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FLASH radiotherapy (FLASH-RT) represents an innovative treatment modality

utilizing ultra-high dose-rate irradiation (>40 Gy/s). The FLASH effect, induced by

FLASH-RT, is characterized by the selective radioprotective effect of normal

tissue while preserving tumor control efficacy. Currently, FLASH effect has been

confirmed in many preclinical studies and clinical studies. However, the

mechanism and the influencing factors of FLASH effect remain ambiguous.

This review systematically summarizes current understanding of the

mechanism and influencing factors of FLASH effect, providing theoretical basis

for the future study and application of FLASH-RT.
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1 Introduction

Cancer has become a leading cause of human death in modern society (1). In 2024,

611720 people died from cancer in America (2). As one of the most important and effective

treatment for cancer, almost 50% of all cancer patients received radiotherapy during the

course the disease (3). However, radiotherapy also caused early or late toxicities in organs at

risk (OARs) surrounding the tumor, which limit the patient’s survival and quality of life (4).

Although modern precision radiotherapy techniques (e.g., 4D-CT (5), VMAT (6), TOMO

(7)) have achieved improved normal tissue complication control through image-guided

targeting and algorithm-optimized dose distribution, such protection is still limited by the

physical dosimetry of the radiation itself. In conventional radiotherapy (CONV-RT),

precision techniques can only minimize the radiation exposure of normal tissues, while

reducing the radiation-induced damage after exposure is impossible. To make matters

worse, due to the inter-patient variability and uncertainties caused by respiratory motion

(8), even the most advanced intensity-modulated techniques cannot completely avoid

radiation exposure to normal tissues.

Recent studies have shown that radiation delivered with an ultra-high dose rate (≥40

Gy/s, UHDR) can significantly reduce the damage to OARs without compromising the

anti-tumor effect (9). This phenomenon is called “FLASH effect”, which can essentially

mitigate the toxicity of radiotherapy. FLASH effect was first discovered by Dewey and Boag

in 1959, although they only demonstrated that Serratia marcescens under UHDR

irradiation presented lower radiosensitivity (10). The FLASH effect was subsequently
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confirmed in mammalian cells (11), but its connection with cancer

treatment was not established until 2014. In 2014, Vincent

Favaudon’s group used FLASH-radiotherapy (FLASH-RT) to

treat lung cancer in mice and found that compared with

conventional dose rate (CONV) irradiation (0.03 Gy/s), FLASH-

RT (60 Gy/s) resulted in reduced damage in heathy tissue while

maintaining tumor control (9). After that, diverse preclinical studies

have been conducted, confirmed FLASH effect in zebrafish (12),

canine-cancer patients (13), cat-cancer patients and mini-pig (14).

In 2019, the first FLASH-RT clinical trial was reported, which

demonstrated the protective effect of electron FLASH-RT on

normal skin tissue (15). The consistent tumor control efficacy was

further supported by the subsequent two-year follow-up survey

(16). The first proton FLASH-RT clinical study was conducted on

patients with extremity bone metastases, which also confirmed that

FLASH-RT could achieve equivalent therapeutic outcomes with

CONV-RT (17). However, since the irradiated area of this

experiment was located on the limbs, distant from the radiation-

sensitive organs, the protective effect of reducing normal tissue

damage was not significantly demonstrated. A similar trial will soon

be initiated for thoracic metastases patients (18). More clinical

trials, like the one related to cutaneous squamous cell carcinoma

(19) are still undergoing. Generally, those prospective studies have

validated the clinical feasibility and safety of FLASH-RT based on

their promising data.

In the past, the only way to limit the radiotherapy toxicity was

to widen the gap between the optimal tumor-controlling dose and

the minimal OARs-causing dose (20), or to reduce the irradiated

volume of normal tissues by using precision radiotherapy. However,

the discovery of the FLASH effect gives out another possible

solution. By altering the intrinsic dose-rate characteristics of

radiation, FLASH-RT fundamentally reduces the radiation-

induced damage of normal tissues while significantly decreasing

the time required for each treatment session. This approach

significantly increases the deliverable dose per fraction, which

enhances the tumor killing effect and reduces the treatment

duration. Furthermore, as a treatment method derived from the

fundamental radiation parameter modification, FLASH-RT can

seamlessly integrate with intraoperative radiotherapy, precision

radiotherapy, immunotherapy and other therapeutic approaches,

demonstrating remarkably broad developmental potential.

Although the FLASH effect has already been confirmed in

electron beams (9), protons beams (21), X-rays (22, 23) and

heavy ions (24), the mechanism underlying the FLASH effect

occurrence remains poorly understood. Besides, the occasionally

occurred negative results also suggested the highly complex and

diverse influencing factors associated with the FLASH effect (25),

which seems ambiguous currently as well. To achieve the FLASH

effect safely and consistently, it is important to elucidate the

underlying mechanism and control the relative effecting factors.

This will enable precise modulation of the FLASH molecular

pathways and facilitate the establishment of international

standards for FLASH treatment protocols. Furthermore, since

induction of the FLASH effect requires precise control of both

dose rate and temporal parameters, the development of high-
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precision dosimetry systems and beam delivery technologies has

also become equally imperative. Tackling these challenges will be

the focus of radiotherapy research for the foreseeable future.

