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Phosphodiesterase 10A (PDE10A) is a dual-substrate enzyme that hydrolyzes

both cyclic adenosine monophosphate (cAMP) and cyclic guanosine

monophosphate (cGMP), playing a critical role in regulating intracellular

signaling pathways. While its function has been extensively studied in the

central nervous system, emerging evidence highlights its broader physiological

and pathological relevance, including its involvement in cancer. Functionally, it

modulates key signaling pathways such as cAMP/protein kinase A (PKA) and

cGMP/protein kinase G (PKG), influencing cell proliferation, differentiation, and

apoptosis. In cancer, PDE10A exhibits a context-dependent role. It functions as

an oncogene in cancers such as colorectal, ovarian, gastric, and non-small cell

lung cancers through overexpression and downstream activation of the Wnt/b-
catenin, MAPK/ERK, and PI3K/AKT pathways. Pharmacological inhibition of

PDE10A using selective inhibitors has demonstrated potent anti-tumor effects

in preclinical models by restoring cyclic nucleotide levels and suppressing

oncogenic signaling. Conversely, in glioblastoma (GBM), PDE10A acts as a

tumor suppressor, and its knockdown promotes tumor progression via

activation of the PI3K/AKT pathway. These findings showed the ability of

PDE10A to be considered as a promising biomarker and therapeutic target in

oncology; however, it is suggested to examine the tissue-specific expression of

PDE10A, baseline cyclic nucleotide levels, cross-talk with other pathways,

differences in the degree and duration of PDE10A suppression, and the

interplay between PDE10A-mediated cyclic nucleotide signaling and

compensatory oncogenic pathways for an effective therapy as observed in

other PDEs family reviewed in this manuscript.
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1 Introduction

Phosphodiesterase (PDE) 10A belongs to a family of at least

eleven phosphodiesterase isoenzymes responsible for the hydrolytic

degradation of the second messengers, cyclic adenosine

monophosphate (cAMP) and/or cyclic guanosine monophosphate

(cGMP). PDE10A, the sole gene product of this family, exhibits dual

substrate specificity. Although it demonstrates a higher binding

affinity for cAMP, it more efficiently hydrolyzes cGMP. Three

protein-coding isoforms of PDE10A have been identified,

including PDE10A1 and PDE10A19 that localize to the cytosol,

and membrane-associated PDE10A2 (1–3).

The pharmacological inhibition of PDE10A has garnered

increasing interest in both academic and industrial research due

to its potential to elevate intracellular cAMP and/or cGMP levels.

Such modulation holds therapeutic promise across a range of

disorders involving both the central and peripheral nervous

systems, as well as in various malignancies (4). By modulating

intracellular levels of cyclic nucleotides, such as cAMP and cGMP,

PDE10A can influence key processes, including cell proliferation,

apoptosis, and metastasis. Recent studies suggest that PDE10A is

overexpressed in specific cancer types and may contribute to tumor

progression, making it a potential biomarker and therapeutic target

(5–12).

Despite the growing evidence linking PDE10A to cancer

biology, most existing reviews focus primarily on its role in

neurological disorders, and only limited literature addresses its

function in oncogenesis (13, 14). Given the recent studies

highlighting PDEs involvement in tumor growth, this review

aimed to explore the structure, signaling, and significant roles of

the Phosphodiesterase family in cancer with a focus on the dual role

activity of PDE10A in various cancers and its potential to be used as

a biomarker for diagnosis, prognosis, or as a therapeutic target.
2 Phosphodiesterase family: structure,
signaling, and roles in cancer

The PDEs constitute a superfamily of enzymes that regulate

intracellular levels of cAMP and cGMP by catalyzing their hydrolysis

to 5′ AMP and 5′ GMP, respectively (15, 16). Mammalian PDEs are

classified into 11 subfamilies encoded by 21 distinct genes, many of

which produce multiple splice variants with unique subcellular

localizations and regulatory roles (15, 17). These enzymes are

categorized based on substrate specificity, including cAMP-specific

(PDE4, PDE7, PDE8), cGMP-specific (PDE5, PDE6, PDE9), and

dual-specificity PDEs that hydrolyze both cyclic nucleotides (PDE1,

PDE2, PDE3, PDE10, and PDE11), though individual members often

display a higher affinity for one nucleotide (15, 17). Substrate

recognition is modulated by a conserved glutamine switch, which

regulates purine ring binding within the catalytic domain (18). While

their catalytic and regulatory domains are conserved, isoform-specific

differences, particularly in the N- and C-terminal regions, define the

subcellular targeting and functional specificity of each PDE (17, 19).

The expression of PDEs is variable and widely distributed across
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tissues, including the brain, where each isoform shows distinct

spatiotemporal expression patterns, emphasizing their role in fine-

tuning cyclic nucleotide signaling (20, 21). Although the primary aim

of this review is to explore PDE10A as a diagnostic and therapeutic

target in cancer, we first provide a brief overview of the structural

characteristics and oncological relevance of other PDE isoforms to

show and compare the dual role and expression of PDE10A

in cancers.
2.1 Phosphodiesterase 1

Phosphodiesterase 1 (PDE1) is a calmodulin- and Ca²-

dependent enzyme family comprising three subtypes, including

PDE1A, PDE1B, and PDE1C. PDE1A, PDE1B, and PDE1C are

encoded by genes located on chromosomes 2q32.1, 12q13, and

7p14.3, respectively. Alternative splicing generates multiple

isoforms, including ten for PDE1A, two for PDE1B, and five for

PDE1C. PDE1 isoforms are broadly expressed in various tissues,

including the heart, brain, lung, and smooth muscle, with distinct

distribution patterns and physiological roles (17). Uniquely, PDE1

enzymes are regulated by two Ca²+/calmodulin binding domains

and two phosphorylation sites at the N-terminus (22). These

enzymes hydrolyze both cAMP and cGMP with isoform-specific

nucleotide affinities. PDE1A and PDE1B exhibit higher affinity for

cGMP. However, PDE1C hydrolyzes cAMP and cGMP with

comparable efficiency (23).

Functionally, PDE1 has been implicated in the regulation of cell

proliferation in various malignancies. It is a specific

pharmacological target of differentiation-inducing factor 1, which

inhibits cancer cell proliferation by competitively blocking cAMP

binding to PDE1 in a dose-dependent manner (24). In melanoma

cells, PDE1C is overexpressed, and its inhibition by vinpocetine

significantly reduces tumor growth (25). Natural compounds such

as curcumin and thymoquinone have been shown to target PDE1,

leading to apoptosis and growth inhibition in melanoma and

leukemia cells, respectively, through modulation of epigenetic and

cell cycle-related markers (26, 27). Specifically, thymoquinone

suppresses PDE1A expression and inhibits UHRF1 via a p73-

dependent mechanism, suggesting potential application in acute

lymphoblastic leukemia (ALL) therapy (Table 1) (27). Another

study by Zhang et al. showed the importance of PDE1A as a

significant promoter of Non-small cell lung cancer (NSCLC)

metastasis through regulating exosome release and activating the

STAT3 pathway by interacting with YTHDF2, suggesting PDE1A as

a potential therapeutic target for metastatic disease (28).

In IDH-wildtype GBM, elevated PDE1C expression correlates

with poor prognosis (83). Genetic silencing of PDE1C using siRNAs

significantly disrupts GBM cell proliferation, migration, and

invasion, highlighting its potential as a therapeutic target

(Table 1) (29). Collectively, these findings highlight the

therapeutic promise of targeting PDE1 in cancer treatment.

However, the development of highly selective and potent PDE1

inhibitors remains a significant unresolved challenge (84).

In contrast to most PDE1 subtypes, a study by Chen et al.

investigates the role of PDE1B in osteosarcoma, suggesting that
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TABLE 1 Different PDEs targeted or used as biomarkers in each cancer.

Family Substrate Regulation Cancer Main function Reference

PDE1 cAMP/cGMP Ca2+/calmodulin -Melanoma
-GBM
-Leukemia
-NSCLC
-Osteosarcoma

-PDE1A & PDE1C act as oncogenes by affecting key pathways like UHRF1,
p73, cAMP, and STAT3
-PDE1B acts as a tumor suppressor

(25, 27–30)

PDE2 cAMP/cGMP cGMP
stimulated

-Melanoma
-colon
carcinoma
- osteosarcoma
- HCC

-PDE2 Promotes tumor progression by reducing cAMP levels, affects TFAM
stability
-Acts as a tumor suppressor in HCC by altering mitochondrial morphology
and ATP content

(31–35)

PDE3 cAMP/cGMP Phosphorylation/
cGMP inhibited

- PDAC
- breast cancer

-Inhibition of PDE3 has anticancer effects by stabilizing the PDE3A-
SLFN12 complex, suppress cancer stem cells, halt tumor growth and
metastasis, and modulate cAMP/PKA and NFkB signaling pathways

(36–39)

PDE4 cAMP Phosphorylation/
cAMP-specific
UCR1/UCR2
regions

-Glioma
-lung cancer
-prostate cancer
–CRC
-CLL
-HCC
- gastric cancer
-UBC

-PDE4 isoforms exhibit diverse, context-dependent roles in cancer -Acting
as tumor suppressors (e.g., suppressing migration in glioma via cAMP-p53)
-Act as an oncogene (e.g., driving proliferation in lung cancer via cAMP-
PKA/EPAC-HIF, and in other cancers through pathways like PI3K/AKT/
MYC, b-catenin, and FAK/RACK1/PDE4D5/Rap1),
- PDE4 inhibition can induce apoptosis in CLL and colorectal cancer

(40–48)

PDE5 cGMP Phosphorylation/
cGMP-specific

-PTC
-Melanoma
-Prostate cancer
-PTCs
- Lung cancer
- Breast cancer
- CRC
-HCC
- Esophageal
adenocarcinoma
-Gastrointestinal/
genitourinary
cancers

-PDE5 is overexpressed in numerous cancers
-Its inhibition exerts anti-tumor effects through modulating cGMP/PKG
signaling; disrupts cancer stem cell maintenance; impairs DNA repair
pathways to sensitize cells to chemotherapy; enhances drug uptake via
endocytosis; re-programs the tumor microenvironment by blocking pro-
tumor inflammatory signals from fibroblasts and MDSCs; and promotes
autophagy while inhibiting oncogenic pathways like IL-6/JAK/STAT3.

