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Artificial neural network-
augmented dosiomic
integration for predicting
distant recurrence in NSCLC
patients treated with SBRT
Kaushik Halder1,2, Ryan Alden1, Rihan Podder3,
M. Felix Orlando2, Michael D. Mix1, Tithi Biswas3,
Jeffrey B. Bogart1 and Tarun K. Podder1*

1Department of Radiation Oncology, SUNY Upstate Medical University, Syracuse, NY, United States,
2Department of Electrical Engineering, Indian Institute of Technology Roorkee, Roorkee, India,
3Department of Radiation Oncology, University of Florida, Gainesville, FL, United States
Objective: Stereotactic body radiotherapy (SBRT) is a standard curative treatment

for inoperable early-stage non-small cell lung cancer (NSCLC) patients.

However, the high rate of distant recurrence following radiotherapy remains a

significant clinical challenge. This study focuses on developing a machine

learning model for distant recurrence prediction using diverse dosiomic and

patient-specific clinical features. The proposed model aims to assist clinicians in

informed decision-making, individualized treatment decisions to improve post-

SBRT outcomes.

Method: This study utilized a multi-institutional dataset comprising 575 NSCLC

patients who underwent SBRT. A total of 21 features, comprising 14 dosimetric and

7 clinical variables, were incorporated for developing the predictive framework. The

predictive model was developed based on an artificial neural network (ANN)

architecture with several dense layers. Model training and internal validation were

conducted using data obtained from one institution, while external validation was

performed utilizing data from an independent institution. To enhance clinical

interpretability, SHAP analysis was employed to evaluate the relative importance

of each feature contributing to the model’s output.

Results: The initial predictive model, developed using individual clinical and

dosimetric features, achieved area under the receiver operating characteristic

curve (ROC-AUC) in the range of 0.64 to 0.65 while validated with an external

dataset, respectively. To enhance predictive performance, dosimetric features

were integrated with clinical variables, resulting in improved ROC-AUC values of

0.75 for internal validation with 10-fold cross validation technique and 0.71 for

external validation with 1000 bootstrap iterations. Dosiomic features enhanced

performance by 9-11%, highlighting their importance in distant recurrence

prediction. Additionally, to enhance the interpretability of the model’s

predictions, SHAP-based analysis was conducted, revealing that the number of
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treatment fractions, dose per fraction, and minimum dose to GTV were among

the five most influential dosiomic features.

Conclusion: This study introduces an ANN-based model for predicting distant

recurrence in NSCLC patients followed by SBRT. This study also demonstrates

the impactful dosimetric and clinical features for the designed predictive model,

highlighting its potential as an assistive tool for informed and individualized

treatment planning in clinical practice.
KEYWORDS

artificial neural network, machine learning, treatment response modeling, SBRT,
NSCLC, distant recurrence
1 Introduction

Lung cancer remains the foremost cause of cancer-relatedmortality,

with projections indicating that over 227,000 individuals will be

diagnosed with the disease by 2025 (1). Among these cases,

approximately 80%-85% are expected to be classified as non-small cell

lung cancer (NSCLC) (2–5). Stereotactic body radiotherapy (SBRT) is

recognized as one of the standard curative treatment modalities for

patients with early-stage NSCLC. A primary advantage of SBRT lies in

its ability to deliver high-dose radiation precisely to the tumor site over a

limited number of treatment fractions, thereby achieving a substantial

biologically effective dose. Clinical guidelines recommend the use of

SBRT primarily for patients who are medically unsuitable for surgical

intervention due to advanced age, compromised health status, or an

inability to accept the potential risks associated with conventional

surgery (6). Although dose-escalation studies in SBRT have

demonstrated enhanced patient outcomes, with improved local

recurrence control and overall survival rates, a significant proportion

of patients continue to develop distant recurrence, contributing to

elevated mortality risks (7–9). Therefore, there is a critical need for

accurate and noninvasive prediction of distant recurrence prior to

SBRT, assisting clinicians to tailor treatment strategies based on

individual patient risk profiles and optimize therapeutic

decision-making.

