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Guoxiu Lu1, Ronghui Tian2, Wei Yang3, Dongmei Liu4,
Wenjing Chen5, Jingjing Liang1, Qi Peng1, Shanhu Hao1*
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1Department of Nuclear Medicine, General Hospital of Northern Theater Command, Shenyang,
Liaoning, China, 2School of Software, Shenyang University of Technology, Shenyang, Liaoning, China,
3Department of Radiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and
Institute, Shenyang, Liaoning, China, 4Department of Ultrasound, Beijing Shijitan Hospital, Capital
Medical University, Beijing, China, 5Department of Research and Development, United Imaging
Intelligence (Beijing) Co., Ltd., Beijing, China
Purpose: To develop and validate an integrated intra-tumoral (ITR) and

peritumoral (PTR) radiomics-deep learning model based on ultrasound (US)

imaging for accurately differentiating fibroadenomas (FA) from phyllodes

tumors (PT) and further classifying PT into benign, borderline, and

malignant subtypes.

Methods: This multicenter retrospective study enrolled 300 patients (141 FA, 159

PT) from three institutions. US images were analyzed using manual segmentation

of ITR and PTR (4mm, 8mm, 12mm, 16mm expansions). A total of 114 radiomics

features were extracted per region using PyRadiomics. Five deep learningmodels

(CNN, MLP, ViT, GAN, RNN) and six machine learning classifiers were evaluated.

Optimal features were selected via LASSO and Boruta algorithms. Integrated

models combining radiomics (ITR ± PTR) with clinical factors (diameter, Bi-RADS)

were developed. Performance was assessed using AUC, accuracy, sensitivity,

specificity, F1-score, and biopsy reduction rate. Internal validation used a 7:3

random split stratified by center and pathology. External validation was

performed on a per-center hold-out basis.

Results: The combined model (ITR + 8mm PTR + clinical) achieved the highest

performance for FA/PT differentiation (AUC: 0.960; accuracy: 96.0%; sensitivity:

96.0%; specificity: 94.5%). For PT subtyping (benign/borderline/malignant), the

model attained an AUC of 0.874 (accuracy: 77.2%). The integrated model

significantly reduced unnecessary biopsy rates by 11.7% overall (18.1% for PT

cases). Peritumoral analysis (8mm PTR) contributed critically to model

performance, likely capturing stromal interactions at the tumor periphery.

Conclusion: Integrating intra-tumoral, peritumoral (8mm), and clinical US

radiomics features enables highly accurate non-invasive differentiation of FA
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and PT and stratification of PT subtypes. This approach reduces diagnostic

ambiguity in Bi-RADS 4 lesions and decreases unnecessary biopsies,

demonstrating significant clinical utility for precision diagnosis of breast

fibroepithelial tumors.
KEYWORDS

fibroadenoma, phyllodes tumor, intratumoral, peritumoral, radiomics, deep
learning, ultrasound
1 Introduction

Accurate differential diagnosis of breast tumors remains a core

clinical challenge. Radiomics, through high-throughput extraction

of medical imaging features, has established a new paradigm for

non-invasive diagnosis (1, 2). Our previous research developed a

differentiation model between benign and malignant breast tumors

using multimodal deep learning radiomics (including

mammography, MRI, and ultrasound), addressing the

fundamental classification issue (3). However, for common

benign breast tumors such as fibroadenomas (FA) and potentially

malignant phyllodes tumors (PT), there exist distinct subtypes with

significant differences in biological behavior and prognosis (4, 5).

Breast ultrasound plays a crucial role in differentiating between FA

and PT (6).

Breast fibroepithelial lesions encompass a heterogeneous group

of biphasic tumors, including FA and PT. PTs were first identified

in 1838 and described as cystosarcomas phyllodes due to their leaf-

like appearance (7, 8). These tumors account for 2.5% of all breast

fibroepithelial lesions and represent less than 1% of all breast

tumors (9, 10). Notably, PT exhibits higher incidence rates in

Asian populations, particularly among young women. Based on

histological features (stromal cellularity, atypia, mitotic activity,

stromal overgrowth, and margin characteristics), PTs are

classified into three subtypes: benign, borderline, and malignant

(5, 11). PT typically recurs locally within 2–3 years after diagnosis,

with total recurrence rates of 10-17% for benign, 14-25% for

borderline, and 23-30% for malignant PTs (12, 13).