(49–63)

PDE6 cGMP Phosphorylation/
cGMP-specific

-Melanoma
-Breast cancer
-CRC
-HCC

-PDE6 plays an oncogenic role in several cancers by disrupting cyclic
nucleotide signaling, Wnt5a-Frizzled-2 pathway, and ERK activation
-PDE6H knockout suppresses mTORC1 signaling and mitochondrial
function, and induces cell cycle arrest.

(64–67)

PDE7 cAMP Rolipram-
insensitive

-CLL
-MCL
-EC
-CRC
-GBM
- Breast cancer
-HCC
- ccRCC cells

- PDE7 isoforms exhibit complex, cancer-type-specific mechanisms and
roles as either oncogenic promoters or tumor suppressors
- Oncogenic mechanisms involve triggering mitochondrial depolarization,
suppressing tumor-suppressive microRNAs (e.g., miR-1/133a), regulating
the EMT process, and activating the PI3K/AKT signaling pathway.
-Anti-tumorigenic capacities, as its knockdown increases cell viability and
migration

(68–76)

PDE8 cAMP cAMP-specific Kidney cancer -Promotes cancer progression by enhancing ERK pathway activation
through direct interaction with Raf-1 kinase.

(77)

PDE9 cGMP cGMP-specific Breast cancer - Enhances cancer cell growth.
- Pharmacological inhibition reduces proliferation and induces apoptosis

(78, 79)

PDE10 cAMP/cGMP cAMP-inhibited Colon cancer,
NSCLC

-Enhances tumor cell proliferation, while inhibition activates cGMP/PKG
signaling and blocks b-catenin nuclear translocation.
-In NSCLC, PDE10A inhibition reduces proliferation by downregulating
both Ras and Wnt pathways

(6, 80)

PDE11 cAMP/cGMP cGMP-activated AIMAH, Carney
complex

-Mutations may enhance cAMP signaling, contributing to tumorigenesis (81, 82)
F
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Phosphodiesterase: PDE, Acute lymphoblastic leukemia: ALL, Glioblastoma: GBM, Schlafen 12: SLFN12, Chronic lymphocytic leukemia: CLL, Papillary thyroid carcinomas: PTCs, Myeloid-
derived suppressor cells: MDSCs, Mantle cell lymphoma: MCL, Endometrial cancer: EC, Non-small cell lung cancer: NSCLC, Macronodular adrenocortical hyperplasia: AIMAH, UBC: urinary
bladder cancer, CRPC: Castration-resistant prostate cancer, PTCs: Papillary thyroid carcinomas, NSCLC: Non-small cell lung cancer, CRC: Colorectal carcinoma, HCC: Hepatocellular
carcinoma, PDAC: Pancreatic ductal adenocarcinoma, MDSCs: Myeloid-derived suppressor cells
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PDE1B is a tumor suppressor gene that prevents osteosarcoma from

escaping the immune system (30). This study highlighted the

importance of considering dual role activity of PDE1 in cancers,

requiring further study.
2.2 Phosphodiesterase 2

The Phosphodiesterase 2 (PDE2) is a dual-substrate enzyme

that hydrolyzes both cAMP and cGMP, with half-maximal

velocities (Km) of approximately 30 μM and 10 μM, respectively

(85, 86). It is uniquely stimulated by cGMP, which enhances cAMP

hydrolysis by up to six-fold, earning it the designation cGMP-

stimulated PDE (85, 86). PDE2 is encoded by a single gene, PDE2A,

which gives rise to three isoforms, including PDE2A1, PDE2A2,

and PDE2A3 (87). It is broadly expressed in human tissues such as

the adrenal gland, heart, lung, liver, platelets, and endothelial cells

(88). Several selective inhibitors have been developed, including

EHNA, BAY 60-7550, oxindole derivatives, IC933, PDP, and

ND7001; however, these have not yet been evaluated in clinical

cancer therapy (89–91).

In the context of cancer biology, PDE2 has been implicated in

tumor progression. Notably, specific tumor cells, such as malignant

melanoma and colon carcinoma, exhibit reduced cAMP levels,

where cAMP serves as a negative regulator of proliferation (31).

Zhao et al. showed that mitochondrial calcium (Ca2+) could activate

PDE2, acting as an inhibitor of PKA, which affects mitochondrial

transcription factor A (TFAM) stability and increases CRC

growth (32).

In malignant melanoma cells, inhibition of PDE2 using EHNA

or PDE2A-targeted siRNAs suppressed both cell growth and

invasion, suggesting a functional role for PDE2 in tumor

aggressiveness (92). It has also been observed that topical

application of erythro-9-(2-hydroxy-3-nonyl) adenine

hydrochloride (EHNA hydrochloride) on a mouse model of

ultraviolet light B (UVB)-induced skin carcinogenesis, a PDE2

inhibitor increases apoptosis and attenuates tumor formation

(33). The exclusive expression of mutant PDE2A2 isoforms in

these cells indicates that PDE2A2 may serve as a novel

therapeutic target in malignant melanoma (Table 1) (93). In

addition to skin cancer, Murata et al. reported that EHNA and 8-

bromo-cAMP PDE2 inhibitors could decrease proliferation and

migration of HOSM-1 osteosarcoma cells (34).

In contrast to these findings, Chen et al. report that PDE2A has

an inverse correlation with AFP level, immune function, vascular

invasion, grade, and stage of HCC patients. In addition,

overexpression of PDE2A in two HCC cell lines (HLF and SNU-

368) caused inhibition of invasion, colony formation, migration,

and proliferation, possibly via a change in mitochondrial

morphology and ATP content (35). This inconsistency has been

reported to be likely related to the variation in predominant PDE

isoforms across different tissues, as well as unidentified mechanisms

through which of these isoforms regulate cellular behavior (35).
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2.3 Phosphodiesterase 3

Phosphodiesterase 3 (PDE3) is a dual-specificity enzyme that

hydrolyzes both cAMP and cGMP, with a higher affinity for cGMP.

Consequently, cGMP acts as a potent competitive inhibitor of cAMP

hydrolysis (94). The PDE3 family consists of two genes, PDE3A and

PDE3B. PDE3A is expressed in three splice variants, including PDE3A1

(136 kDa), PDE3A2 (118 kDa), and PDE3A3 (94 kDa), whereas no

splice variants have been identified for PDE3B (95). Structurally, PDE3

enzymes contain N-terminal hydrophobic membrane-association

regions and a unique 44-amino acid insertion within the catalytic

domain (96). Multiple phosphorylation sites in the N-terminal region

confer diverse regulatory functions (97).

PDE3 is widely expressed in cardiac and vascular myocytes,

brain, liver, adipose tissue, pancreatic b-cells, endothelium,

epithelium, oocytes, and platelets (98). Functionally, PDE3A

regulates cardiac contractility, platelet aggregation, smooth muscle

contraction, oocyte maturation, and renin secretion, whereas

PDE3B is more involved in insulin signaling and cell proliferation

(99, 100). Several potent and selective PDE3 inhibitors, including

cilostamide, cilostazol, and olprinone, have been developed (101).

Recent studies have highlighted PDE3A as both a biomarker

and a potential therapeutic target in cancer. A novel mechanism has

been described for the small molecule DNMDP (6-(4-

(diethylamino)-3-nitrophenyl)-5-methyl-4,5-dihydropyridazin-3

(2H)-one), which acts through a gain-of-function allosteric

mechanism. DNMDP stabilizes the interaction between PDE3A

and Schlafen 12 (SLFN12), inducing cytotoxicity in cancer cells with

elevated expression of both proteins (Table 1) (36, 37). Another

study on pancreatic ductal adenocarcinoma (PDAC) showed that

combining the epigallocatechin-3-O-gallate with a PDE3 inhibitor

dramatically suppressed cancer stem cells (CSCs) and halted tumor

growth and metastasis in vivo (38). In addition, PDE3A was shown

to be able to suppress cAMP/PKA and induce NFkB signaling

pathway, causing expression of the stem cell marker OCT4 and

cancer stemness in breast cancer. Inhibition of PDE3A with

cilostazol could reduce metastasis and suppress tumor growth in

xenograft breast cancer models (39).
2.4 Phosphodiesterase 4

The Phosphodiesterase 4 (PDE4) represents the largest and one

of the earliest identified PDE families, characterized by its specificity

for cAMP hydrolysis, with a Km ranging between 2–4 μM (102). It

comprises four genes including PDE4A, PDE4B, PDE4C, and PDE4D

that located on chromosomes 19p13.2, 1p31, 19p13.11, and 5q12,

respectively (103). Alternative splicing of the N-terminal region

results in the generation of multiple isoforms in long, short, and

super-short forms, based on the presence or absence of upstream

conserved regions (UCR1 and UCR2). These UCRs regulate isoform

activity through phosphorylation by PKA and ERK, and influence

PDE4 dimerization (104).
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PDE4 is broadly expressed in various tissues, including the

brain, liver, heart, lungs, smooth muscle, endothelial cells, and

immune cells. Functionally, it modulates critical physiological and

pathological processes, including neural function, immune cell

activation, vascular remodeling, fertility, and cardiac activity

(104). Notably, PDE4 demonstrates the highest cAMP-

hydrolyzing activity in 41 out of 60 examined tumor cell lines

(105). It has been implicated in the pathogenesis of numerous brain

tumors, including glioblastoma, medulloblastoma, and

ependymoma, and may serve as a therapeutic target in these

malignancies (106).