Treatment response predictive modeling is a crucial objective in

radiation therapy, enabling the correlation between treatment data

and clinical outcomes (10–15). Radiomics and imaging feature-

based machine learning models have recently advanced in

predicting post-treatment recurrence across various therapeutic

modalities (16–23). Nemoto et al. (21) demonstrated the efficacy

of machine learning-based recurrence (local, regional, and distant

recurrences) prediction models using Positron Emission

Tomography (PET) and Computed Tomography (CT) -based

radiomics features extracted from the 82 NSCLC patients treated

with SBRT. Furthermore, Kakino et al. (22) enhanced the model’s

performance to predict local and distant recurrences while

integrating clinical data and breath-hold CT-based clinical

features collected from a multi-institute SBRT cohort. However,
02
the performance of radiomics-based models is highly influenced by

the quality of the imaging data; suboptimal image quality can result

in erroneous feature extraction, ultimately impairing the accuracy

of treatment response predictions.

Moreover, in the existing literature, only a limited number of

studies (24, 25) have developed recurrence prediction models using

a small set of dosiomic features along with patient characteristics

and clinical data. Mohamed et al. (24) developed a recurrence

prediction model while incorporating a comprehensive set of

features, including diagnostic parameters (tumor classification

and histology), patient demographics, comorbidities, and detailed

treatment (chemotherapy, radiotherapy, and surgery) records.

Similarly, Hindocha et al. (25) incorporated a wide range of

patient-specific clinical variables along with radiation dose,

number of fractions, and planning target volume as well as types

of treatment modalities, to model recurrence and recurrence-free

survival. However, these studies (24, 25) lack specification of

predicted recurrence subtype and encompass heterogeneous

treatment modalities.

Therefore, the development of distant recurrence prediction

models for early-stage NSCLC patients treated with exclusively

SBRT remains limited. To address this research gap, this study

especially focuses on the development and validation of an Artificial

Neural Network (ANN)-based distant recurrence prediction model

for early-stage NSCLC patients treated with SBRT. A key

innovation of this work lies in the integration of diverse

dosimetric parameters from radiotherapy planning alongside

routinely available patient-specific clinical features. Dosimetric

features offer significant advantages by being directly associated

with treatment planning parameters and exhibiting reduced

dependence on imaging quality. This direct linkage enables

dosiomic models to effectively capture the influence of dose

heterogeneity on therapeutic outcomes. Additionally, as dosiomic

features are extracted from radiation treatment plans, they

inherently benefit from higher levels of standardization and

reproducibility, minimizing the variability often introduced by

differences in imaging protocols and acquisition systems. By

representing the actual therapeutic intervention rather than
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anatomical characteristics alone, dosiomic-based models can

enhance the precision and reliability of outcome prediction. This

approach provides deeper insights into individual patient responses

and potential treatment-related toxicities, ultimately supporting

more personalized and effective radiation therapy strategies.

Another important aspect of this study is the emphasis on

enhancing model’s interpretability by evaluating the impact of

each predictive feature, thereby facilitating easier understanding

and integrating the model’s insights into clinical decision-making

processes. The major contributions of this work are outlined below:
Fron
1. Design and development of an ANN-based distant

recurrence prediction model for early-stage NSCLC

patients treated with SBRT.

2. This study incorporates two institutes’ data (Dataset-A:

n=370; Dataset-B: n=205) for training and testing of our

designed model. A key strength of the methodology lies in

the use of Dataset-A for internal training and validation

through a 10-fold cross validation strategy. In parallel,

Dataset-B serves as an independent cohort for external

validation, implemented using 1000 bootstrap iterations.