Therefore, extensive local resection is required for malignant

PT. Metastasis in PT indicates poor prognosis, increased mortality

risk, and reduced survival rates. In patients with benign or

borderline PT, distant metastasis is extremely rare. The

occurrence of distant metastasis in benign or borderline PT is

likely due to insufficient sample size and misclassification. Thus,

precise tumor grading, particularly accurate diagnosis of malignant

PT, becomes crucial. Patients with malignant PT should consider

systemic treatments such as chemotherapy or targeted therapy,

while those with borderline PT have minimal or no metastatic risk,

allowing safe surgical intervention (14). Accurate preoperative

diagnosis of FA, PT cell tumors, and adenomas not only aids in

formulating precise surgical plans and determining appropriate
02
tumor margins and axillary dissection but also helps avoid

overtreatment or under-treatment (15). Currently, histological

morphology remains the sole diagnostic criterion for malignant

PT. However, since PT themselves represent a continuous disease

spectrum with overlapping histological features, and given the

numerous subjective evaluation parameters used in current

grading systems, pathologists lack consensus in classifying

malignant PT, which may not fully align with their biological

behavior. Previous studies have shown that older age, rapid

growth of lesions, and tumors larger than 3 cm are more likely to

become borderline and malignant PT (16).Another study observed

that there was about 60% inconsistency between biopsy pathology

and resection pathology, which may be attributed to insufficient

sample size and tumor heterogeneity (17). Therefore, the existing

grading criteria for FA and PT are challenged, and accurate and

reproducible grading is worth further exploration.

The characteristics of tumor heterogeneity are hemorrhagic

areas, cystic changes, high cell density, necrosis and mucinous

changes (18). In recent years, with the development of

radiological examination techniques, including breast ultrasound,

mammography and magnetic resonance imaging have been widely

used in the diagnosis and treatment evaluation of FA and PT of the

breast. However, traditional ultrasound imaging demonstrates

limited potential in predicting FA and PT, and its classification.

At present, tumor cells and tumor microenvironment (Tumor

microenvironment, TME) are considered to be the key factors in

cancer occurrence and development, as well as potential targets for

treatment (19).Tumor cells coexist with a variety of cellular

components in the tumor microenvironment, forming a more

complex tumor immune microenvironment composed of immune

infiltrating cells than normal healthy tissues, which has become a

hot spot in the diagnosis and treatment of breast tumors (20).

Building on previous research, we integrate radiomics and deep

learning to comprehensively evaluate tumor sites using ultrasound

imaging for distinguishing these challenging entities. This study

explores the deep information mining capabilities of ultrasound,

integrating intra-tumor (ITR) and peritumoral (PTR) data to

achieve precise differentiation between FA and PT and subtyping

of PT. The novelty of this work lies in: 1) the multicenter design; 2)

the combined analysis of ITR, PTR (across multiple expansions),

and clinical features; 3) the direct comparison of radiomics and
frontiersin.org

https://doi.org/10.3389/fonc.2025.1668793
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Lu et al. 10.3389/fonc.2025.1668793
deep learning approaches; and 4) the analysis of potential

biopsy reduction.
2 Materials and methods

2.1 Patient population and study design

This retrospective, multicenter study was reviewed and approved

by the Ethics Committee of the General Hospital of the Northern

Theater Command (Approval No.: Y (2404)-030). The need for

informed consent was waived. Data were extracted from ultrasound

imaging and clinical pathology records of three medical centers

(General Hospital of the Northern Theater Command, Liaoning

Provincial Cancer Hospital, and The Fourth Affiliated Hospital of

China Medical University) between January 2018 and May 2024.