In glioma, PDE4C suppressed migration and induced apoptosis

through the cAMP-p53 axis, and its expression could be

epigenetically silenced by promoter hypermethylation, suggesting

a role as a glioma biomarker (40). Additionally, PDE4 is

upregulated in lung cancer and contributes to tumor progression

via the cAMP–PKA/EPAC–HIF pathway, while its inhibition

attenuates tumor cell proliferation (41). TGF-b1-mediated PDE4

upregulation promotes epithelial–mesenchymal transition (EMT)

in lung epithelial cells, identifying PDE4 as a target for mitigating

EMT-related lung pathologies (Table 1) (107). EMT was also

enhanced in hepatocellular carcinoma following ectopic

expression of PDE4a (42).

In prostate cancer, PKA-mediated phosphorylation of PDE4

may enhance tumor growth (43). In addition, the PDE4B/PKA

pathway plays a key role in the progression of androgen-dependent

prostate cancer to castration-resistant prostate cancer (CRPC),

which is non-responsive to docetaxel and has a poor prognosis

(44). Furthermore, PDE4B is upregulated by oncogenic KRAS in

CRC, and its inhibition by rolipram or shRNA induces apoptosis

and restores epithelial polarity, underscoring its value as both a

therapeutic and prognostic marker (45). PDE4B is reported to be

ab le to promote immune infi l t ra t ion of the tumor

microenvironment (TME) and increase the clonal formation,

proliferation, migration, and invasion of gastric cancer via the

PI3K/AKT/MYC pathway (46). PDE4B is also able to promote

proliferation, migration, invasion, and EMT of urinary bladder

cancer (UBC) via the b-catenin pathway, while its inhibition by

rolipram reverses these effects (47).

Moreover, the higher expression of PDE4, along with exchange

protein 1 directly activated by cAMP (Epac1), has been reported in

rectal carcinoma (108). The FAK/RACK1/PDE4D5/Rap1 axis

facilitates tumor cell adhesion and migration through localized

cAMP degradation (109). In chronic lymphocytic leukemia (CLL),

PDE4 inhibition promotes apoptosis via activation of PP2A and

dephosphorylation of Bcl-2 family members (48). Another study on

advanced B-cell malignancies reported the efficacy of roflumilast as a

PDE4 inhibitor in combination with prednisone in the treatment of

patients with B-cell malignancies (110).

Another study by Mukherjee et al. reported a higher level of

PDE4 in breast CSCs compared to normal stem cells. Inhibition of

PDE4 by rolipram in breast CSCs caused cell cycle arrest and

apoptosis via antagonizing the PI3K/AKT/mTOR pathway and

noncanonical activation of mTOR. Moreover, this study showed

that the combination of Rolipram with paclitaxel caused a
Frontiers in Oncology 05
synergistic effect and eradicated breast CSCs (111). An increased

expression of PDE4D in MCF-7 and T47D resistant cells to

tamoxifen, a crucial hormonal therapy for ER-positive breast

cancer, has been reported to be related to worse survival in

tamoxifen-treated patients with breast cancer. Inhibition of

PDE4D by dipyridamole and Gebr-7b or siRNAs could have

restored tamoxifen sensitivity via activating cAMP/ER stress/p38-

JNK signaling and induction of apoptosis (112). Upregulation of

PDE4D was also seen in pancreatic ductal adenocarcinoma (PDAC)

tumors with higher clinical progression and poor prognosis (113).

Another study by Cao et al. also reported the involvement of

PDE4D in clear cell renal cell carcinoma (ccRCC). They showed

that targeting PDE4D with roflumilast or its knockout using

CRISPR/Cas9 reduces the progression of ccRCC cells and

enhances the apoptotic effect of sorafenib via attenuating MAPK/

ERK signaling in a CRAF-dependent manner (114). Overall, PDE4

has been implicated in a wide range of cancers, including

melanoma, DLBCL, liver, and colon cancers, positioning it as a

promising target for novel anti-tumor strategies (Table 1) (84).
2.5 Phosphodiesterase 5

The Phosphodiesterase 5 (PDE5) is a cGMP-specific hydrolase

encoded by a single gene, PDE5A, located on chromosome 4q27. In

humans, it produces three N-terminal splice variants, including

PDE5A1, PDE5A2, and PDE5A3 (115). The N-terminal domain

harbors two GAF domains, comprising GAF-A, which mediates

allosteric binding of cGMP, and GAF-B, which modulates the

affinity of GAF-A for cGMP (116). PDE5 is predominantly

expressed in platelets, vascular smooth muscle, brain, lung, heart,

kidney, and skeletal muscle, with PDE5A1 and PDE5A2 widely

distributed across tissues, while PDE5A3 is confined to vascular

smooth muscle (117). Functionally, PDE5 is a critical regulator of

vascular tone, particularly in penile and pulmonary tissues,

modulates NO-cGMP signaling in platelets, and may influence

cGMP signaling in the brain (118).

Dysregulated PDE5 expression has been reported in several

malignancies, including bladder, prostate, breast, brain, colorectal,

oral, and NSCLC, as well as in chronic lymphocytic leukemia (49,

118, 119). Intriguingly, oncogenic BRAF V600E downregulates

PDE5A in melanoma, leading to elevated cGMP levels and

increased invasiveness (50). Moreover, the PDE/cGMP/PKG axis

is essential for maintaining the stemness of PC3-derived cancer

stem cells, and combining PDE5 inhibitors with chemotherapeutics

effectively impedes prostate cancer progression and metastasis

(Table 1) (51).

The scientists investigated the association between PDE5

inhibitor and prostate cancer risk in the Reduction by Dutasteride

of Prostate Cancer Events (REDUCE) trial. They found PDE 5

inhibitor use was not associated with decreased prostate cancer

diagnoses on post-hoc analysis of REDUCE. Notably, they revealed

that in North American men, who had much higher baseline use of

PDE5 inhibitors, this treatment was associated with an inverse

trend of prostate cancer diagnosis, but did not reach statistical
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significance (120). Another study on prostate cancer revealed that

PDE5 inhibitors sildenafil and vardenafil, but not tadalafil, sensitize

CRPC cells to doxorubicin and other topoisomerase II inhibitors.

This combination treatment enhances apoptosis in a PDE5-

independent mechanism by impairing two key DNA repair

pathways, including homologous recombination and non-

homologous end joining (52).

PDE5 is also reported in human papillary thyroid carcinomas

(PTCs), especially in those with a BRAF mutation. The PDE5

inhibitors sildenafil and tadalafil were found to reduce the

proliferation and migration of thyroid cancer cells in vitro,

suggesting that targeting PDE5 may be a potential treatment

strategy for PTCs (49). PDE5 inhibitors dipyridamole, vardenafil,

and/or sildenafil could also increase the uptake of anti-cancer drugs

in lung cancer cells by enhancing endocytosis both in vitro and in

vivo. This effect significantly improved the anti-tumor efficacy of

trastuzumab in a lung cancer xenograft nude mice model (53).

It has also been reported that mRNA and protein expression of

PDE5 increased in human breast cancer patients, enhancing the

tumor-stimulatory activities of fibroblasts and decreasing the

survival of patients. Expression of PDE5 in mouse embryonic

fibroblasts (MEFs) also increases cell proliferation, motility, and

invasion, making it a potential target for cancer (54). Another study

used Tadalafil as a potent PDE-5 inhibitor against N-methyl-N-

nitrosourea-induced mammary gland carcinogenesis and found

that a PDE-5 inhibitor could restore all biological markers to

normal through blockade of DuCLOX signaling and attenuation

of mitochondrial-oxidative stress (55). Catalano et al. also reported

that elevated PDE5 expression is linked to more aggressive breast

cancer subtypes and shorter patient survival, and PDE5

overexpression enhances cancer cell invasion and motility by

activating Rho GTPase signaling (56).

PDE5 inhibitors were reported to be able to decrease the risk of

CRC in patients diagnosed with benign colorectal neoplasm (57).