This review summarizes the research progress on the

mechanism and influencing factors of the FLASH effect and

provided a theoretical basis for the future studies and clinical

applications of FLASH-RT.
2 Factors influencing FLASH effect

2.1 Biological factors

2.1.1 Age and oxygenation
The manifestation of FLASH effect in practical irradiation is

often influenced by multiple factors, with biological factors

including the aging status of irradiated tissues, oxygen content,

and tissue type (Table 1). Regarding aging status, a mouse study has

shown that 17 Gy of FLASH-RT failed to elicit the FLASH effect in

telomerase-knocked mice, which revealed that the advanced age

and decreased telomerase activity of the irradiated subject may

impede the manifestation of the FLASH effect (26). However, to

date, further research of this phenomenon remains limited, with the

underlying mechanisms remaining elusive. Subsequent studies

focusing on this phenomenon are still warranted.

Similar reduction in FLASH effect can also be found in hypoxic

tissues (27). Both in vitro studies (28, 29) and physical models (30)

have demonstrated that under hypoxic conditions, FLASH effect is

inhibited and cannot exert significant radioprotective effect

after irradiation.

2.1.2 Tissue characteristic
Moreover, among different tissues, FLASH effect also

demonstrates with varying intensity levels and distinct

manifestation patterns. This variability is primarily related to the

diverse oxygenation levels and mitotic activity in different organs

and tissues, which lead to their differential radiosensitivity.

Generally, tissues with higher radiosensitivity are more

susceptible to radiation damage, which may make the protective

effect of FLASH effect more pronounced. Consequently, this leads

to significant variations in the conventional irradiation parameters

required to achieve the FLASH effect across distinct tissues.

Meanwhile, the manifestation of FLASH effect also varies

according to the type of irradiated tissue or organ (Table 2).

Typically, the lungs, intestines, brain, and skin are the most

vulnerable organs in radiation therapy, making the FLASH sparing

effect of great significance. In this section, we take these four tissues

as examples to analyze how tissue-specific characteristics influence

the FLASH effect.

2.1.2.1 Intestine

Tissues with highly proliferating cells (e.g., intestine/skin)

exhibit greater radiosensitivity and are more prone to acute

radiation injury, whereas terminally differentiated tissues (e.g.,

brain/lung) predominantly manifest delayed damage. Generally,
frontiersin.org

https://doi.org/10.3389/fonc.2025.1669228
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


TABLE 1 Summary of biological and physical factors influencing the FLASH effect.

Dose rate (Gy/s)
Endpoint

FLASH effect absented in mice without telomerase activity.

FLASH effect was restricted in low oxygen level.

Vitro study showed DNA DSB residues enhance under hypoxic
conditions.

Physical model showing hypoxic environment limited FLASH
effect.

FLASH-RT enhanced crypt survival and minimized microbiome
changes in mice.

Identical parameters induced robust, reproducible FLASH effect in
intestine.

FLASH-RT restrict the death of intestinal crypts.

FLASH-RT limited the intestinal fibrosis level.

FLASH-RT increased the survival rate and body weight recovering
of mice.

FLASH-RT enhances progenitor proliferation and tissue
regeneration.

FLASH-RT mitigates apoptotic signaling transformation.

FLASH-RT requires 44-58% higher doses than CONV-RT for
equivalent effects.

FLASH-RT reduce skin injury; oxygen abolishes dose-rate
variance.

OER dose quantifies FLASH effects on murine skin toxicity.

FLASH-RT induced milder skin ulcers and prolonged median
survival.

FLASH-RT prevent lung fibrosis and spared smooth muscles.

FLASH-RT elicit less myosin light chain, changing tumor
microenvironment.

FLASH-IR preserves microvascular architecture, attenuates
inflammation.

FLASH-RT reduces brain damage, preserves neurovascular
endothelium.
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Influencing factor Year Author
Dose
(Gy)

Radiation source
CONV-RT FLASH-RT

Age 2020 Charles F (26) 17 0.03 60 Electron

Oxygenation

2024 Jacob P S (27) 19.8 0.16 25~1170 Electron

2022 Pankaj C (29) 0.5~4 0.067 2×10^9 Proton

2023 Hai Siong Tan (30) Mathematical modeling and computation

Organ

Intestine

2021 Jia-Ling Ruan (34) 7.5~12.5 0.25 106 Electron

2023 Anet Valdés Z (33) 11~17 0.17 185~225 Electron

2020 Eric S (21)
15

0.9 78 Proton
18

2022 Hongyu Zhu (32) 10~15 NA >150 X-ray

2024 Tristan L Lim (35) 14 0.82 125.3 Proton

Skin

2021 Anastsia V (36) 30, 45 0.39~0.65 69~124 Proton

2021 Brita Singers S (37) 23.2~39 0.35~0.40 65~92 Proton

2023 Qixian Zhang (39) 25~30 0.40 130 Proton

2024 Per Rugaard P (40) 39.3 0.37 80 Proton

2020 Luis A Soto (38) 30~40 0.074 207 Electron

Lung

2014 Vincent Fn (9) 17 0.03 60 Electron

2020 Young-Eun K (42) 15 0.06 352.1 Electron

Brain

2022 Ivana Dokic (46) ~10 0.17 120 Proton

2024 Ivana Dokic (47) 10 0.2 250 Helium
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rapidly dividing tissues demonstrate more pronounced FLASH

effects at lower doses of irradiation. Among the four tissue types,

intestinal epithelial cells exhibit the most active proliferation, with

their crypt stem cells capable of continuous division and complete

renewal of the intestinal epithelium every 3–5 days. This

characteristic enables the intestinal epithelium to demonstrate

consistent FLASH effects at relatively low radiation doses (10–15

Gy). With a total abdominal FLASH-RT in mice, Karen et al.

certified that after 16 Gy of irradiation, CONV-irradiated mice

experienced continuous weight loss and died 10 days post-

irradiation (dpi), while FLASH-irradiated mice recovered their

body weight within days and survived (31). Similar results have

been found by other researchers, confirming that the FLASH effect

can be consistently reproduced in gut (21, 32, 33).

