used to divide patients into a training set (210 cases) and a
validation set (90 cases). No significant differences were observed
between the training and validation sets in terms of age, lesion
diameter, location, menopausal status, clinical symptoms, growth
rate, hardness, mobility, margins, echogenicity, blood flow, or BI-
RADS classification (all P> 0.05). Each patient had a single lesion in
one breast and underwent surgical treatment: 85 patients (28.3%)
received breast biopsy, 110 patients (36.7%) underwent local
excision, 73 patients (24.3%) had wide excision, and 32 patients

frontiersin.org
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Mask
Mask +4mm Padding 1
Mask + 8mm | Padding 2
Mask + 12mm Padding 3
Mask + 16mm Padding 4
v
FIGURE 4

The workflow of the radiomics analysis of ITR and PTR:The ROI delineation of the tumor was increased by 4mm layer by layer to 16mm; The

peritumoral lesion image gradually increased by 4mm to 16mm.

(10.6%) underwent radical mastectomy. Detailed demographic data
and lesion characteristics are summarized in Table 1.

3.2 Feature consistency and selection

Dice coefficients for ROI segmentation were 0.78-0.92,0.80-
0.93, 0.84-0.92 for the three physicians. ICCs were 0.832-0.949
(intra-observer) and 0.742-0.925 (inter-observer), indicating good
reproducibility. LASSO selected 5 optimal features from ITR and 10
from 8mm PTR(1 first-order, 9 higher-order).

3.3 Predictive performance of the imaging
radiomics model

Performance metrics for Models 1-7 are detailed in Table 2.
The combined Model 7 (ITR + 8mm PTR+Clinical) performed best
for FA/PT differentiation (AUC: 0.960, Accuracy: 96.0%, Sensitivity:
96.0%, Specificity: 94.5%). For PT subtyping, Model 7 (Light GBM
classifier) achieved an AUC of 0.874 (95% CI: 0.798-0.950),
Accuracy: 77.2%.

3.4 Predictive performance of deep
learning models

Performance of DL models is shown in Table 3. GAN
performed best for FA/PT (AUC: 0.976). MLP performed best for
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PT subtyping (AUC: 0.950). The relatively lower performance of
CNN and ViT compared to GAN might be attributed to the GAN’s
potential to learn more robust feature representations from limited
data through its adversarial training paradigm, whereas standard
CNNs and ViTs may require larger datasets to achieve optimal
performance in this specific task.

3.5 Subgroup analysis based on BI-RADS

To evaluate the impact of BI-RADS classification, patients were
divided into three subgroups: Grade 3 (n=86,42 PT cases), Grade 4
(including Grade 4a [76 cases], Grade 4b [68 cases], and Grade 4c
[47 cases]), and Grade 5 (n=23,14 PT cases). In all three subgroups
(n=191, 117 PT cases and n=23,14 PT cases), Model 7 ITR+PTR8
+clinical) showed high diagnostic accuracy across BI-RADS
subgroups: Grade 3: 84.0%, Grade 4: 66.0%, Grade 5: 88.0%.
Specificity was highest for Grade 5 lesions (96.6%). Notably, in
the Grade 4 lesion subgroup, Model 7 showed enhanced specificity
when incorporating intratumoral and peritumoral (8mm) clinical
features. This highlights the potential of integrating tumor-
intrusion, peritumoral, and clinical characteristics for addressing
diagnostic challenges in BI-RADS Grade 4 lesions.

3.6 Biopsy reduction analysis

Model 7 achieved an overall biopsy reduction rate of 11.7% (10/
85), with an 18.1% (6/33) reduction for PT cases. Confidence
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TABLE 1 The baseline information.

Training set (n=210)

Test set (h=90)