Inclusion criteria were: (1) Complete availability of imaging and

clinical data; (2) No prior treatment before ultrasound examination; (3)

No measurement markers in ultrasound grayscale images; (4) All cases

underwent biopsy or surgical resection with pathological confirmation;

(5) Pathological diagnosis of PT could clearly define subtypes: benign,

borderline, and malignant. Exclusion criteria included:(1) Small ROI

(<100 pixels); (2) Measurement markers in images; (3) Poor tumor

segmentation due to blurred borders; (4) Unclear pathological diagnosis;
Frontiers in Oncology 03
(5) Lack of definitive pathological results. Based on these criteria, 300

female breast tumor patients were enrolled: 141 with FA and 159 with

PT. The patient enrollment flowchart is shown in Figure 1.
2.2 Ultrasound image acquisition and
preprocessing

Breast ultrasound examinations were performed by specialists

using systems(Mindray DC-7, GE Logiq E9, GE Voluson E8, Philips

IU22, GE Logiq E20) equipped with 3–13 MHz linear array

transducers. Examination followed ACR BI-RADS 5th edition

guidelines (21). Scanning parameters (depth: 4–5 cm; gain: 10–25

dB; dynamic range: 70 dB; frame rate: 26 fps) were adjusted per patient

based on habitus and lesion location, following standard clinical

protocols at each center. Patients were positioned supine or lateral.

The focal area was centered on the lesion. Images were stored in PACS.

For each lesion, a specialist selected five representative images (longest

axis, perpendicular, three other clear angles).

ROI delineation and image segmentation were performed

manually using ITK-SNAP (v3.80) by three ultrasound specialists

with >10 years of experience, guided by a senior physician (>20

years experience). Inter- and intra-observer variability was assessed

using Dice Similarity Coefficient (DSC) and Intraclass Correlation
FIGURE 1

The patient enrollment flowchart.
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Coefficient (ICC); results indicated good to excellent agreement (DSC:

0.78-0.93, ICC: 0.832-0.949), and no statistically significant bias was

found in feature extraction between observers (p > 0.05 for most

features). The ITR was delineated layer-by-layer, avoiding necrosis.

PTR was generated by expanding the ITR outward by 4mm, 8mm,

12mm, and 16mm using the Onekey AI platform (22) and MATLAB

2016b (23). The rationale for selecting these PTR thicknesses was based

on prior literature suggesting stromal involvement within these

distances (24, 25) and exploratory analysis showing varying

predictive power across these ranges (see Sensitivity Analysis in

Section 2.6). PTR extending beyond breast parenchyma was

manually removed. Disagreements were resolved by consensus.

Examples are shown in Figures 2–4.
2.3 Feature extraction

Using PyRadiomics (v3.0.1) (26), 114 radiomics features were

extracted per ROI: 18 first-order statistics, 14 shape-based, 75

textural features (GLCM, GLRLM, GLSZM, GLDM, NGTDM) (21,

27). Feature extraction settings were default PyRadiomics parameters

unless otherwise specified (binWidth: 25; force2D: True).
2.4 Feature selection and model
construction

High-dimensional features underwent dimensionality reduction to

prevent overfitting. Z-score normalization was applied. The Boruta
Frontiers in Oncology 04
algorithm (22) was used for feature selection, comparing original

features against shadow features. LASSO regression was also

employed for optimal feature subset selection.

A two-stage classification model was developed: 1) Diagnostic

network differentiating FA from PT using ITR, PTR, and combined

features; 2) Grading network classifying PT into benign, borderline,

malignant. The models were constructed using six machine learning

classifiers: Random Forest (RF; n_estimators=100), Support Vector

Machine (SVM; kernel=‘rbf’, C = 1.0), XGBoost (XGB; max_depth=6,

learning_rate=0.1), LightGBM (LGBM; num_leaves=31), Decision

Tree (DT; max_depth=5), and Logistic Regression (LR;

solver=‘liblinear’). Hyperparameters were optimized using 5-fold

cross-validation GridSearch within the training set. Five deep

learning models [CNN (28), MLP (29), ViT (17), GAN (30), RNN

(31)] were also implemented using standard architectures and trained

from scratch using Adam optimizer (learning_rate=0.001), batch

size=16, for 100 epochs with early stopping.
2.5 Data split and validation strategy

To mitigate the risk of data leakage, patient-level splitting was

strictly enforced. The dataset was first stratified by center and

pathology label (FA, PT benign, PT borderline, PT malignant).