However, the high radiosensitivity of intestinal tissue also

suggests that with higher radiation doses, the protective FLASH

effect in intestinal tissue may be readily overshadowed by more

severe radiation damage, thereby imposing stricter requirements on

dose parameters and beam characteristics for demonstrating

FLASH effects in the small intestine. For example, for Zhang

et al., following a partial-gut FLASH-RT using protons, neither

intestinal tissue nor circulating lymphocytes were spared, indicating

that the FLASH effect did not occur (25). Since other studies often

employed 10–15 Gy of electron beams for irradiation, this difference

may result from the relatively higher radiation doses employed in

this experiment (14~18 Gy), combined with more severe damage

caused by proton irradiation.

Microstructural investigations revealed that the radioprotective

effect of FLASH-RT in gastrointestinal tract primarily manifests as

reduced mortality of crypt base columnar cells (CBCs), essentially

preserving their proliferative capacity. Researches showed that after

12.5 Gy of FLASH-RT, mice exhibited fewer changes in their gut

microbiome composition and higher survival rate of proliferating

cells in intestinal crypts, which contribute to the preservation of gut

function (34). Further studies supported this finding and

demonstrated that FLASH-RT also promoted greater proliferation

of epithelial progenitor cells, leading to a better regeneration after

irradiation (35).
2.1.2.2 Skin

The proliferation of skin basal cells occurs at a relatively slower

rate, with basal keratinocytes renewing the epidermal layer every

14–28 days. Consequently, studies of the FLASH effect in cutaneous

tissue typically utilize higher radiation doses (20–40 Gy) compared

to those used for intestinal tissue. The FLASH effect of mammal

cutaneous tissue was first discovered in cat and mini-pig in 2018

(14). The first human experiment then revealed that FLASH-RT

demonstrated both safety and feasibility, with significant protective

effects on skin tissues and robust antitumor efficacy (15). For skin,

radiation damage primarily manifests as erythema, desquamation,

and suppuration triggered by basal cell death. In contrast, the

FLASH effect is chiefly characterized by mitigating radiation-

induced follicular atrophy, stem cell depletion, apoptotic signaling

activation, inflammation, and ulceration in the irradiated area

(36–38).
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However, unlike other tissues, as the outermost organ exposed to

the external environment, FLASH effect in cutaneous tissue is

profoundly influenced by the local oxygenation. In a study conducted

by Qixian Zhang et al., although FLASH-RT demonstrated a 15%

reduced skin contraction and sustained protective effects, both extra

oxygen supplementation and oxygen reduction could abolish these

dose-rate-dependent variations (39). Furthermore, Per Rugaard

Poulsen et al. even proposed that the oxygen enhancement ratio-

weighted dose could accurately describe the acute cutaneous toxicity

changes in mice, highlighting the FLASH effect’s profound dependence

on oxygen partial pressure in skin tissue (40).

2.1.2.3 Lung

For tissues with low proliferative activity, although they exhibit

lower radiosensitivity, their capacity for post-radiation self-repair is

markedly weaker. Furthermore, these tissues - particularly critical

organs like the lungs and brain – often play essential roles in

maintaining normal physiological functions. Consequently, although

the FLASH effect provides relatively modest radioprotection for such

tissues, its clinical significance is exceptionally high. For these tissues,

FLASH effect is strongly influenced by the distinct mechanisms of

radiation damage formation.

In pulmonary tissue, radiation-induced damage primarily

manifests as tissue fibrosis triggered by post-radiation inflammation

and edema caused by altered vascular permeability. The protective

effects of FLASH radiotherapy are likewise mainly demonstrated in

these two aspects. FLASH effect in lung was first identified in 2014,

when study confirmed the comparable tumor control along with the

restricted pulmonary fibrosis following FLASH-RT in mice (9). In

this experiment, FLASH-irradiated mice exhibited higher survival

rates during long-term observation, with no significant complications

observed. In contrast, CONV-irradiated mice developed severe

pneumonitis, inflammatory cell infiltration, and pre-fibrotic lesions,

resulting in decreased survival rates. Subsequent studies have further

delineated the radioprotection effect in pulmonary tissues at cellular

and molecular levels. Fouillade et al. reported reduced expression of

pro-inflammatory genes, better preservation of progenitor pool, and

decreased cellular senescence after FLASH-RT, leading to a higher

lung regeneration capacity, which indicating a better prognosis

outcome (26). In pulmonary fibroblast cells, they also observed

fewer double-strand break foci, although another in vitro study
Frontiers in Oncology 05
reported no significant difference in fibroblast survival between

FLASH-RT and CONV-RT (41). Furthermore, research of

microenvironmental alterations revealed that FLASH-RT also

suppressed the activation of myosin light chain in vascular

endothelium, consequently reducing the capillary constriction and

promoting the infiltration of immune cells (42).