PDE5 inhibitors also could prohibit the development and

progression of aflatoxin-induced Hepatocellular carcinoma in rats

(58). PDE5 is also expressed in myeloid-derived suppressor cells

(MDSCs), where it contributes to immune evasion by promoting

cytokine secretion, ROS production, and upregulation of nitric

oxide synthase and arginase. Inhibiting PDE5 with sildenafil

reduced MDSC infiltration and suppressed inflammation-driven

colon tumorigenesis in preclinical models (59, 60). Additionally,

cGMP signaling via PKG2 promotes expression of antioxidant

genes through activation of FOXO transcription factors,

particularly in the colonic epithelium. It highlights the therapeutic

potential of PDE5 inhibitors in targeting redox and immune

pathways (Table 1) (121). Moreover, P. Sharpe et al. reported that

PDE5 inhibitors could inhibit the tumor-promoting function of

cancer-associated fibroblasts and increase the efficacy of

chemotherapy in esophageal adenocarcinoma (61). Using PDE5

inhibitors is also reported to be useful in improving the effect of

chemotherapy agents against gastrointestinal/genitourinary cancers

by promoting autophagy and inducing DNA damage (62). Another

type of study found that the PDE5 inhibitor sildenafil suppresses

gastric tumor growth by activating PKG, which leads to the
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degradation of c-MYC and the suppression of the IL-6/JAK/

STAT3 signaling pathway (63). Collectively, these findings

position PDE5 as a promising prognostic marker and a novel

therapeutic target in various cancers.
2.6 Phosphodiesterase 6

The Phosphodiesterase 6 (PDE6), primarily known as the

photoreceptor PDE, consists of several subunits encoded by

distinct genes comprising PDE6A (5q31.2–34), PDE6B (4p16.3),

and PDE6C (10q24), along with regulatory or accessory subunits

PDE6D (2q35-q36), PDE6G (17q25), and PDE6H (12p13) (122).

PDE6 is abundantly expressed in the photoreceptor outer segments

of the mammalian retina and the pineal gland (123). In rod cells, the

active enzyme is a heterodimer of PDE6A (a subunit) and PDE6B

(b subunit), while in cone cells, the enzyme forms a homodimer of

PDE6C (a′ subunit) (122). Each subunit contains two N-terminal

GAF domains, including GAF-A and GAF-B, and a C-terminal

catalytic domain. The GAF-A domain serves as a high-affinity

cGMP-binding site and is likely critical for dimerization (124).

While PDE6 exhibits high specificity for cGMP at low

concentrations, it can also hydrolyze cAMP at elevated levels (123).

PDE6 was the first PDE family associated with genetic diseases,

with mutations in the a and b subunits implicated in stationary night

blindness and various forms of retinitis pigmentosa (125). Beyond the

retina, PDE6 has been involved in cancer biology. In melanoma cells,

deregulated activation of PDE6 occurs through a Wnt5a-Frizzled-2

signaling cascade, which reduces cGMP levels and increases

intracellular calcium mobilization, thereby influencing cellular

homeostasis (64). Furthermore, PDE6 may have oncogenic

relevance in breast cancer. Epidemiological data indicate a link

between artificial light at night and increased breast cancer risk

(Table 1) (65). Microarray analyses of breast cancer cell lines and

patient tissues revealed significant expression of PDE6B, PDE6C, and

PDE6D, with minimal to no expression of PDE6A, PDE6G, and

PDE6H. Immunohistochemistry confirmed PDE6B protein presence

in multiple patient samples and MCF-7 breast cancer cells (126).

Moreover, PDE6H, the inhibitory (or gamma) subunit of the cone-

specific cGMP phosphodiesterase, has been identified as a key

controller of cancer cell growth. Knockout of PDE6H increased

cGMP levels, reduced mTORC1 signaling, induced cell cycle arrest,

suppressed mitochondrial function, and slowed tumor growth in a

xenograft model. This study also reported that treatment with the

PDE5/6 inhibitor sildenafil decreases CRC tumor growth and

improves survival (66). Moreover, PDE6D, as the delta subunit of

rod-specific photoreceptor cGMP phosphodiesterase, is significantly

overexpressed in hepatocellular carcinoma and correlates with

advanced tumor stages and ERK activation. PDE6D expression was

also induced by TGF-b1 and was overexpressed in sorafenib-resistant
cells. Functionally, PDE6D depletion reduced cancer cell proliferation

and migration, and conferred resistance to the chemotherapy drug

sorafenib (67). These findings establish PDE6D as a key contributor

to tumor progression and chemoresistance, marking it as a promising

new therapeutic target for cancer.
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2.7 Phosphodiesterase 7

The Phosphodiesterase 7 (PDE7) is a cAMP-specific enzyme

with high affinity for its substrate, particularly at low concentrations

(127). It comprises two genes, including PDE7A, located on

chromosome 8q13, and PDE7B, on chromosome 6q23–24.

PDE7A encodes three splice variants, including PDE7A1,

PDE7A2, and PDE7A3, while PDE7B encodes four variants.

Notably, the N-terminal region of PDE7 lacks a known regulatory

domain, although it contains consensus sites for PKA

phosphorylation. PDE7 is widely expressed at both mRNA and

protein levels in various immune cells, implicating a possible role in

T-lymphocyte activation (128).

In the nervous system, PDE7B1 is activated via the cAMP/PKA/

cAMP response element-binding protein (CREB) signaling axis in

striatal neurons and may be involved in memory regulation. It is

suggested to have potential as a therapeutic target in neurodegenerative

conditions such as Parkinson’s and Huntington’s diseases (129). In

oncology, PDE7 expression levels serve as a prognostic indicator in

hematologic malignancies. For example, PDE7B is upregulated 23-fold

in CLL and 21-fold in mantle cell lymphoma compared to normal

peripheral blood mononuclear cells, indicating its value as a molecular

target for therapy (68, 69). Additionally, overexpression of PDE7A in

endometrial cancer (EC) cells facilitates cancer cell migration and

invasion through the suppression of the miR-1/133a microRNA cluster

(Table 1) (70). Lowering PDE7A expression with miR-23b or silencing

PDE7A could also reduce the migration and invasion abilities of colon

cancer cells (SW620 and SW480 cells) (71). Pharmacological inhibition

of PDE7 using BRL-50481 enhances cAMP-PKA-dependent apoptosis

in CLL cells, further supporting its therapeutic relevance (69). Elevated

PDE7B expression has been reported in GBM cases, negatively impacts

patient survival, and promotes the expansion of stem-like cancer cells

and increased tumor aggressiveness in vitro and in vivo (72). Zhang

et al. also discovered that suppressing PDE7B using miR-200c could

inhibit the proliferation and progression of triple-negative breast cancer

cells (73). In addition, inhibiting PDE7 using BRL-50481, IR-202, and

IR-284, increasing intracellular cAMP levels, which triggers

mitochondrial depolarization and the release of cytochrome c, caused

apoptosis of chronic lymphocytic leukemia (CLL) (74). These findings

demonstrate that PDE7B acts as an oncogene, increasing the

progression of tumors, and pharmacological inhibition of PDE7B

could be beneficial.

In contrast, Du et al. reported that PDE7B is significantly

hypermethylated and downregulated in Hepatocellular carcinoma

tissues. PDE7B expression has been reported to be correlated with

poor prognosis and recurrence in HCC patients. Restoring PDE7B

expression in hepatocellular carcinoma cell lines inhibited tumor

proliferation and metastasis by regulating the EMT process and

inhibition of the PI3K/AKT signaling pathway (75). Similarly, Sun

et al. showed that PDE7B was downregulated in ccRCC cells, and

knockdown of PDE7B could increase cell viability and migration,

suggesting PDE7B has anti-tumorigenic capacity (76). This

controversy may be related to the method used in these studies,

which employed acute (pharmacological inhibition) or chronic

(using stable overexpression or stable knockout) approaches,
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yielding different results. However, investigating the genetic and

expression profiles of patients seems necessary before any

intervention on PDE7 expression, bringing to us the importance

of personalized medicine.
2.8 Phosphodiesterase 8

The Phosphodiesterase 8 (PDE8) is a cAMP-specific enzyme

characterized by exceptionally high substrate affinity compared to

other PDE isoforms. It comprises two homologous genes, PDE8A

(chromosome 15q25.3) and PDE8B (chromosome 5q13.3), with

PDE8A generating five splice variants (PDE8A1-PDE8A5) (130).

PDE8A is broadly expressed, with predominant localization in the

testis and T lymphocytes, whereas PDE8B is mainly found in the

brain and thyroid (131). PDE8 plays essential roles in diverse

physiological processes, including T-cell activation, Leydig cell

steroidogenesis, spermatogenesis, thyroid hormone synthesis, and

cardiac regulation (132). Although its N-terminal region contains

REC and PAS domains, the precise regulatory mechanisms remain

poorly understood (133).

Clinically, two PDE8B mutations (H391A and P660L) have

been associated with ACTH-independent macronodular

adrenocortical hyperplasia (AIMAH) and non-secreting

adrenocortical carcinomas (ACCs). These associations suggest a

potential role for PDE8B in tumorigenesis and increased

susceptibility to ACCs (134). Furthermore, PDE8A interacts with

Raf-1 kinase with high picomolar affinity via amino acids 454-465,

thereby promoting Raf-1 phosphorylation and enhancing ERK

pathway activation. Disruption of the PDE8A/Raf-1 interaction

using a synthetic peptide suppressed ERK signaling and the

cellular response to EGF. Overexpression of a dominant-negative,

catalytically inactive PDE8A1 mutant resulted in elevated Raf-1

phosphorylation at the inhibitory S259 site (77). Additionally,

genetic deletion of PDE8 in Drosophila melanogaster decreased

basal ERK activity and increased susceptibility to stress-induced

mortality. These findings highlight the PDE8A/Raf-1 signaling

complex as a promising therapeutic target in cancer (Table 1) (77).
2.9 Phosphodiesterase 9

The Phosphodiesterase 9 (PDE9) is a cGMP-specific enzyme

with the highest affinity for cGMP among all PDE isoforms. The

human PDE9A gene, located on chromosome 21q22.3, gives rise to

21 known splice variants (135). Unlike other PDEs, PDE9A lacks

GAF domains or other defined regulatory motifs in its N-terminal

region. PDE9A is predominantly expressed in the spleen, intestine,

and brain, with particularly high levels in Purkinje neurons and the

cerebellum (136). Functionally, selective inhibition of PDE9A by

BAY 73–6691 has been shown to enhance cognitive performance,

improving learning and memory in rodent models (137, 138).