3. In the field of machine learning-based treatment response

prediction models, limited information is often available

regarding the extent to which features contribute to model

prediction. To address this limitation, this study presents a

SHapley Additive exPlanations (SHAP)-based feature

importance analysis while providing enhanced interpretability

of the designed distant recurrence prediction model.
2 Methods and materials

2.1 Patient’s demographic and treatment
characteristics

Data were collected from 575 patients diagnosed with early-

stage NSCLC who underwent SBRT between 2013 and 2022 at two

distinct healthcare institutions. The distribution of disease stages at

the time of treatment revealed that the majority (85.4%) of patients

presented with stage I lung cancer, while 14.6% were classified as

stage II, whereas this study excluded advanced-stage disease (stage

III or IV). As per two institute datasets, distant recurrence was

observed in 84 patients within 5 years completing SBRT. This study

cohort consisted of 50.6% male and 49.4% female patients with the

median age of 75 years (range: 42–98 years). Following SBRT,

patients underwent clinical follow-up every three months during

the first two years. Between years three and five post-treatment,

evaluations were conducted at six-month intervals, transitioning to

annual assessments thereafter. SBRT for early-stage NSCLC in this

cohort was administered using various dose-fractionation treatment

parameters: 48 Gy in 3 fractions (n = 1), 48 Gy in 4 fractions (n = 7),

50 Gy in 4 fractions (n = 120), 50 Gy in 5 fractions (n = 244), 54 Gy

in 3 fractions (n = 60), 55 Gy in 5 fractions (n = 18), 57 Gy in 4

fractions (n = 1), 60 Gy in 3 fractions (n = 1), and 60 Gy in 5
tiers in Oncology 03
fractions (n = 123). In the present analysis, the prescribed radiation

doses for each patient yielded a biologically effective dose (BED),

calculated with an a
b   ratio of 10, ranging from 100 Gy to 180 Gy,

with the criterion that at least 95% of the planning target volume

received the prescribed dose. The most frequently utilized

prescription dose was 50 Gy administered over 5 fractions,

corresponding to a BED of 100 Gy.
2.2 Study dataset

In this study, datasets from two independent institutions (IRB

No. xxxx and xxxx) were incorporated to enhance the robustness

and generalizability of the designed prediction framework. The

dataset from the first institute, referred as Dataset-A that comprised

370 early-stage NSCLC patients’ records, which was utilized for the

predictive model’s training and validation. Concurrently, an

independent dataset from the second institute, designated as

Dataset-B that included 205 patients, which was employed for the

model’s external validation purpose to assess the robustness of the

model. A comprehensive overview of the characteristics of both

datasets is presented in Table 1. Each dataset encompassed a total of

twenty-one variables, consisting of 7 patient specific relevant

clinical features and 14 important dosiomic inputs. The 7 clinical

features were Age (years), Tumor lobe, Age adjusted Charlson

comorbidity index (aCCI), PET Max SUV, T-stage, Histology,

and Smoking pack per year. Fourteen dosimetric features were

planning target volume (PTV) (cc), gross tumor volume (GTV)

(cc), Total lung volume (cc), Prescription dose (Gy), Number of

fractions, Dose per fraction (Gy), Minimum dose to PTV (Gy),

Maximum dose to PTV (Gy), Median dose to PTV (Gy), Minimum

dose to GTV (Gy), Maximum dose to GTV (Gy), Mean dose to

GTV (Gy), Mean dose to lung (Gy) (average dose across bilateral

lung contours excluding GTV), and Conformity index. In addition,

Spearman’s rank correlation analysis was conducted using a two-

tailed test with a 95% confidence interval to determine the

significance with the study endpoint, as reflected by the

corresponding p-values (given in Table 1). The details regarding

the dosiomic feature extraction procedure are provided in the

Supplementary File. The distribution of features across the two

datasets was analyzed and is presented in Supplementary Figure S2

(in Supplementary File).
2.3 Development of distant recurrence
prediction model

A major contribution of this study lies in the development of a

distant recurrence prediction model utilizing ANN framework,

while deploying a comprehensive set of twenty-one clinical and

dosimetric features. The constructed feedforward neural network

architecture comprised with several fully connected hidden layers

and the pipeline of the developed model is given in Supplementary

File (Supplementary Figure S1). Each hidden layer employed the

Rectified Linear Unit (ReLU) as an activation function, whereas the
frontiersin.org
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TABLE 1 Data cohort of 575 early-stage NSCLC patients: description of dosimetric and clinical features.