2.1.2.4 Brain

In brain tissue, radiation-induced damage primarily manifests as

cognitive impairments associated with neuronal cell injury and

hippocampal alterations. In that case, the protective effects of

FLASH radiotherapy are predominantly focused on preserving

neural architecture and maintaining neuronal viability (22). In

brain, FLASH effect was first demonstrated by Pierre Montay-Gruel

et al. in 2017, with a convincing result showing that in whole brain

irradiation, 10 Gy of CONV-RT (0.1 Gy/s) could totally damage the

spatial memory of mice, while same dose of FLASH-RT (100 Gy/s)

could preserve the memory of mice for two months (43). Subsequent

studies uncovered that this neuroprotection was mediated through

the reduced neuroinflammation and hippocampal dendritic spine

loss after irradiation (44), which were associated with the fewer toxic

hydrogen peroxide production after FLASH-RT (45). Further study

of Ivana Dokic et al. not only supported the attenuation of microglia

and macrophage induced inflammation, but also uncovered the

microvascular protection effect mediated by FLASH-RT (46, 47). A

recent study utilizing ex vivo high-resolution brain magnetic

resonance imaging demonstrated that FLASH-RT prevents

hippocampal intensity from reduction, with concurrently

conducted analyses showing negligible alterations in regional

diffusion metrics across FLASH-irradiated mice (48). Another

investigation revealed that the FLASH effect enhances post-

irradiation recovery of immature neuronal cells, highlighting its

specific neuroprotective effects on neuronal bioactivity (49).
2.2 Physical factors

2.2.1 Dose and dose rate
In terms of physical factors, the FLASH effect is predominantly

influenced by radiation dose, dose rate, pulse structure

characteristics, irradiation field, as well as the type of radiation
TABLE 2 Summary of tissue-specific characteristics and radioprotection.

Tissue

Characteristic

Dose (Gy) Radioprotection observedMitotic
activity

Position
Radiation
damage

Intestine High In vivo
Targets rapidly
proliferating cells

10-15 Preservation of cellular proliferative capacity (35)

Skin Moderate Surface 20-40
Maintain proliferative capacity (36); Oxygen partial

pressure-dependent effect (39)

Lung Low In vivo
Inflammation and

fibrosis
15-18

Suppression of pro-inflammatory genes (26);
Reduction of fibrotic changes (9)

Brain Very low In vivo Neuronal cell damage 10
Protection of neuronal activity and structural

integrity (44, 49)
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employed (Table 3). For dose rate, research on zebrafish embryo

showed that higher dose rate (>40 Gy/s) and shorter irradiation

time can significantly reduce the incidence of malformations (50).

Further studies proved this conclusion and pointed out that the

radioprotective efficacy of FLASH effect also increased with higher

irradiation dose (51, 52). However, this increase tends to reach

saturation around 50 Gy (52) and the whole protection capability

will be almost negligible below 2 Gy (59). These findings not only

proved that the flash effect is determined by both dose and dose rate

parameters, but also provided a guidance on fractionation regimens

for FLASH-RT. Existing experiments have demonstrated that

standard fractionated FLASH-RT (2 Gy/fraction) still present

FLASH effect (53, 54), although the intensity is likely to be

reduced (55). The specific mechanism underlying this reduction is

not yet clear, but it can typically be mitigated by increasing the dose

per fraction (51).

2.2.2 Pulse structure and irradiation area
Additionally, pulse structure also serves an important role in

influencing FLASH sparing effect. On the one hand, when

increasing the pulse number or lengthen the interval time

between two pulses, the sparing effect of FLASH effect will be

suppressed (34). On the other hand, it is possible to enlarge the dose

per pulse or shrink the pulse width to reach a better protection effect

(56). Moreover, shrinking the irradiation field has been shown to

enhance the FLASH effect. Study on skin of mini-pig revealed that

when utilizing larger irradiation field (8×8 cm²), even FLASH-RT

(150 Gy/s) would result in severe late toxicity, indicating that

increased treatment volume significantly compromises the

radioprotective FLASH effect (57).

2.2.3 Type of radiation
Current clinical radiotherapy predominantly utilizes three radiation

modalities: electron beams, proton beams, X-rays and heavy ion.

Extensive studies have confirmed the FLASH effect in all four types of

radiations. Recent studies have also shown that the magnitude of

FLASH effect also exhibits radiation-type dependence, attributable to

their inherent differences in physical characteristics (Table 3).