In oncological contexts, elevated PDE9A expression has been

observed in malignant breast tumors compared to normal tissues

(78). Treatment of MCF-7 and MDA-MB468 breast cancer cells
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with BAY 73–6691 led to a dose- and time-dependent reduction in

cell proliferation and an increase in apoptosis, highlighting PDE9A

as a promising therapeutic target in breast cancer (Table 1) (79).
2.10 Phosphodiesterase 10

The PDE10 is encoded by the PDE10A gene located on

chromosome 6q26 and exists in multiple isoforms, with

PDE10A1 and PDE10A2 being the most prominent variants in

humans (139, 140). PDE10 isoforms contain two GAF domains and

hydrolyze both cAMP and cGMP, although they exhibit a higher

affinity for cAMP; notably, cAMP binds specifically to the GAF-B

domain (141). PDE10A expression is predominantly localized in

the brain, particularly in the striatum, as well as in the thyroid and

pituitary glands, suggesting a role in modulating cGMP signaling

involved in learning and memory processes (142).

PDE10A has also been implicated in several malignancies,

including lung, breast, and colon cancers (80, 143, 144). Elevated

expression of PDE10A has been detected in colon tumor cells

compared to normal colonocytes, and siRNA-mediated

knockdown of PDE10A significantly inhibited tumor cell

proliferation (144, 145). Additionally, pharmacological inhibition

of PDE10A suppressed colon tumor growth by activating cGMP/

PKG signaling, which in turn blocked nuclear translocation of b-
catenin (6). In NSCLC, PDE10A is overexpressed, and its inhibition

via siRNA or selective inhibitors suppressed cell proliferation by

simultaneously downregulating Ras and Wnt signaling pathways

(Table 1) (80). These findings support PDE10A as a potential

therapeutic target in certain cancer types.
2.11 Phosphodiesterase 11

The Phosphodiesterase 11 (PDE11) is a dual-substrate enzyme

capable of hydrolyzing both cAMP and cGMP with comparable

affinities (146). It is encoded by a single gene, PDE11A, located on

chromosome 2q31.2, and gives rise to four splice variants

(PDE11A1–PDE11A4) that differ in their N-terminal regions due

to distinct transcriptional start sites (147). PDE11A expression has

been detected in various human tissues, including skeletal muscle,

prostate, testis, salivary and thyroid glands, and liver (148).

Functional studies in knockout mice suggest a role for PDE11A

in sperm development and function, as well as in the pathogenesis

of testicular and adrenal hyperplasia, Cushing disease, and certain

psychiatric conditions (149, 150).

PDE11A has also emerged as a potential target in oncology. It is

notably expressed in several malignancies, including renal, prostate,

colon, lung, and breast cancers (151). In prostate cancer,

inactivating mutations in PDE11A correlate with reduced protein

expression, although the contribution of these mutations to cancer

susceptibility remains unclear (152). The PDE11A4 isoform has

been implicated as a predisposing genetic factor in AIMAH by

activating the cAMP signaling pathway (81). Furthermore, a high

frequency of PDE11A variants has been identified in patients with
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Carney complex (CNC), especially in those with PRKAR1A

mutations. This observation suggests that PDE11A may act as a

genetic modifier in the pathogenesis of adrenal and testicular

tumors (82). Additionally, inactivating PDE11A variants have

been associated with familial and bilateral testicular germ cell

tumors, underscoring its relevance as a genetic risk factor

(Table 1) (149, 153).
3 Structure and function of PDE10A

3.1 Structure

The human PDE10A gene (HSPDE10A1) is located on

ch r omo s ome 6q 2 6 and e n c od e s a du a l - s u b s t r a t e

phosphodiesterase that hydrolyzes both cAMP and cGMP (2,

154). PDE10A was first identified in 1999 via bioinformatics

approaches. Its expression is predominantly restricted to the

central nervous system (CNS), particularly in the medium spiny

neurons (MSNs) of the dorsal and ventral striatum, which are

integral parts of the basal ganglia (20, 155, 156). Within these

neurons, PDE10A is localized in both the cell bodies and dendritic

arbors. Low levels of expression have also been reported in other

brain regions, including the cortex, hippocampus, and cerebellum

(14, 20, 155).

The highest PDE10A expression has been found in the striatum,

that have a key role in regulating cAMP/cGMP signaling

downstream of dopamine receptor signaling and is critically

involved in the changes to gene expression caused by drugs (157).

For example, inhibition of PDE10A could be significant in striatal

activation and behavioral suppression, representing PDE10A

inhibitors useful as antipsychotic agents. The presence of

PDE10A in post-synaptic membranes of the medium spiny

neurons also enables it to regulate intracellular signaling from

glutamatergic and dopaminergic inputs (158). In addition,

Birjandi et al. showed that the high expression of PDE10A in the

basal ganglia/striatum but not in the prefrontal cortex could be

helpful to recover from the striatum using a PDE10A inhibitor

(TAK-063), but not cortical stroke, consistent with its brain

localization (159). PDE10A inhibitors also could mimic D2

antagonist effects by preferentially activating indirect pathway

MSNs, offering potential therapeutic benefits for psychosis,

schizophrenia, Tourette syndrome, and other movement disorders

(160, 161). Moreover, it has been found that PDE10A integrates

into a large protein complex at synaptic membranes, associating

with AKAP150, PKA, and NMDA receptors upon PDE10A

phosphorylation (162). Low levels of PDE10A expression have

been observed in the hippocampus (20); however, Giralt et al.

showed that inhibiting the enzyme phosphodiesterase 10A

(PDE10A) with the drug papaverine improved spatial and

recognition memories in mouse models of Huntington’s disease,

possibly via increasing cAMP levels and activating the hippocampal

PKA signaling (163). This minimal expression of PDE10A in the

hippocampus could, however, counteract its potential benefits in

other neurological disorders that should be considered. The
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PDE10A inhibitor PF-2545920 has been shown to have a pro-

epileptic effect by enhancing hippocampal excitability and seizure

activity by promoting the trafficking of glutamate receptors (GluA1

and NR2A) to the post-synaptic density and increasing the

phosphorylation of GluA1, which strengthens excitatory synapses,

leading to synchronized synaptic transmission that can cause

seizures (164).

Structurally, like all members of the PDE family, PDE10A

contains a catalytic domain at the C-terminus, which is linked to

regulatory domains located at the N-terminus. The N-terminal

region is essential for dimerization, which is necessary for

enzymatic activity, and also provides a platform for alternative

splicing (165). At least 18 splice variants of PDE10A have been

identified, primarily differing in their N- and C-terminal regions. In

humans, PDE10A1 and PDE10A2 are the two primary isoforms,

while rodents predominantly express PDE10A2 and PDE10A3. Of

these, PDE10A2 is the major isoform expressed in the brain of both

species (166).

A unique feature of PDE10A is the presence of GAF domains,

which act as regulatory modules capable of binding small molecules,

such as cyclic nucleotides (141, 167). In PDE10A, the GAF-B

domain adopts a structure consisting of six anti-parallel b-sheets
flanked by a-helices, forming a characteristic fold (168). This

domain binds cAMP, which allosterically activates the enzyme,

making PDE10A the only known mammalian PDE with this

function (141).

The amino acid sequence of PDE10A1 and PDE10A2 is

identical except for the N-terminus. PDE10A2 contains 789

amino acids, whereas PDE10A1 is 10 residues shorter. This

difference results in distinct subcellular localization, with

PDE10A2 being associated with the membrane and PDE10A1

residing in the cytosol (166). The catalytic domains of human,

rat, and mouse PDE10A are 98% identical in sequence, and the

overall amino acid identity is 95% (2, 166).

The crystal structure of the PDE10A2 catalytic domain,

comprising 340 amino acids, was published in 2007. The

structure contains 15 a-helices, forming a compact topology

consistent with other PDEs (169). The active site comprises 11

conserved amino acid residues, including Val678, Thr685, Ala689,

Ile692, Tyr693, Met713, Gly725, Gln726, Phe729, Tyr730, and

Trp762 (166, 170). This active site is organized into four sub-

pockets (171), each playing a critical role in substrate recognition

and catalysis. The metal-binding pocket (M) coordinates Zn²+ and

Mg²+ ions, which are essential for catalysis; Zn²+ forms strong

interactions with histidine and aspartate residues, while Mg²+ forms

weaker bonds, together activating a water molecule that mediates

nucleophilic attack on the phosphodiester bond of the substrate

(165, 170). The core pocket (Q) contains an invariant glutamine

residue that forms hydrogen bonds with the purine ring of the

substrate, providing specificity and stabilizing its orientation for

efficient hydrolysis. Adjacent to this, the hydrophobic clamp (H)

creates a rigid, hydrophobic environment that accommodates the

planar ring structures of substrates or inhibitors, with aromatic

residues such as Phe and Ile contributing to binding affinity and

selectivity through hydrophobic interactions. Finally, the lid region
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(L) modulates substrate accessibility and binding by forming a

structural lid over the active site, influencing the entry, orientation,

and positioning of ligands. Collectively, these sub-pockets act

cooperatively, ensuring high substrate specificity and catalytic

efficiency while also providing distinct structural features that can

be exploited in the design of selective PDE10A inhibitors (166).

Notably, PDE10A also features a unique lipophilic binding

pocket not typically found in other PDEs. Within this region,

Tyr693 plays a critical role by anchoring ligands via hydrogen

bonding, further establishing PDE10A as a druggable target (172).