Feature groups Feature variables Data-cohort: A (n=370) median (range)/(%) P-value Data-cohort: B (n=205) median (range)/(%) P-value
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62.
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output layer utilized a sigmoid activation function to facilitate

binary classification. The output layer of the proposed ANN

model was configured to classify early-stage NSCLC patients into

two outcome categories: distant recurrence and non-recurrence. In

this study, a ten-fold stratified cross-validation procedure was

applied to the internal dataset (n = 370). For each fold, 90% of

the data were allocated for model development, while the remaining

10% were reserved as an independent holdout set with a positive

incident rate of 18%. Within the 90% subset, data were further

partitioned into 70% for training and 30% for validation. The

threshold was optimized during this validation phase using the

F1-score as the performance criterion. The F1-score, derived from

the harmonic mean of precision and recall using Precision-Recall

(PR) curve. Once the optimal threshold was obtained, it was fixed

and subsequently employed for evaluation on both the holdout

portion of the internal dataset and an external independent dataset

from a separate institution (as presented in the Supplementary File:

Pseudo code). Overall schematic representation of the model

architecture and the validation workflow is illustrated in Figure 1.

The supervised ANN-based model was trained using the Adaptive

Moment Estimation (Adam) optimizer (26). To mitigate overfitting,

L2 regularization with a penalty coefficient of 0.01 was applied to

the kernel weights of each hidden layer. Furthermore, batch

normalization was incorporated to each hidden layer, thereby

mitigating the challenges associated with vanishing and exploding

gradients. An early stopping criterion was also employed to stop the

training when no further improvement in the model’s performance

on the validation set was observed, thereby avoiding unnecessary

iterations and potential overfitting. The detailed description of the

designed ANN-based prediction model, including pseudo code, is

provided in Supplementary File. In this study, class imbalance is a

significant concern in constructing reliable models for predicting

treatment response. To address this issue, two strategies were

employed: class weighting and focal loss. The class weighting

scheme was introduced to assign higher penalties to

misclassifications of the minority class, thereby improving its

representation during training. In parallel, focal loss was

integrated into the optimization process to diminish the influence

of easily classified majority samples, ensuring that the model

emphasized harder-to-classify minority instances. The combined

application of these methods effectively alleviated the adverse effects

of class imbalance and enhanced predictive performance,

particularly for the minority class.
3 Results

3.1 ANN-based distant recurrence
predictive model’s performance

In this study, two different performance analyses were carried

out to assess the efficacy and robustness of our designed prediction

model. Table 2 summarizes the evaluation results for distant

recurrence prediction on Dataset-A, utilizing 10-fold cross

validation technique. To further validate the generalizability and
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robustness of our designed predictive model, an external validation

was performed using an independent dataset (Dataset-B) using

1000 bootstrap iterations and the corresponding performance

analysis is presented in Table 3. Tables 2 and 3 demonstrate that

the model incorporating only seven clinical features achieved ROC-

AUC of 0.69 and 0.65 for internal and external datasets,

respectively. Evaluation with dosimetric features alone resulted

the mean ROC-AUCs of 0.71 for Dataset-A and 0.64 for Dataset-

B. Furthermore, to provide a more comprehensive assessment of

performance evaluation, additional evaluation metrics were also

considered, including Sensitivity, Specificity, Weighted average F1-

score, Precision-Recall AUC (PR-AUC), Matthews correlation

coefficient (MCC), and Positive predictive value. As established in

prior literatures (27, 28), the assessment of predictive performance

in the context of imbalanced datasets must be interpreted relative to

the class distribution. Specifically, the baseline performance is

determined by the prevalence of the positive (minority) class,

which serves as the expected outcome under random prediction.

Notably, the model developed with clinical and dosiomic

feature individually demonstrated substantial performance based

on positive predictive value, MCC, and PR-AUC metrics. Mostly,

the lower bound of 95% confidence interval (CI) was below the

prevalence level, indicating reduced prediction performance.