An abdominal irradiation experiment in mice showed that with

identical dose and dose rate, no significant difference could be found

between conventional electron irradiation (eCONV) and proton

irradiation (pCONV), while a significant difference was observed

between electron FLASH irradiation (eFLASH) and proton FLASH

irradiation (pFLASH). The number of regenerating crypts in mice

treated with eFLASH was 2–5 times higher than those treated with

pFLASH, so do the survival rates, which indicated the superior

normal tissue protection of eFLASH (58). This may result from the

distinct linear energy transfer (LET) characteristics between

eFLASH and pFLASH, with proton beams in our experiments

demonstrating LET values of 0.9-1.1 keV/mm (shoot-through

region) or 1.25-2.8 keV/mm (spread-out Bragg peak region), while

electron beams consistently showed lower LET ranges of 0.2-0.3

keV/mm. Similar conclusion was also made in studies of circulating

immune cells, for which the sparing effect presented in eFLASH
Frontiers in Oncology 06
(59) and vanished in pFLASH (60). Subsequent mechanistic studies

revealed that although both pFLASH and eFLASH showed a

reduced reactive oxygen species (ROS) generation after FLASH-

RT, eFLASH exhibited more distinctive advantages in other aspects.

In terms of hydrogen peroxide (H2O2) production, pFLASH only

leaded a reduction of 5%, whereas eFLASH resulted in a 69%

reduction. For oxygen consumption, the change between the

UHDR/CDR ratio was 22% for pFLASH and 43% for eFLASH,

indicating a larger decrease in oxygen consumption of UHDR

electronsirradiation (61). The greater reduction in H2O2

production by eFLASH was also demonstrated in the study of

Houda et al. (62).

May attributed to the technical challenges in achieving UHDR

high-energy X-rays, current research has only reported consistent

FLASH effects with X-ray irradiation (23, 32, 63), while comparing

between X-ray FLASH and eFLASH/pFLASH remains limited.

Similar to X-ray FLASH, currently there are still no comparative

studies evaluating the relative efficacy between heavy-ion FLASH

and eFLASH/pFLASH modalities. However, although the studies of

osteosarcoma mouse model have confirmed the existence of

protective effects in carbon-ion FLASH-RT (24, 64), experiment

on human cell yielded negative results, showing no FLASH effect

was observed after 96–195 Gy/s carbon-ion irradiation (65).The

emergence of negative results suggests the possibly less effective of

heavy-ion radiation in inducing the FLASH effect. Meanwhile, since

the positive results are limited to osteosarcoma models presently,

their reproducibility and generalizability remain to be further

validated. Compared to the eFLASH and pFLASH, research on

heavy-ion FLASH remains significantly limited, and more

experimental evidence is urgently needed to validate the

capability of heavy-ion radiation to trigger the FLASH effect.

In future investigations, it is essential to obtain more

comparative data among UHDR X-rays, heavy ion, electron and

proton of the difference in FLASH effect inducing. These data will

provide critical guidance for subsequent FLASH experimental

design and radiation modality selection in applications of

FLASH-RT.

In addition to the influence of radiation’s physical characteristics

on inducing the FLASH effect, the radiobiological properties also

significantly affect FLASH-RT’s clinical application. For example,

electron beams provide cost-effective options but are limited to

superficial tumors. By contrast, proton beams and heavy ions

deliver superior depth-dose distribution (Bragg peak) yet require

substantially greater infrastructure investment (66). Achieving

UHDR with high-energy photons-based radiotherapy remains

technically challenging despite its potential for balanced cost and

penetration depth (23). These radiation-specific characteristic provide

essential guidance for radiation modality selection of FLASH-RT

implementation across various tumor types and anatomical sites.

Beyond all that factors mentioned above, there are still many

uncharacterized determinants are modulating the FLASH effect,

requiring systematic investigation. Further investigations into these

factors will establish a solid foundation for mechanistic and

translational research, which is of great clinical implications.
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TABLE 3 Evidence of physical factors influencing the FLASH effect.

Dose rate (Gy/s)
n source Endpoint

Electron
FLASH effect enhances with dose-rate, reduces with irradiation

time.

tron Higher irradiation dose enhances FLASH effect.

tron
Increase of FLASH effect saturated in 50 Gy.

ton

tron FLASH effect peaks at 30~50 Gy, vanishes below 2 Gy.

tron
30 Gy FLASH achieves normal Long-term potentiation like

controls

tron 2 Gy fractions elicit FLASH effect.

ton Dose fractionation weakens FLASH effect.

tron Pulse number and interval time increase, sparing effect reduce.

ton
Dose per pulse increase, pulse width shrinks, FLASH effect

enhance.

tron FLASH effect increases when irradiation field shrink.

tron eFLASH have better sparing effect of normal tissue.

tron eFLASH better restricts H2O2 production and O2 consumption
than pFLASH.ton

ton Protection of circulating immune cell vanished in pFLASH.

tron pFLASH showed lower restriction of H2O2 generation than
eFLASH.ton

ray X-ray FLASH-RT protect the irradiated intestinal crypts.

ray X-ray FLASH-RT reduced mortality in irradiated mice.

on-ion FLASH-RT reduced the structural changes in muscle.

on-ion FLASH-RT irradiation reduces collagen deposition in muscle.

on-ion No FLASH effect was observed in human lung fibroblasts.