Patients were then randomly split 7:3 into training (210 patients)

and internal testing (90 patients) sets, ensuring no patient’s images

appeared in both sets. For external validation, each center’s data was

held out iteratively: models trained on data from two centers were

tested on the third center’s data. This per-center hold-out test provides
FIGURE 2

The workflow of ROl extraction and preprocessin DLR: conventional radiomic features were extracted from US datas. Feature selection and fusion
techniques were applied to reduce dimensionality and integrate complementary information. Classification modeling was done using 6 machine
learning algorithms.
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a robust estimate of generalizability. The sample size of 300 patients

was based on a pragmatic sample availability from the collaborating

centers over the study period. A post-hoc power analysis based on the

observed AUC (0.96) for the primary outcome (FA vs. PT) indicated

sufficient power (>0.95) at alpha=0.05. Performance was assessed via

AUC, accuracy, sensitivity, specificity, F1-score. Calibration was

evaluated using Hosmer-Lemeshow test and calibration curves.

Decision curve analysis (DCA) assessed clinical utility. Five-fold

cross-validation was performed on the training set for

hyperparameter tuning and internal performance estimation.
2.6 Statistical analysis and sensitivity
analysis

Statistical analysis used R (v4.3.1) and SPSS (v26.0). Non-normal

continuous data summarized as median (IQR); compared using Mann-

Whitney U/Kruskal-Wallis tests. Categorical variables as n (%);

compared using Chi-square/Fisher’s exact test. Model performance

metrics reported with 95% confidence intervals (CI) calculated via

bootstrap (2000 repetitions). AUC comparisons used DeLong test.

Inter-observer agreement used ICC and Cohen’s Kappa. P<0.05

significant. A sensitivity analysis was performed for the PTR thickness
Frontiers in Oncology 05
parameter. Models were built and evaluated using only ITR, and ITR

combined with each PTR thickness (4, 8, 12, 16 mm). The 8mm PTR

expansion yielded the highest average AUC across classifiers for the FA

vs. PT task (See Supplementary Table S1), justifying its selection as the

optimal PTR width for the combined model.
3 Results

3.1 Clinical data characteristics

Among the 300 breast mass patients enrolled in the study, 141

were ultimately diagnosed with FA and 159 with PT through

postoperative pathological examination. A randomized 7:3 split

was used to divide patients into a training set (210 cases) and a

validation set (90 cases). No significant differences were observed

between the training and validation sets in terms of age, lesion

diameter, location, menopausal status, clinical symptoms, growth

rate, hardness, mobility, margins, echogenicity, blood flow, or BI-

RADS classification (all P> 0.05). Each patient had a single lesion in

one breast and underwent surgical treatment: 85 patients (28.3%)

received breast biopsy, 110 patients (36.7%) underwent local

excision, 73 patients (24.3%) had wide excision, and 32 patients
FIGURE 3

Workflow for delineating ITR and PTR in FA and PT patients under different ROI segmentation schemes: FA (a) and PT (b); red areas represent ITR,
yellow-green areas represent 4 mm, 8 mm, 12 mm, and 16 mm PTR in FA (c) and PT (d). ITR: intratumoral area; PTR: peritumoral area.
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(10.6%) underwent radical mastectomy. Detailed demographic data

and lesion characteristics are summarized in Table 1.
3.2 Feature consistency and selection

Dice coefficients for ROI segmentation were 0.78-0.92,0.80-

0.93, 0.84-0.92 for the three physicians. ICCs were 0.832-0.949

(intra-observer) and 0.742-0.925 (inter-observer), indicating good

reproducibility. LASSO selected 5 optimal features from ITR and 10

from 8mm PTR(1 first-order, 9 higher-order).
3.3 Predictive performance of the imaging
radiomics model

Performance metrics for Models 1–7 are detailed in Table 2.

The combined Model 7 (ITR + 8mm PTR+Clinical) performed best

for FA/PT differentiation (AUC: 0.960, Accuracy: 96.0%, Sensitivity:

96.0%, Specificity: 94.5%). For PT subtyping, Model 7 (Light GBM

classifier) achieved an AUC of 0.874 (95% CI: 0.798-0.950),

Accuracy: 77.2%.
3.4 Predictive performance of deep
learning models

Performance of DL models is shown in Table 3. GAN

performed best for FA/PT (AUC: 0.976). MLP performed best for
Frontiers in Oncology 06
PT subtyping (AUC: 0.950). The relatively lower performance of