10.3389/fonc.2025.1668793

FA(n=89)  PT(n=121) Value FA(n=38)  PT(n=52)
Case 89(42.4%) 121(57.6%) 38(42.2%) 52(57.8%) 0.001 0.980
Images 280 395 123 165 0.011 0.724
Age 48.03+1.29 50.20+1.77 0.829 0.408 57.16+2.47 51.13+2.44 1.696 0.093
Diameter 3.2240.14 3.52+0.13 1.592 0.112 3.75+0.24 3.12+0.21 1.964 0.053
Position* 6.027 0.925
Centre 3(3.4%) 3(2.5%) 1(2.6%) 1(1.9%)
UIQ 21(23.6%) 32(26.4%) 10(26.3%) 16(30.8%)
LIQ 24(27.0%) 33(27.3%) 6(15.8%) 12(23.1%)
LOQ 22(24.7%) 26(21.5%) 11(28.9%) 8(15.4%)
UoQ 19(21.3%) 27(22.3%) 10(26.3%) 15(28.8%)
Menopause 1.364 0.714
Yes 51(57.3%) 63(52.1%) 18(47.4%) 26(50.0%)
No 38(42.7%) 58(47.9%) 20(52.6%) 26(50.0%)
Clinlcal symptom 1.946 0.583
Positive 43(48.3%) 56(46.3%) 14(36.8%) 21(40.4%)
Negative 46(51.7%) 65(53.7%) 24(63.2%) 31(59.6%)
Growth 1.713 0.634
Fast 40(44.9%) 64(52.9%) 17(44.7%) 24(46.2%)
Slow 49(55.1%) 57(47.1%) 21(55.3%) 28(53.8%)
Hardness 12.187 0.051
Soft 42(47.2%) 38(31.4%) 13(34.2%) 20(38.5%)
Middle 25(28.1%) 36(29.8%) 17(44.7%) 20(38.5%)
Hard 22(24.7%) 47(38.8%) 8(21.1%) 12(23.0)
Activity 0.675 0.879
Good 50(56.2%) 63(52.1%) 22(57.9%) 27(51.9%)
Bad 39(43.8%) 58(47.9%) 16(42.1%) 25(48.1%)
Border 3.280 0.350
Clear 64(71.9%) 84(69.4%) 26(68.4%) 30(57.7%)
Irregular 25(28.1%) 37(30.6%) 12(31.6%) 22(42.3%)
Echo 2.944 0.400
Even 45(50.6%) 75(62.0%) 23(60.5%) 29(55.8%)
Inhomogeneous 44(49.4%) 46(38.0%) 15(39.5%) 23(44.2%)
Blood flow 2.459 0.483
Yes 42(47.2%) 54(44.6%) 18(47.4%) 18(34.6%)
No 47(52.8%) 67(55.4%) 20(52.6%) 34(65.4%)
BiRADS 11.967 0.448
3 36(40.4%) 32(26.4%) 8(21.1%) 10(19.2%)
(Continued)
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TABLE 1 Continued

Training set (n=210)

10.3389/fonc.2025.1668793

Test set (n=90)

FA(n=89) PT(n=121) Value FA(n=38) PT(n=52)
4a 22(24.7%) 29(24.0%) 9(23.7%) 16(30.8%) ‘
b 15(16.9%) 31(25.6%) ‘ 10(26.3%) 12(23.1%) ‘
4c 10(11.2%) 19(15.7%) ‘ 8(21.1%) 10(19.2%) ‘
5 6(6.7%) 10(8.3%) 3(7.9%) 4(7.7%)

*FA, Fibroadenoma; PT, Phyllodes Tumor; UOQ, upper outer quadrant; UIQ, upper inner quadrant; LIQ, lower inner quadrant; LOQ, lower outer quadrant.

intervals (95%) for the reduction rates were calculated using the
Clopper-Pearson exact method: Overall: 11.7% (5.7%-20.6%); PT:
18.1% (7.0%-35.5%). Results are in Table 4.

4 Discussion

Compared with traditional visual-based image evaluation
methods, radiological features derived from imaging can uncover
additional latent characteristics. This radiomics-based approach
demonstrated potential in distinguishing between FA and PT.
Some findings revealed that the optimal combination of imaging
radiomics features included high width-to-height ratio, edge
blurriness, machine learning, energy, gray entropy, and
intramural calcification could achieve good performance. In this
study, we developed a model using radiomics features extracted
from 114 breast lesions within each ROI through grayscale co-
occurrence matrix (GLCM), grayscale run-length matrix (GLRLM),

grayscale size zone matrix (GLSZM), grayscale-dependent matrix
(GLDM), and neighborhood grayscale difference matrix
(NGTDM). The diagnostic efficacy metrics for FA and PT
showed accuracy, AUC, sensitivity, specificity, precision, recall,
and F1 values of 84.8%, 0.935, 86.7%, 86.2%, 91.3%, and 84.0%
respectively. Our model demonstrated slightly higher accuracy than
some studies (17, 30), likely due to the distinct radiomics feature
extraction. Domestic research indicates that Al-assisted diagnosis
through radiomics and deep learning can identify subtle
morphological and textural differences between PT and FA,
thereby enhancing diagnostic efficacy.

Previous radiomics analyses primarily focused on visual tumor
boundaries, but recent studies have also emphasized peritumoral
regional information. Researchers propose that the peritumoral area
may be the earliest site of tissue lesion development and plays a
critical role in determining tumor progression and treatment
response (32). However, inflammatory tissues (characterizing the
transition between tumors and normal parenchyma) introduce

TABLE 2 Results of radiomic classification utilizing intratumoral and peritumoral information of US imaging.

Model Accuracy AUC Sensitivity = Specificity = Accuracy @ Recall F1 Classifier
1(ITR) 0.848 0.935 0.867 0.862 0913 0.840 0.875 XG Boost
2(PTR4) 0.550 0573 0.467 0.800 0.875 0.467 0.609 Light GBM
3(PTRS) 0.750 0.747 0.733 0.800 0917 0.733 0.815 RF
4(PTR12) 0.450 0.400 0333 0.800 0.833 0333 0.476 SVM
5(PTR16) 0.550 0.360 0.600 0.400 0.750 0.600 0.667 RF
6(ITR+PTRS) 0.894 0.958 0.906 0931 0.945 0.932 0.927 XGB
7(ITR+PTR8+clinical) 0.960 0.960 0.960 0.945 0.971 0.960 0.965 LGBM

*ITR, Intratumoral Region; PTR, Peritumoral Region; XGB, eXtreme Gradient Boosting; LGBM, Light Gradient Boosting Machine; RF, Random Forest; SVM, Support Vector Machine

TABLE 3 Results of deep learning information of US imaging.