LASH irradiation.
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Influencing factor Year Author Dose (Gy) Radiatio
CONV-RT FLASH-RT

Dose Rate 2022 Leonhard K (50) 30~33 0.12 177.2~2.5×10^5 Proton

Dose

2022 Till T B (51) 11~14 0.3 1440 Ele

2024 Felix H (52)
15~50 0.1 0.9×10^5 Ele

20–95 0.33 240 Pr

2020 Jian-Yue J (59) 2~50 0.0017~0.083 40 Ele

2023 Charles L L (53) 10×3 0.09 1.6×10^6 Ele

2023 Yuling D (54) 10×2 0.03 200 Ele

2024 Brita S S (55) 39.3 0.7 80 Pr

Pulse Structure

2021 Jia-Ling (34) 7.5~12.5 0.25 106 Ele

2024 Kevin L (56) 12~14 0.2, 0.3 150, 230 Pr

Irradiation Area 2022 Carla R B (57) 31 0.1~0.15 1500 Ele

Radiation
Type

Electron Beam

2024 Kevin L (58) 10×3 0.09 1.6×10^6 Ele

2023 William T (61)
8~30 0.1 115~660 Ele

15~30 10 80 Pr

Proton Beam

2022 Lorea I (60) 25 4 257 Pr

2022 Houda K (62) 15~95
0.1 0.9×10^5 Ele

0.33, 0.5 240, 600 Pr

X-ray
2022 Xiaolin S (63) 13 0.03 110~120 X

2019 Feng G (23) 15~30 0.1 1200 X

Heavy Ion

2022 Walter T (64) 18 0.3 100 Carb

2024 Walter T (24) 20 0.33 >100 Carb

2022 Mutsumi T (65) 1~3 8~13 96~195 Carb

CONV-RT, conventional radiotherapy (40< Gy/s); FLASH-RT, ultra-high dose rate radiotherapy (≥40 Gy/s); eFLASH, electron FLASH irradiation; pFLASH, proton F
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3 Mechanism of FLASH effect

3.1 Transient oxygen depletion hypothesis

The oxygen depletion mechanism is one of the most widely

accepted mechanistic explanations (67). As early as 1980, the

radioprotective effect of low oxygen concentration had already

been established, and the Bohlen differential cell mortality

between normoxic and hypoxic conditions was termed oxygen

enhancement ratio (OER) (68). Therefore, once the FLASH effect

was proposed, the radiation-induced transient hypoxia was

immediately identified as one of the most possible underlying

mechanisms (9).

According to this hypothesis, large dose of radiation delivered

within a short period can reacts violently with water, producing a

large amount of reducing radicals within a second. The burst of

reducing radicals immediately trapped all the intratissue oxygen,

forming a transient hypoxia environment, and therefore protecting

the irradiated tissue. This protection usually manifested as reduced

ROS generation and decreased peroxide yield (45). In contrast,

CONV-RT, due to its prolonged delivery time and lower dose-rate

efficiency, often fails to counteract tissue reoxygenation during

treatment, preventing the establishment of a hypoxic environment

(69). Consequently, the slowly generated high flux of reducing

radicals continuously reacts with available oxygen, producing

substantial amounts of ROS, causing great damage to both tumor

and normal tissue (70). Since the oxygen level of normal tissues

usually much higher than that of tumor tissues, the oxygen depletion

and protective effects in normal tissues are more pronounced, while

the one in tumor tissues nearly invisible (Figure 1).

Supporting research revealed that the sparing effect of FLASH-RT

is abolished under anoxic conditions, demonstrating the essential role

of oxygen depletion inmediating the FLASH effect (71). Further studies

demonstrated that FLASH-RT can also reduce the oxygen

consumption in vitro condition, explaining the discovered FLASH

effect under normoxic conditions (41). However, the weak correlation

between the heavy ion FLASH effect and oxygen concentration

suggests that in addition to oxygen depletion theory, there are still

more complex mechanisms contribute to this phenomenon (72).
3.2 Free radical hypothesis

To fill the gap in oxygen depletion theory, Labarbe et al. first

proposed the free radical reaction hypothesis in 2020 (73), which

was later completed by Hu et al. in 2023 (74).

Beyond oxygen, free radicals can also react with iron-containing

proteins and other biomolecules, generating unstable active iron

species and organic peroxyl radicals, causing great damage on

irradiated cellsa (75, 76). Under FLASH-RT conditions, the

spatial clustering of radicals offered another way to mitigate these

damages. Due to the high concentration, free radicals meet each

other easily and start self-recombination reaction, leaving fewer

radicals to cause damage (73, 77, 78). However, since tumor tissues

have accumulated more antioxidants in cells, most free radicals are
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combining with the antioxidants, making the protective effect of

FLASH-RT less distinctive (74) (Figure 1).

Current evidences confirm the reduced free radical output after

FLASH-RT (79) and the decreased lipid peroxidation levels (80, 81),

supporting the free radical mechanism. Nevertheless, further

studies are still needed to validate this hypothesis with additional

experimental evidence.

Similar to FLASH-induced transient hypoxia, the mechanism of

the free radical alteration is also triggered by the characteristic ultra-

high dose delivery within an extremely brief timeframe in FLASH-

RT. That means FLASH-RT generates an ultra-high concentration

of reducing radicals within a second, creating a distinct temporal

distribution pattern of radicals compared to CONV-RT, which

produces lower radical concentrations slowly over an extended

duration. The oxygen depletion theory is invoked when the high

concentration of radicals generated by FLASH reacts with oxygen,

rapidly inducing oxygen exhaustion. Conversely, the radical

recombination hypothesis applies when these concentrated

radicals collide and undergo self-recombination reactions.
3.3 Mitochondrial hypothesis

As one of the key organelles, mitochondria play an important role

in cell apoptosis after radiation. The mitochondrial hypothesis is

fundamentally interconnected with FLASH-induced oxygen

depletion. The large amount of reductive free radicals produced by

FLASH-RT react with almost all the oxygen in the tissue and generated

a large amount of ROS. This leads to a sharp increase in the

permeability of the mitochondrial membrane (82), with a large

amount of reactive oxygen species appearing inside the mitochondria,

making the release of cytochrome and the activation of the apoptotic

pathway possible (63). In fact, the mitochondrial response can be

regarded as a unique consequence of the rapid oxygen depletion of

FLASH-RT.