CNN and ViT compared to GAN might be attributed to the GAN’s

potential to learn more robust feature representations from limited

data through its adversarial training paradigm, whereas standard

CNNs and ViTs may require larger datasets to achieve optimal

performance in this specific task.
3.5 Subgroup analysis based on BI-RADS

To evaluate the impact of BI-RADS classification, patients were

divided into three subgroups: Grade 3 (n=86,42 PT cases), Grade 4

(including Grade 4a [76 cases], Grade 4b [68 cases], and Grade 4c

[47 cases]), and Grade 5 (n=23,14 PT cases). In all three subgroups

(n=191, 117 PT cases and n=23,14 PT cases), Model 7 (ITR+PTR8

+clinical) showed high diagnostic accuracy across BI-RADS

subgroups: Grade 3: 84.0%, Grade 4: 66.0%, Grade 5: 88.0%.

Specificity was highest for Grade 5 lesions (96.6%). Notably, in

the Grade 4 lesion subgroup, Model 7 showed enhanced specificity

when incorporating intratumoral and peritumoral (8mm) clinical

features. This highlights the potential of integrating tumor-

intrusion, peritumoral, and clinical characteristics for addressing

diagnostic challenges in BI-RADS Grade 4 lesions.
3.6 Biopsy reduction analysis

Model 7 achieved an overall biopsy reduction rate of 11.7% (10/

85), with an 18.1% (6/33) reduction for PT cases. Confidence
FIGURE 4

The workflow of the radiomics analysis of ITR and PTR:The ROI delineation of the tumor was increased by 4mm layer by layer to 16mm; The
peritumoral lesion image gradually increased by 4mm to 16mm.
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TABLE 1 The baseline information.

Items
Training set (n=210) Test set (n=90)

FA(n=89) PT(n=121) Value P FA(n=38) PT(n=52) Value P

Case 89(42.4%) 121(57.6%) 38(42.2%) 52(57.8%) 0.001 0.980

Images 280 395 123 165 0.011 0.724

Age 48.03+1.29 50.20+1.77 0.829 0.408 57.16+2.47 51.13+2.44 1.696 0.093

Diameter 3.22+0.14 3.52+0.13 1.592 0.112 3.75+0.24 3.12+0.21 1.964 0.053

Position* 6.027 0.925

Centre 3(3.4%) 3(2.5%) 1(2.6%) 1(1.9%)

UIQ 21(23.6%) 32(26.4%) 10(26.3%) 16(30.8%)

LIQ 24(27.0%) 33(27.3%) 6(15.8%) 12(23.1%)

LOQ 22(24.7%) 26(21.5%) 11(28.9%) 8(15.4%)

UOQ 19(21.3%) 27(22.3%) 10(26.3%) 15(28.8%)

Menopause 1.364 0.714

Yes 51(57.3%) 63(52.1%) 18(47.4%) 26(50.0%)

No 38(42.7%) 58(47.9%) 20(52.6%) 26(50.0%)

Clinlcal symptom 1.946 0.583

Positive 43(48.3%) 56(46.3%) 14(36.8%) 21(40.4%)

Negative 46(51.7%) 65(53.7%) 24(63.2%) 31(59.6%)

Growth 1.713 0.634

Fast 40(44.9%) 64(52.9%) 17(44.7%) 24(46.2%)

Slow 49(55.1%) 57(47.1%) 21(55.3%) 28(53.8%)

Hardness 12.187 0.051

Soft 42(47.2%) 38(31.4%) 13(34.2%) 20(38.5%)

Middle 25(28.1%) 36(29.8%) 17(44.7%) 20(38.5%)

Hard 22(24.7%) 47(38.8%) 8(21.1%) 12(23.0)

Activity 0.675 0.879

Good 50(56.2%) 63(52.1%) 22(57.9%) 27(51.9%)

Bad 39(43.8%) 58(47.9%) 16(42.1%) 25(48.1%)

Border 3.280 0.350

Clear 64(71.9%) 84(69.4%) 26(68.4%) 30(57.7%)

Irregular 25(28.1%) 37(30.6%) 12(31.6%) 22(42.3%)

Echo 2.944 0.400

Even 45(50.6%) 75(62.0%) 23(60.5%) 29(55.8%)