The hydroxyl group of Tyr-693 forms a hydrogen bond with

ligands, such as triarylimidazole and pyrazole derivatives,

stabilizing their orientation within the pocket (173). This

interaction is further reinforced by the structural positioning of

the conserved Gln-726, which forms an additional hydrogen bond

network with Tyr-693, anchoring the inhibitor effectively.

Importantly, this lipophilic pocket is unique to PDE10A due to

the presence of Gly-725, which allows access to the pocket, and the

deeper M-loop structure, which is longer in PDE10A than in most

other PDE isoforms (172). The presence of Tyr-693 in this context

provides a structural handle that is not available in other PDEs,

except PDE2, where access to the pocket is sterically blocked by a

leucine residue (170). Consequently, designing inhibitors that form

hydrogen bonds with Tyr-693 while occupying this lipophilic

pocket allows for highly selective targeting of PDE10A over other

PDE family members. This strategy has been successfully applied in

the development of pyrazole and triarylimidazole compounds,

which show nanomolar to subnanomolar IC50 values and >100–

1000-fold selectivity against other PDEs (172).
3.2 Function and cellular signaling

The PDE10A is a dual-substrate enzyme that hydrolyzes both

cAMP and cGMP, with approximately 20-fold greater affinity for

cAMP, making it an ideal target for disorders involving the fronto-

striatal circuits (17, 155, 174). This higher affinity enhances

phosphorylation of downstream targets such as DARPP-32 and

CREB, modulating neuronal excitability, synaptic transmission, and

dopaminergic signaling in direct and indirect pathway MSNs,

influencing pathway-specific signaling, behavioral outcomes, and

therapeutic applications. This makes PDE10A a critical regulator of

cAMP-dependent signaling pathways, making PDE10A targeting

under the control of cAMP/PKA activity, particularly those

involving PKA, which influences other signaling proteins and

downstream targets like dopamine- and cAMP-regulated

phosphoprotein (DARPP-32) (162, 175). In addition, the

mechanism of action of current antipsychotics is reported to be

related to activation of the indirect pathway of MSNs in the striatum

by the blockade of dopamine D2 receptors, concomitant

upregulation of cAMP level, making it essential for monitoring

antipsychotic efficacy. PDE10A inhibitors that also cause

overactivation of the PDE10A direct pathway could cancel its

pharmacological effect (176). In addition, the level of occupancy

by PDE10A inhibitors in the striatum has been reported to be
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directly correlated to an increase in activated cAMP response

elements (pCREB), as a marker of neuronal activation (177).

Thus, secondary messengers, cAMP and cGMP play critical roles

in intracellular signaling, particularly in neuronal pathways

involving dopamine and glutamate (178, 179). PDE10A regulates

the intracellular concentrations of these nucleotides by catalyzing

their hydrolysis to inactive 5’-nucleotides, thereby terminating their

downstream signaling cascades (179, 180).

As discussed in the previous section, PDE10A is predominantly

expressed in MSNs of the striatum, which are integral to both direct

and indirect pathways of the basal ganglia (181, 182). In these

neurons, PDE10A critically modulates cAMP/PKA/CREB

signaling, which is essential for synaptic plasticity and cognitive

function (158, 183). The inhibition of PDE10A results in elevated

intracellular cAMP levels, leading to the activation of PKA through

its regulatory subunits (184). PKA, in turn, phosphorylates several

downstream substrates, including CREB and dopamine- and

cAMP-regulated neuronal phosphoprotein 32 kDa (DARPP-32)

(185, 186). Phosphorylation of DARPP-32 at threonine-34 (Thr34)

converts it into a potent inhibitor of protein phosphatase-1 (PP1),

whereas phosphorylation at Thr75 by cyclin-dependent kinase 5

(Cdk5) attenuates PKA signaling (187, 188). In line with these

mechanisms, further insights from genetic and pharmacological

studies have clarified how specific phosphorylation states of

DARPP-32, particularly at Thr34 and Thr75, dictate the

differential responses of MSNs to PDE10A inhibition. The

phosphorylation of DARPP-32 at Thr75 by Cdk5 converts it into

an endogenous PKA inhibitor, dampening cAMP-mediated

signaling (183, 188). However, studies in Thr75Ala mutant mice,

as well as experiments using Cdk5 inhibition with roscovitine,

revealed no significant changes in the D1/D2 imbalance of

PDE10A inhibition responses (189). These findings indicate that

Thr75 phosphorylation does not critically determine the differential

MSN responses to PDE10A inhibition. Taken together, these results

highlight that PDE10A inhibition primarily alters neuronal

signaling homeostasis through Thr34 phosphorylation of

DARPP-32, leading to enhanced PKA signaling and PP1

inhibition in D2 MSNs. This mechanism explains the selective

responsiveness of indirect pathway MSNs and supports the role of

DARPP-32 as a key molecular switch integrating PDE10A-

dependent cAMP/PKA signals in the striatum (175, 190–193).

The experimental evidence, including studies using the PDE10A

inhibitor papaverine, indicates that these functional outcomes are

predominantly mediated by cAMP/PKA signaling, with minimal

effects on cGMP/PKG pathways (17, 183). Thus, the higher affinity

of PDE10A for cAMP shifts the intracellular signaling balance in

MSNs toward cAMP-dependent pathways, providing a mechanistic

basis for its effects on striatal function. Through these mechanisms,

PDE10A inhibition alters the phosphorylation state of ion channels

such as AMPA and GABA-A receptors, thus influencing neuronal

excitability and synaptic transmission (194, 195).

As highlighted in recent studies, phosphorylation of DARPP-32

at Thr34 by PKA enhances its ability to inhibit PP1, thereby

sustaining PKA-mediated phosphorylation of multiple downstream

substrates, including ion channels and receptor subunits (196). This
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modulation has direct functional implications for receptor sensitivity

and neuronal excitability. For example, disruption of DARPP-32

significantly attenuates the phosphorylation of GABAA_AA receptor

b1/b3 subunits following D1 receptor stimulation, leading to reduced

efficacy of D1 receptor coupling to GABAA_AA receptor currents

(197). Functional assays in DARPP-32 knockout mice demonstrated

that at low levels of D1 receptor stimulation, the absence of phospho-

DARPP-32 markedly diminishes the ability of D1 agonists (e.g., SKF

81297) to modulate GABA-evoked currents. In contrast, at higher

agonist concentrations, this deficit can be partially overcome (197).

These findings indicate that phospho-DARPP-32 inhibition of PP1 is

particularly critical under conditions of submaximal dopaminergic

input, where it amplifies the signal-to-noise ratio of D1 receptor

signaling to GABAA_AA receptors.

Beyond GABAA receptors, the phosphorylation state of

DARPP-32 may also influence other PKA-regulated ion channels

such as AMPA receptors, L-type Ca2+ channels, and NMDA

receptors, thereby modulating synaptic plasticity and excitability

(194, 198, 199). These effects underscore the role of DARPP-32 as a

central integrator of dopaminergic and glutamatergic signaling,

with PDE10A inhibition indirectly affecting ion channel

phosphorylation states through the DARPP-32/PP1 regulatory

axis (200).

Given its regulatory role in critical signaling pathways, PDE10A

is implicated in the pathophysiology of multiple neuropsychiatric

and neurodegenerative disorders, including schizophrenia, HD, PD,

and Alzheimer’s disease (AD) (201, 202). In schizophrenia,

PDE10A is implicated due to its high expression in

dopaminoceptive MSNs and its role in modulating both

dopaminergic and glutamatergic signaling. PDE10A inhibition

increases cAMP levels, activating D1-like signaling in the direct

pathway and mimicking D2 receptor antagonism in the indirect

pathway (185, 190–193). These effects support its therapeutic

potential in mitigating both positive and negative symptoms of

schizophrenia (185, 193, 201). In PD, PDE10A expression is

downregulated in dopaminergic-depleted regions such as the

striatum, correlating with motor dysfunction severity (4, 201, 203,

204). Interestingly, PDE10A levels are upregulated in the nucleus

accumbens following dopamine loss, potentially contributing to

disease progression [53]. In AD, downregulation of the adenylyl

cyclase/cAMP/PKA pathway and inhibition of CREB by b-amyloid

plaques contribute to cognitive deficits (201, 205). In HD, a

neurodegenerative disorder marked by loss of striatal GABAergic

MSNs, PDE10A expression is significantly reduced in advanced

stages (142). Despite this, acute inhibition of PDE10A in HDmouse

models enhanced cort icostr iatal input and increased

phosphorylation of CREB, suggesting a compensatory therapeutic

mechanism (206, 207).

PDE10A is not only involved in CNS disorders but also plays a

role in peripheral cancers. It is highly expressed in NSCLC and CRC

compared to normal tissues (5, 6). Therefore, inhibiting PDE10A

activates the cGMP/PKG pathway, downregulates b-catenin, and
promotes apoptosis through caspase and PARP activation (5, 6, 11,

208). It also suppresses MEK/ERK and RAF/MAPK signaling,

highlighting its tumor-suppressive potential (5, 11). In the
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subsequent sections, we will examine the effect of PDE10A in

various malignancies.
4 PDE10A as a cancer biomarker

PDE10A has emerged as a context-dependent modulator of

tumorigenesis. PDE10A appears to act as either a tumor suppressor

or an oncogene based on tissue type and the surrounding tumor

microenvironment. This dual role highlights its potential as a

valuable biomarker for diagnosis, prognosis, and targeted therapy

in various cancers (6).