In 2021, Han et al. first discovered the link between mitochondrial

activity and the emergence of the FLASH effect (83). Subsequently,

further research by Guo et al. verified the protective effect of FLASH-

RT on the morphology and structure of mitochondrial in normal

tissues, and proposed the mitochondrial hypothesis (84).This

hypothesis was later revised and refined by Jianfeng L et al (85).

According to the mitochondrial hypothesis, mitochondria produce

excessive ROS after FLASH-RT, which destroys the electron transport

chain (ETC) and induces the cytochrome c detachment (85). The

detached cytochrome c enters the cytoplasm and triggering an

apoptotic response while inhibiting the inflammatory responses,

thereby protecting normal tissues from radiation damage (63).

However, due to the abnormal of electron transport chains in tumor

tissue, cytochrome c in tumor cells is unable to detach normally after

FLASH-RT. Consequently, FLASH-RT fails to suppress the

inflammatory responses and results in no sparing effect (85). In that

case, apoptosis occurs inmost of the normal cells while necrosis is more

common among tumor cells (84) (Figure 1).

Although a relatively complete theory has been proposed,

experimental evidences of this hypothesis is still insufficient. In
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the future, more experiments are needed to refine and validate the

mitochondrial hypothesis. Furthermore, recent studies have

revealed that FLASH-RT can activate mitochondrial-associated

glycolytic pathways while suppressing oxidative phosphorylation,

thereby enhancing tumor radiosensitivity under hypoxic conditions

(86). However, the implications of FLASH-induced mitochondrial

metabolic reprogramming for normal tissue protection remain

unclear and urgently require further experimental investigation.
3.4 DNA integrity hypothesis

After FLASH-RT occurs, DNA will simultaneously suffer direct

damage caused by direct impact from high-energy particles and

indirect damage mediated by free radical attacks. Due to the high
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dose rate characteristic of FLASH-RT, the spatiotemporal

distribution of high-energy particles and free radicals generated

during radiotherapy has changed, showing a concentrated

appearance within a short period of time. Just as the oxygen

depletion theory and the free radical reaction hypothesis suggest,

the highly concentrated appearance of free radicals will instead

exhibit fewer destruction.

Multiple studies have shown that FLASH-RT produce fewer

DNA damage compared with CONV-RT. That include reduced

single-strand breaks (SSBs) (87), gathered double-strand breaks

(DSBs), less dicentric chromosomes (88) and micronuclei (67). It is

worth noting that the study of Daisuke et al. suggest although the

number of SSBs under FLASH-RT decreased, the quantity of DSBs

never changed (88), only appeared more concentrated (67)

(Figure 1). However, Alan et al. indicating that the number of
FIGURE 1

Summary of the biological mechanism of FLASH effect.
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DSBs after FLASH indeed decreased (89). Despite the different

results, both experiments used proton beams as irradiation ray,

plasmids as experimental subjects, even the irradiation doses and

dose rates were highly similar. Collectively, the difference of these

results may be attributed to the variations in testing time, during

which DNA reparation had already start, thereby affecting the

detection outcomes. In subsequent experiments, more precise

control of sampling time and electrophoresis separation should be

utilized to ensure the detection of all DSBs. Anyhow, both the

reduced quantity and the concentrated presence of DSBs is

conducive to the DNA repairment (90), which helps to the

radioprotective effect and lead to a less pronounced G2/M-

accumulation (91).

After DNA damage induction, irradiated cells will rapidly

activate the non-homologous end joining (NHEJ) pathway to

ligate broken DNA ends at DSBs, while SSBs will be repaired by

poly-ADP-ribose polymerase pathway. Under physiological

conditions, most of DSB repairs are mediated by NHEJ, although

this pathway is more error-prone (92). When entering the G2/M

phase, irradiated cells will assemble the repair-associated complexes

to DSB foci and execute end reception, then activate the

homologous recombination repair (HDR) (93). The shorter G2/M

arrest following FLASH-RT implies that more concentrated DSB

clusters reduce the time required for repair complex recruitment to

DSB foci, thereby enhancing repair efficiency (93). Currently, the

choice between the HDR and NHEJ pathways in cells mainly

depends on whether end resection occurs and whether sister

chromatids exist (94). However, the enhancement of HDR

efficiency by clustered DSBs may enable more DSBs to undergo

high-fidelity repair, thereby reducing radiation-induced damage.

While in tumor tissues, metabolic dysregulation compromises the

HDR pathway (95), making the highly concentrated DSB cannot

leverage HDR-mediated precision repair to mitigate the

misincorporation risks, rendering this protective mechanism

ineffective in malignancies.