Inhomogeneous 44(49.4%) 46(38.0%) 15(39.5%) 23(44.2%)

Blood flow 2.459 0.483

Yes 42(47.2%) 54(44.6%) 18(47.4%) 18(34.6%)

No 47(52.8%) 67(55.4%) 20(52.6%) 34(65.4%)

BiRADS 11.967 0.448

3 36(40.4%) 32(26.4%) 8(21.1%) 10(19.2%)

(Continued)
F
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intervals (95%) for the reduction rates were calculated using the

Clopper-Pearson exact method: Overall: 11.7% (5.7%-20.6%); PT:

18.1% (7.0%-35.5%). Results are in Table 4.
4 Discussion

Compared with traditional visual-based image evaluation

methods, radiological features derived from imaging can uncover

additional latent characteristics. This radiomics-based approach

demonstrated potential in distinguishing between FA and PT.

Some findings revealed that the optimal combination of imaging

radiomics features included high width-to-height ratio, edge

blurriness, machine learning, energy, gray entropy, and

intramural calcification could achieve good performance. In this

study, we developed a model using radiomics features extracted

from 114 breast lesions within each ROI through grayscale co-

occurrence matrix (GLCM), grayscale run-length matrix (GLRLM),
Frontiers in Oncology 08
grayscale size zone matrix (GLSZM), grayscale-dependent matrix

(GLDM), and neighborhood grayscale difference matrix

(NGTDM). The diagnostic efficacy metrics for FA and PT

showed accuracy, AUC, sensitivity, specificity, precision, recall,

and F1 values of 84.8%, 0.935, 86.7%, 86.2%, 91.3%, and 84.0%

respectively. Our model demonstrated slightly higher accuracy than

some studies (17, 30), likely due to the distinct radiomics feature

extraction. Domestic research indicates that AI-assisted diagnosis

through radiomics and deep learning can identify subtle

morphological and textural differences between PT and FA,

thereby enhancing diagnostic efficacy.

Previous radiomics analyses primarily focused on visual tumor

boundaries, but recent studies have also emphasized peritumoral

regional information. Researchers propose that the peritumoral area

may be the earliest site of tissue lesion development and plays a

critical role in determining tumor progression and treatment

response (32). However, inflammatory tissues (characterizing the

transition between tumors and normal parenchyma) introduce
TABLE 1 Continued

Items
Training set (n=210) Test set (n=90)

FA(n=89) PT(n=121) Value P FA(n=38) PT(n=52) Value P

4a 22(24.7%) 29(24.0%) 9(23.7%) 16(30.8%)

4b 15(16.9%) 31(25.6%) 10(26.3%) 12(23.1%)

4c 10(11.2%) 19(15.7%) 8(21.1%) 10(19.2%)

5 6(6.7%) 10(8.3%) 3(7.9%) 4(7.7%)
*FA, Fibroadenoma; PT, Phyllodes Tumor; UOQ, upper outer quadrant; UIQ, upper inner quadrant; LIQ, lower inner quadrant; LOQ, lower outer quadrant.
TABLE 2 Results of radiomic classification utilizing intratumoral and peritumoral information of US imaging.

Model Accuracy AUC Sensitivity Specificity Accuracy Recall F1 Classifier

1(ITR) 0.848 0.935 0.867 0.862 0.913 0.840 0.875 XG Boost

2(PTR4) 0.550 0.573 0.467 0.800 0.875 0.467 0.609 Light GBM

3(PTR8) 0.750 0.747 0.733 0.800 0.917 0.733 0.815 RF

4(PTR12) 0.450 0.400 0.333 0.800 0.833 0.333 0.476 SVM

5(PTR16) 0.550 0.360 0.600 0.400 0.750 0.600 0.667 RF

6(ITR+PTR8) 0.894 0.958 0.906 0.931 0.945 0.932 0.927 XGB

7(ITR+PTR8+clinical) 0.960 0.960 0.960 0.945 0.971 0.960 0.965 LGBM
*ITR, Intratumoral Region; PTR, Peritumoral Region; XGB, eXtreme Gradient Boosting; LGBM, Light Gradient Boosting Machine; RF, Random Forest; SVM, Support Vector Machine
TABLE 3 Results of deep learning information of US imaging.