In GBM, PDE10A has been identified as a haploinsufficient

tumor suppressor located at chromosomal locus 6q27. Combined

CRISPR/Cas9 data, human spatial transcriptomic data, and human

and mouse RNA sequencing data led to the nomination of PDE10A

as a potential haploinsufficient tumor suppressor in the 6q27 region.

Loss of PDE10A in GBM correlates with poor prognosis and

aggressive tumor phenotypes across multiple GBM cohorts.

Mechanistically, the RCAS/tv-a mouse model demonstrates that

PDE10A depletion enhances tumorigenicity by activating the PI3K/

AKT pathway independent of PTEN. It has been shown that

PDE10A suppression leads to increased phosphorylation of AKT

(pAKT) and PI3K (p-PI3K) without altering total AKT and PI3K

levels, indicating activation of the PI3K/AKT pathway. However,

PTEN levels were not different between the PDE10A knockdowns

and control, showing that PDE10A suppression activates the PI3K/

AKT pathway independent of PTEN (209). This is accompanied by

a phenotypic shift from proneural to mesenchymal transcriptional

state, a hallmark of treatment-resistant GBM (209, 210).

In contrast to GBM, epithelial ovarian cancer, CRC, and

NSCLC, showed to have a higher PDE10A expression that

contributes to tumor progression, therapy resistance, and reduced

patient survival (6, 12, 211). In ovarian cancer, while PDE10A

mRNA may be downregulated, elevated protein levels in tumor

tissues and cell lines (such as OVCAR8, SKOV3) indicate post-

transcriptional regulation (12). High PDE10A expression was also

reported to be related to a significant poor overall survival (12).

In NSCLC, elevated PDE10A expression has been observed at

both mRNA and protein leve ls , part icular ly in lung

adenocarcinoma. Its predominant cytoplasmic and membranous

localization reflects a tumor-specific pattern (212). Pharmacologic

inhibition using selective inhibitors such as Pf-2545920 activates the

cGMP/PKG axis, suppresses b-catenin, and inhibits MAPK

signaling, leading to decreased proliferation and increased

apoptosis (5, 212).

Consistent with these findings, the antitumor activity of

PDE10A inhibition in colorectal cancer appears to be primarily

mediated through activation of the cGMP/PKG signaling axis

rather than the cAMP/PKA pathway. Mechanistically, PKG exerts

a dual repressive influence on oncogenic b-catenin signaling. First,

it suppresses transcription of the CTNNB1 gene, thereby reducing

both b-catenin mRNA expression and protein abundance. Second,

PKG promotes the nuclear retention of FOXO4, which sequesters

b-catenin and consequently diminishes its availability for TCF-
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dependent transcriptional activation. Notably, these effects occur

independently of proteasome-mediated b-catenin degradation via

canonical phosphorylation at Ser33/37/Thr41 (213). By contrast,

PKA signaling has been shown to stabilize b-catenin through

phosphorylation at Ser552 and Ser675, which enhances its nuclear

localization and transcriptional activity (214). These observations

indicate that the growth-suppressive effects of PDE10A inhibition

in colorectal cancer cells are critically dependent on PKG-mediated

downregulation of b-catenin signaling, a mechanism not effectively

reproduced by PKA activation.

The PDE10A rs12660420 variant is associated with a higher risk

of developing tobacco-related NSCLC. Interestingly, elevated

PDE10A expression is linked to better clinical outcomes in

patients with early-stage NSCLC (211). In CRC, PDE10A is

variably regulated across the neoplastic continuum from

precancerous lesions to advanced metastatic stages (6, 215). In

vitro, inhibition of PDE10A reduces CRC cell viability, induces G2/

M cell cycle arrest, activates caspase-3, and promotes apoptosis (6,

11). Notably, PDE10A is also overexpressed in histologically normal

mucosa of CRC patients, suggesting potential as an early detection

biomarker (6, 156). Furthermore, decreased PDE10A expression is

associated with an EMT phenotype and metastatic disease in colon

adenocarcinoma (215). In prostate cancer (PCa), somatic mutations

in PDE10A are restricted to tumor tissues and have lower

expression in regular counterparts. Upregulation of PDE10A

disrupts the cAMP/cGMP balance, elevating pCREB/CREB ratios

and activating CREB-dependent oncogenic transcription programs

(216). In metastatic gastric cancer, deleterious mutations in

PDE10A have been identified exclusively in peritoneal metastases,

implicating this gene in metastatic transition and phenotypic

plasticity (217).

Beyond solid tumors, paraneoplastic neurological syndromes

(PNS) have been associated with anti-PDE10A IgG antibodies.

These have been detected in patients presenting with movement

disorders and concurrent malignancies such as lung and renal

cancers. PDE10A may function as an onconeural antigen,

potentially triggering T-cell responses, especially in patients

undergoing immune checkpoint blockade (218). Additionally,

PDE10A::BRAF fusions have been reported in rare pediatric

sarcomas. These fusion drives the aberrant activation of the

MAPK pathway, promoting tumorigenesis. Such alterations

underscore the therapeutic relevance of PDE10A in precision

oncology for pediatric mesenchymal tumors (219, 220).

In summary, PDE10A demonstrates context-specific roles

across various cancer types. The differential expression of

PDE10A and its regulatory influence on oncogenic pathways,

such as the PI3K/AKT, MAPK, and b-catenin pathways,

underscores its role in cancer progression. In addition,

overexpression of PDE10A in cancer cells and tumors compared

to normal cells and normal tissues has been observed (221). Loss of

the PDE10A gene locus (6q27) could be considered an independent

poor prognostic indicator in IDH wild-type glioblastoma, showing

lower overall survival (209). Similarly, PDE10A overexpression in

ovarian cancer has been reported to be in association with worse

overall survival and upregulation of oncogenic pathways (Wnt/b-
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catenin, RAS/MAPK) (12). In addition, a study by Zekeridou et al.

introduces a novel autoantibody, PDE10A IgG, as a biomarker for a

rare paraneoplastic neurological syndrome that affects older adults

with cancer (particularly lung, renal, and pancreatic carcinomas)

and is characterized by hyperkinetic movement disorders (218).

These associations with prognosis and treatment response support

its potential as a biomarker for diagnosis, prognosis, and targeted

therapy in oncology for different tumors (Table 2).
5 PDE10A inhibition in cancer

Elevated PDE10A expression has been documented in multiple

cancer types, including colorectal cancer (CRC) and non-small cell

lung cancer (NSCLC) (5, 6). Notably, selective PDE10AIs

significantly attenuate cell proliferation in several CRC cell lines

(HT29, SW480, and HCT116). This antiproliferative effect is

reported to be mediated via the cGMP/PKG signaling axis,

leading to phosphorylation and functional suppression of b-
catenin. Consequently, PDE10AIs offer a novel molecular strategy

to inhibit b-catenin-driven transcriptional activity in tumor cells

(225). Therefore, Pharmacological inhibition of PDE10A has

emerged as a promising strategy in cancer therapeutics due to its

selective overexpression in malignant tissues and minimal

expression in corresponding normal cells (6–12,). Multiple small-

molecule inhibitors have been developed to target PDE10A,

including papaverine, PQ-10, PF-2545920 (MP-10), TP-10, ADT-

061, and MCI-030. These agents have shown potent anti-tumor

activity in preclinical models of such as ovarian, colorectal, lung,

and breast cancers. These inhibitors function by elevating

intracellular levels of cyclic nucleotides (cAMP and cGMP),

leading to activation of the downstream effectors PKA and PKG.

The consequent modulation of signaling cascades results in the

suppression of key oncogenic pathways, such as the Wnt/b-catenin,
RAS/MAPK, and PI3K/AKT pathways (7, 9, 10, 12, 226). In this

context, a study conducted by Kopanitsa et al. examines the effects

of 28 PDE inhibitors, including PF-2545920, PQ10, and papaverine,

as PDE10A inhibitors on human U87MG, A172, and T98G GBM

cells. The results demonstrated that pharmacological inhibition of

PDE10A using PF-2545920, particularly in combination with the

PDE5 inhibitor MY-5445 and multidrug resistance-associated

protein 1 inhibitor reversan, leads to synergistic suppression of

GBM cell proliferation in vitro, suggesting a promising low-toxicity

therapeutic strategy (224).

Moreover, PF-2545920 and MCI-030 significantly inhibited cell

proliferation and induced apoptosis in ovarian cancer cell lines

(SKOV3, OV-90, and OVCAR3). These effects were associated with

increased phosphorylation of VASP at Ser157 and Ser239,

indicating activation of PKA and PKG pathways. These

treatments also led to decreased nuclear localization of b-catenin
and reduced expression of b-catenin target genes, including c-MYC,

survivin, and cyclin D1 (Table 2) (7, 226). MCI-030, a sulindac

derivative, demonstrated high potency with an IC50 of ~0.5 μM and

achieved stable plasma and ovarian tissue concentrations (~2 μM)

after oral administration in murine models, with an excellent safety
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profile (7). Similarly, ADT-061, another sulindac-derived non-

COX-inhibitory compound, selectively targeted colon tumor cells

(IC50 = 0.3–0.5 μM), sparing normal colonocytes. It enhanced

intracellular cGMP levels, activated PKG, and inhibited Wnt/b-
catenin signaling by reducing nuclear b-catenin translocation (9).

ADT-061 demonstrated chemopreventive efficacy in Apc^+/Min-FCCC

mice by significantly reducing colorectal adenoma burden without

observable toxicity (Table 2) (8, 10).