Model Accuracy Sensitivity Specificity Accuracy Recall
CNN 0531 0.498 0421 0.692 0.667 0421 0.516
MLP 0.746 0.944 0.630 0577 0577 0.789 0.667
ViT 0.625 0.401 0947 0.154 0.621 0947 0.750
GAN 0.896 0976 0.870 0952 0976 0.870 0.920
RNN 0.750 0.733 0.733 0.800 0917 0.733 0815

*CNN, Convolutional Neural Network; MLP, Multilayer Perceptron; ViT, Vision Transformer; GAN, Generative Adversarial Network; RNN, Recurrent Neural Network.
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TABLE 4 Performance of different models in reducing the rate of lesion biopsy.

Model Biopsy reduction rate FA
1(TR) 5.8% (5/85) 5.7% (3/52)
6(ITR+PTRS) 8.2%(7/85) 7.7% (4/52)
7(ITR+PTR8+clinical) 11.7%(5.7%-20.6%) 7.7% (5.5%-14.8%)

certain misleading factors into radiographic results. Therefore,
clinical visual analysis alone often fails to detect peritumoral
regions, whose extent may influence tumor diversity (33). Given
the varying complexities of different diseases and pathological
issues, standardized end-to-end solutions are typically unavailable
for comprehensive analysis. Instead, parameterized approaches
tailored to specific tumor locations and imaging modalities are
often required. Zhang (34)developed a linear discriminant analysis
(LDA) model integrating three radiomics features (from ITR, 5mm
PTR, and ITR + 10mm PTR) with two clinical factors (age and BI-
RADS classification), demonstrating strong predictive power in
both internal and external test datasets. This model, which
combines intratumoral and peritumoral radiomics features with
clinical factors, successfully predicted malignant BI-RADS 4 lesions
in contrast-enhanced mammography using AUC values of 0.907
and 0.904 respectively. Our study demonstrates that integrating
ITR, PTR (8mm), and clinical features achieves excellent
performance in differentiating FA from PT and grading PT
subtypes using US radiomics. The optimal 8mm PTR likely
captures critical stromal alterations and tumor-host interactions
at the invasive edge, a known hotspot for biological activity in breast
tumors (35, 36).

In our model 7, which integrates intratumoral +8mmPTR with
clinical features (diameter and BI-RADS classification), we observed
slightly lower sensitivity and accuracy compared to the previous model
in FA and PT cases classified as BI-RADS 4. However, it demonstrated
higher specificity. These differences may stem from subtle variations in
the microscopic structures of FA and PT within the selected
multicenter ultrasound imaging data. Huang (37)emphasized not
only clinically-derived models but also the importance of
comprehensive radiomics analysis for accurate breast nodule
characterization. Our findings reveal that the combined model
integrating ITR + 8mm PTR+clinical features achieves optimal
diagnostic precision. These results demonstrate that ultrasound-based
intratumoral/peritumoral features combined with clinical
characteristics exhibit superior diagnostic efficacy in both FA/PT
classification models and pathological subtypes grading models for
PT, thereby enhancing diagnostic accuracy and supporting clinical
decision-making. Our model significantly reduced the potential need
for biopsies, especially for PT lesions. This aligns with the goal of
precision medicine to minimize invasive procedures (32). And
potential clinical integration could involve PACS-integrated software
for automatic feature extraction and model inference, providing real-
time decision support during ultrasound examination and potentially
reducing workflow interruptions.

Frontiers in Oncology

PT Values P value
6.1% (2/33) 0.035 0.852
9.0% (3/33) 0.004 0.949
18.1%(7.0%-35.5%) 1.191 0.275

This study also has some limitations. A key limitation is the
retrospective design and class imbalance, particularly for borderline
and malignant PT subtypes, which may introduce selection bias and
affect model generalizability. Future prospective studies with larger,
balanced cohorts are needed. Furthermore, this study utilized only
ultrasound. While US is crucial, incorporating multimodal imaging
(mammography, MRI) in future work could potentially enhance
performance further.

5 Conclusion

This study established ultrasound-based intra-tumoral,
peritumoral, and clinical radiomics features. Diagnostic efficacy
for FA and PT was first evaluated. Building on this foundation,
further classified PT into benign, borderline, and malignant
subtypes, and analyzed performance across different BI-RADS
grades, and identified ITR and PTR characteristics associated with
reduced biopsy rates. In conclusion, the proposed US-based
radiomics model integrating intra-tumoral, peritumoral (8mm),
and clinical features serves as an effective non-invasive tool for
differentiating FA from PT and classifying PT subtypes. It shows
particular value in managing BI-RADS 4 lesions and reducing
unnecessary biopsies. Future work should focus on large-scale,
prospective, multicenter validation and exploration of
multimodal integration.
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