Model Accuracy AUC Sensitivity Specificity Accuracy Recall F1

CNN 0.531 0.498 0.421 0.692 0.667 0.421 0.516

MLP 0.746 0.944 0.630 0.577 0.577 0.789 0.667

ViT 0.625 0.401 0.947 0.154 0.621 0.947 0.750

GAN 0.896 0.976 0.870 0.952 0.976 0.870 0.920

RNN 0.750 0.733 0.733 0.800 0.917 0.733 0.815
*CNN, Convolutional Neural Network; MLP, Multilayer Perceptron; ViT, Vision Transformer; GAN, Generative Adversarial Network; RNN, Recurrent Neural Network.
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certain misleading factors into radiographic results. Therefore,

clinical visual analysis alone often fails to detect peritumoral

regions, whose extent may influence tumor diversity (33). Given

the varying complexities of different diseases and pathological

issues, standardized end-to-end solutions are typically unavailable

for comprehensive analysis. Instead, parameterized approaches

tailored to specific tumor locations and imaging modalities are

often required. Zhang (34)developed a linear discriminant analysis

(LDA) model integrating three radiomics features (from ITR, 5mm

PTR, and ITR + 10mm PTR) with two clinical factors (age and BI-

RADS classification), demonstrating strong predictive power in

both internal and external test datasets. This model, which

combines intratumoral and peritumoral radiomics features with

clinical factors, successfully predicted malignant BI-RADS 4 lesions

in contrast-enhanced mammography using AUC values of 0.907

and 0.904 respectively. Our study demonstrates that integrating

ITR, PTR (8mm), and clinical features achieves excellent

performance in differentiating FA from PT and grading PT

subtypes using US radiomics. The optimal 8mm PTR likely

captures critical stromal alterations and tumor-host interactions

at the invasive edge, a known hotspot for biological activity in breast

tumors (35, 36).

In our model 7, which integrates intratumoral +8mmPTR with

clinical features (diameter and BI-RADS classification), we observed

slightly lower sensitivity and accuracy compared to the previous model

in FA and PT cases classified as BI-RADS 4. However, it demonstrated

higher specificity. These differences may stem from subtle variations in

the microscopic structures of FA and PT within the selected

multicenter ultrasound imaging data. Huang (37)emphasized not

only clinically-derived models but also the importance of

comprehensive radiomics analysis for accurate breast nodule

characterization. Our findings reveal that the combined model

integrating ITR + 8mm PTR+clinical features achieves optimal

diagnostic precision. These results demonstrate that ultrasound-based

intratumoral/peritumoral features combined with clinical

characteristics exhibit superior diagnostic efficacy in both FA/PT

classification models and pathological subtypes grading models for

PT, thereby enhancing diagnostic accuracy and supporting clinical

decision-making. Our model significantly reduced the potential need

for biopsies, especially for PT lesions. This aligns with the goal of

precision medicine to minimize invasive procedures (32). And

potential clinical integration could involve PACS-integrated software

for automatic feature extraction and model inference, providing real-

time decision support during ultrasound examination and potentially

reducing workflow interruptions.
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This study also has some limitations. A key limitation is the

retrospective design and class imbalance, particularly for borderline

and malignant PT subtypes, which may introduce selection bias and

affect model generalizability. Future prospective studies with larger,

balanced cohorts are needed. Furthermore, this study utilized only

ultrasound. While US is crucial, incorporating multimodal imaging

(mammography, MRI) in future work could potentially enhance

performance further.
5 Conclusion

This study established ultrasound-based intra-tumoral,

peritumoral, and clinical radiomics features. Diagnostic efficacy

for FA and PT was first evaluated. Building on this foundation,

further classified PT into benign, borderline, and malignant

subtypes, and analyzed performance across different BI-RADS

grades, and identified ITR and PTR characteristics associated with

reduced biopsy rates. In conclusion, the proposed US-based

radiomics model integrating intra-tumoral, peritumoral (8mm),

and clinical features serves as an effective non-invasive tool for

differentiating FA from PT and classifying PT subtypes. It shows

particular value in managing BI-RADS 4 lesions and reducing

unnecessary biopsies. Future work should focus on large-scale,

prospective, multicenter validation and exploration of

multimodal integration.
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