In colon cancer models, PDE10 inhibitors comprising PF-

2545920, papaverine, and PQ-10, induced G1-phase cell cycle

arrest, inhibited proliferation, and promoted apoptosis, with

reduced cytotoxic effects on normal epithelial cells. Similar

findings were reported in colon cancer cell lines (HCT116,

HT29), where siRNA-mediated PDE10A knockdown mimicked

pharmacological inhibition, resulting in decreased cell viability,

caspase-dependent apoptosis, and reduced DNA synthesis (6).

Notably, both pharmacological inhibition and siRNA approaches

selectively activated the cGMP/PKG signaling pathway in cancer

cells. This was evidenced by increased phosphorylation of VASP at

Ser239, with minimal effect on cAMP/PKA signaling. This

functional specificity likely reflects a tumor-context preference for

cGMP regulation mediated by PDE10A. It may be attributed to the

kinetic properties of the enzyme or the compensatory degradation

of cAMP by other PDE isoforms in normal tissues (10). Moreover,

stable knockdown of PDE10A using lentiviral shRNA vectors

impaired the anchorage-independent growth and colony

formation of colon tumor cell lines such as HT-29, SW-480, and

HCT-116, reinforcing the critical role of PDE10A in sustaining

malignancy (11). At the molecular level, PDE10A inhibition

resulted in transcriptional repression of b-catenin target genes,

including cyclin D1 and survivin. This effect was likely mediated

by nuclear PKG interfering with TCF/LEF transcriptional activity

and downregulating CTNNB1 gene expression (Table 2) (10).

Collectively, these findings highlight the therapeutic potential of

PDE10A inhibition in specific cancer types. The development and

preclinical evaluation of selective inhibitors, such as ADT-061 and

MCI-030, underscore their efficacy in suppressing tumor growth

and promot ing apoptos i s , whi le exhib i t ing minimal

toxicity (Figure 1).

However, this finding appears to contrast with the results of

Nuechterlein et al, who introduce PDE10A as a potential

haploinsufficient tumor suppressor in the 6q27 region. Moreover,

they developed a PDE10A-suppressed GBM model using the

RCAS/tv-a system in mice, which caused an aggressive glioma

phenotype, promoted a proneural-to-mesenchymal transition, and

increased resistance to chemo- and radiotherapy. Cell culture

analysis also showed that reduced expression of PDE10A activates

the PI3K/AKT pathway, contributing to glioma progression and

temozolomide resistance (209). This discrepancy may be attributed

to differences in experimental models (pharmacologic inhibition vs.

genetic knockout), the degree and duration of PDE10A suppression.

This suggest that in contrast to acute drug inhibition using small

molecules and inhibitors that decrease proliferation of GBM cells,

the long-term knockdown may allow for compensatory PI3K/AKT

signaling that promotes tumor growth, make it vulnerable to PI3K
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TABLE 2 An overview of PDE10A targeted or used as a biomarker in each cancer.
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ole in mediating tumorigenesis (212)

P levels and activating PKG to suppress oncogenic b-catenin and MAPK (5)
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omic profiling, revealed a PDE10A-BRAF fusion.
(219)
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inhibition (209). Critically, the anti-tumor efficacy of PDE10A

inhibitors like PF-2545920 and MCI-030 occurs at concentrations

that significantly elevate cyclic nucleotides without immediately

activating PI3K/AKT feedback loops in responsive tumors. In

addition, combination strategies with PI3K/AKT pathway

inhibitors may help mitigate compensatory activation, as seen in

GBM models where PI3K inhibitors blocked AKT activation

induced by PDE10A suppression (209). Accordingly, it also

increases the importance of existence and establishing a

therapeutic window, describing the dose and period of time of

treatment, which may be based on tumor PDE10A expression and

PI3K/PTEN status, to maximize efficacy while minimizing the risks

of compensatory signaling.

Moreover, pharmacological inhibitors, such as PF-2545920,

ADT-061, and MCI-030, selectively elevate intracellular cAMP

and/or cGMP, activating PKA or PKG pathways, in ovarian,

colorectal, and other cancer models suggesting a tumor-specific

preference for cyclic nucleotide regulation, possibly due to kinetic

properties of the enzyme or compensatory cAMP degradation by

other PDE isoforms. This could be related to the context-dependent

manner of PDE10A inhibition, which modulates cAMP and cGMP

levels accordingly, leading to differential activation of PKA and

PKG across various cancer models. Moreover, this contrast finding

may be due to tissue-specific expression of PDE10A isoforms
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(higher level of cAMP in ovary) (182, 227), baseline cyclic

nucleotide levels, and cross-talk with other pathways.

Therefore, while PDE10A inhibition shows promise as a

therapeutic strategy under controlled pharmacologic conditions,

these divergent outcomes emphasize the need for tumor-specific

molecular profiling and careful consideration of potential pro-

tumorigenic consequences when translating PDE10A-targeted

therapies to the clinic (Figure 2).
6 Future direction

Preclinical studies have consistently demonstrated the

antitumor efficacy of PDE10A inhibitors across various cancer

models. However, clinical translation remains limited. Several

PDE10A inhibitors have entered Phase I and II clinical trials for

non-onco l og i c i nd i c a t i on s , s u ch a s s ch i zophr en i a

(ClinicalTrials.gov Identifiers: NCT00570063, NCT02477020,

NCT02019329, NCT01568203), and have shown favorable safety

profiles (228). Despite this, robust data on pharmacokinetics,

optimal dosing strategies, and long-term effects in clinical trials of

oncology are lacking. Further clinical studies are necessary to

determine the therapeutic viability of these approaches in cancer

settings. In addition, PDE10A exhibits context-dependent roles
FIGURE 1

Key pathways involving PDE10A in cancer and pharmacological targeting by small-molecule inhibitors. The schematic highlights critical PDE10A-
mediated signaling nodes including cAMP/cGMP, PKA, PKG, and cross-talk with CREB, MAPK, PI3K or Wnt/b-catenin pathways implicated in tumor
proliferation, survival, and apoptosis. Known PDE10A inhibitors including TP-10, MCI-030, papaverine, PQ-10, and PF-2545920 and their chemical
structures are shown, emphasizing their potential therapeutic for cancer.
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within tumor biology. In GBM, it may function as a tumor

suppressor (209), whereas in CRC, NSCLC, and ovarian cancers,

it contributes to tumor progression (6, 12, 211). The same dual role

has been observed and reported in this review article in other PDEs

including PDE1, PDE2, PDE4, and PDE7 that could complicate

therapeutic development and underscores the need for molecular

studies to elucidate tumor-specific signaling contexts and

microenvironmental factors that modulate PDE10A activity.

Precision targeting requires a clear understanding of these

context-dependent mechanisms.

Resistance to PDE10A-targeted monotherapy also presents

another significant challenge. Adaptive signaling through

compensatory pathways may limit long-term efficacy. Rational

combination therapies that co-target synergistic pathways, such as

the MAPK pathway, could enhance treatment outcomes (5, 212).

Multi-omics integration and computational modeling provide

strategic tools for predicting effective drug combinations and

resistance mechanisms. Non-invasive imaging and molecular

diagnostics should be developed to guide clinical decision-making

and improve precision medicine approaches.

Beyond oncology, PDE10A inhibition holds promise in

reducing unintended toxicities. Preclinical evidence suggests
Frontiers in Oncology 15
protective effects against doxorubicin-induced cardiotoxicity,

indicating potential value in cardio-oncology. A broader

exploration of PDE10A inhibitors in other disease domains may

expand their therapeutic utility (229).
7 Conclusion

PDE10A plays a multifaceted role in both physiological and

pathological contexts. Its dual function, as an oncogene in certain

cancers, such as CRC, and a tumor suppressor in GBM, highlights

the complexity of its molecular regulation and context-dependent

activity as seen in other PDEs including PDE1, PDE2, PDE4, and

PDE7. Structural insights into its GAF and catalytic domains have

expanded our understanding of its unique enzymatic profile. The

emerging data position PDE10A as a potential biomarker and

therapeutic target, especially in CNS disorders and various

malignancies, including GBM, NSCLC, and CRC. Selective

PDE10A inhibitors demonstrate promise in preclinical studies,

although clinical translation remains in its infancy. Further

investigation is warranted to elucidate tissue-specific mechanisms

and to develop targeted therapies that utilize the biological
FIGURE 2

The dual role activity of PDE10A. Tumor promoting role in glioblastoma (GBM) via activation of PI3K/AKT pathway and enhancing proneural–
mesenchymal transition (PMT). Anti-tumor activity (most cancers) after inhibition with PDE10A Inhibitors (such as TP-10, MCI-030, papaverine, PQ-
10, and PF-2545920) via increase in Cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), and suppressing Wnt/
b-catenin, RAS/MAPK, and PI3K/AKT.
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functions of PDE10A. In addition, it’s suggested to examine the

tissue-specific expression of PDE10A, baseline cyclic nucleotide

levels, cross-talk with other pathways, differences in the degree and

duration of PDE10A suppression, and the interplay between

PDE10A-mediated cyclic nucleotide signaling and compensatory

oncogenic pathways for an effective therapy. Additionally, studying

the protein expression along with mRNA expression in necessary to

consider post-transcriptional regulation. Moreover, it seems a lack

of study comparing acute and chronic PDE10A inhibition with

genetic tools or pharmacological inhibition with both toxic and

non-toxic functional dose to make sure these contrast results are not

related to dose, method or duration of suppression. In addition,

investigating and considering all these factors seems necessary

before any intervention on PDEs, bringing to us the importance

of personalized medicine for patients suffering from cancer.
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