However, the above conjectures still require further

experimental validation. Given that current research on FLASH-

induced DNA damage primarily focuses on quantification of DNA

damage foci, more comprehensive studies addressing DNA repair

pathways and repair therapeutics are urgently needed.
3.5 Other hypothesis

In addition to the above four theories, there are more hypotheses

that are not yet perfect, but are still of equally importance.

Accumulating experimental evidence demonstrates that

FLASH-RT not only attenuates inflammatory response in normal

tissues (44, 47), but also activates the immune cells in tumor tissues

(96, 97). As predicted by the mitochondrial hypothesis, the

suppressed inflammatory response in normal tissues may result

from the higher rate of apoptosis mediated by cytochrome c leakage

(63) (Figure 1). In tumor tissues, the enhanced inflammatory

response appears to be mediated through CD8+ T lymphocytes

recruitment and TGF-b secretion upregulation, although the
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underlying mechanisms remain unclear. In addition, the

radioprotection and stimulation of immune system is also an

important reason for the enhanced tumor killing of FLASH-RT

(98, 100). Multiple experiments have confirmed improved survival

of both tissue-resident (99) and circulating immune cells following

FLASH-RT (59, 100). When combining tissue-sparing effects with

enhanced tumor immunogenicity, FLASH-RT is likely to have a

promising future when combining with immunotherapy (100). By

combining ICI-mediated blockade of immune checkpoints (e.g.,

PD-1) with FLASH-enhanced immune cell infiltration in tumor

tissues, the immune system’s ability to eliminate tumor cells is

further potentiated. Meanwhile, the mitigated normal tissue

inflammation after FLASH-RT also reduces the risk of off-target

toxicity associated with immune checkpoints inhibition. However,

further experiments are still required to better confirm the

feasibility and security of this combination (101).

In addition to immune cells, FLASH-RT also preserves the

surrounding vascular and mucosal structures, thereby maintaining

the tissue architecture and nutrient supply in irradiated organs (9).

And that many contribute to the post-radiation repairment. Studies

demonstrate that FLASH-RT can significantly minimizes the stem

cell damage (26) and attenuates radiation-induced cellular

senescence (26), thereby reducing the late toxicity leaded by stem

cell depletion. Moreover, FLASH-RT-mediated activation of

microstructural components including myosin light chains

contributes significantly to tumor microenvironment modulation

and DNA damage mitigation (42). Beyond the conventional

mitochondrial hypothesis, emerging research have also pointed

out that the specific protection of FLASH on the structure and

function of mitochondria in normal tissues is likely to be another

key mechanism for reducing the toxicity of normal tissues in

FLASH-RT (102). However, the rigorousness and systematicity of

these hypotheses remain insufficient, requiring more experiments

for further validation.

Elucidating the mechanisms underlying the FLASH effect serves

not only to clarify the complex interrelationships among

influencing factors, but also to establish the theoretical foundation

for FLASH-RT’s clinical applicability. Among current hypotheses,

only the oxygen depletion, free radicals, DNA integrity, and

mitochondrial hypotheses provide relatively comprehensive

molecular-level explanations of the FLASH effect. The remaining

hypotheses are mostly confined to the cellular level, offering

supplementary evidence rather than fundamental mechanistic

insights. In subsequent studies, further research is needed to

investigate these cellular-level hypotheses and delve into their

molecular mechanisms.
4 Conclusions and prospects

As an innovative radiotherapy modality, FLASH-RT shows

distinct advantages including normal tissue sparing, treatment

time reduction and OER reduction in tumor microenvironment.

To facilitate research progress and clinical translation of FLASH-

RT, it is essential to systematically investigate both the influencing
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factors and the underlying mechanisms of the FLASH effect. These

studies will help to clarify the optimal dose rates and treatment

parameters of FLASH-RT, which are crucial for future clinical

adoption and implementation.

Recent studies have identified multiple factors influencing the

FLASH effect, but inconsistent experimental results suggest

numerous potential determinants remain to be discovered. A

variety of mechanistic hypotheses have been proposed, such as

oxygen depletion, free radical reaction, DNA integrity and

mitochondrial hypothesis. However, none of these mechanisms

can comprehensively explain all FLASH-related phenomena,

indicating that these mechanisms are still uncompleted and

requiring further validation and refinement. With further

exploration of the influencing factors and underlying mechanisms

of FLASH effect, the broad clinical adoption of FLASH-RT is poised

to become an inevitable trend in radiation oncology.
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76. Tudek B, Zdżalik-Bielecka D, Tudek A, Kosicki K, Fabisiewicz A, Speina E. Lipid
peroxidation in face of DNA damage, DNA repair and other cellular processes. Free
Radical Biol Med. (2017) 107:77–89. doi: 10.1016/j.freeradbiomed.2016.11.043

77. Wardman P. Radiotherapy using high-intensity pulsed radiation beams
(FLASH): A radiation-chemical perspective. Radiat Res. (2020) 194:607–17.
doi: 10.1667/RADE-19-00016

78. Derksen L, Flatten V, Engenhart-Cabillic R, Zink K, Baumann KS. A method to
implement inter-track interactions in Monte Carlo simulations with TOPAS-nBio and
their influence on simulated radical yields following water radiolysis. Phys Med Biol.
(2023) 68:13. doi: 10.1088/1361-6560/acdc7d

79. Espinosa-Rodriguez A, Sanchez-Parcerisa D, Ibáñez P, Vera-Sánchez JA, Mazal
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