However, our designed ANN-based model with the combination

of dosimetric data with clinical features, demonstrated an improved

performance as mean ROC-AUC of 0.75 (0.04) for the Dataset-A in

10-fold cross validation technique, while a comparable ROC-AUC

score as 0.71(95% CI: 0.65-0.82) for external dataset. Tables 2 and 3

present the detailed performance analysis of our designed model,

indicating reliable classification performance across multiple

evaluation metrics. The comprehensive performance analyses also

highlighted that incorporating dosimetric features significantly
Frontiers in Oncology 06
improve the predictive capability of our designed ANN model,

yielding ROC-AUC gains of 5.6-8.7% and 9.2-10.9% in ROC-AUC

metric across the two datasets, respectively. Moreover, the

improvement based on PR-AUC was observed as 15% relative to

dosiomic feature based model and 39.4% relative to clinical feature-

based model for Dataset-A. Specifically, the mean PR-AUC

increased with the lift (performance metric/model’s prevalence)

range of 2.11 to 2.55 from the baseline, indicating a meaningful

improvement in model performance (27). Similarly, the model

yielded the MCC score of 0.48 for Dataset-A and 0.36 for

Dataset-B under the influence of model imbalance. Previous study

(28) has reported that, for datasets with an imbalance rate of

approximately 25%, the baseline MCC is around 0.20. In contrast,

our proposed model exhibited a comparable performance,

achieving the lift of 1.8 to 2.4 over the mentioned baseline. This

improvement indicates a moderate to strong predictive capability in

addressing binary classification tasks under conditions of class

imbalance (17-18%). Meanwhile, the MCC metric’s lift also

evaluated based on our model’s prevalence and it is observed as

approximately 2.1 to 2.7, further supporting its robustness.

Collectively, these findings suggest that the developed model

provides competitive predictive performance in imbalanced

settings, with MCC and PR-AUC values confirming a statistically

meaningful enhancement over the baseline expectations.

Additionally, comprehensive comparative analyses were

conducted to benchmark the proposed model against established

conventional machine learning algorithms. This evaluation was

carried out using the ROC curves as the primary performance

metric along with the PR curves. The results of this comparative

assessment are illustrated in Figure 2 and Supplementary Figure S3,

highlighting the relative effectiveness of each algorithm. In which

the conventional machine learning models (Naive Bayes (NB),
FIGURE 1

Schematic representation of the proposed machine learning-based framework for distant recurrence prediction with model design and validation
workflow.
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Random Forest (RF), Gradient Boosting (GB), Support Vector

Machine (SVM), and K-nearest Neighbor (KNN)) achieved the

ROC-AUC in the range of 0.59 to 0.65. From the comparative

performance perspective, our designed ANN-based model

demonstrated enhanced predictive capability, showing an

improvement of 15.4% in ROC-AUC relative to traditional

machine learning approaches. Additionally, statistical

comparisons of the ROC-AUC values were conducted using the

DeLong test. The results are summarized in Supplementary File

(Supplementary Table S1), where each comparison pair the

proposed predictive model with one of the existing models,

evaluated against the true class labels. The DeLong test was

implemented through the “MLstatkit” Python package. For each

pairwise comparison, both the z-score and the corresponding

p-value are evaluated. As shown in Supplementary Table S1 (in

Supplementary File), all p-values are observed below the statistical

significance level (0.05), thereby indicating the difference between

the two ROC-AUCs to be statistically significant. Furthermore,

negative z-scores indicate the ROC-AUC of the proposed model is

higher than other models.
3.2 Feature importance study

To enhance clinical interpretability of the developed ANN-

based model for predicting distant recurrence, a SHAP framework

was applied. The associations between treatment response following

SBRT and the feature variables (dosiomic and clinical factors) used

to construct the distant recurrence prediction model were evaluated

using a SHAP-based approach. The SHAP summary (beeswarm)

plot shown in Figure 3A depicts the relative contributions of all 21

features to the prediction of distant recurrence in early-stage

NSCLC patients treated with SBRT. Features with a broader

absolute distribution of SHAP values exert a stronger influence

on the prediction outcome. In this model, Number of fractions,

Dose per fraction, T-stage, Tumor lobe, Minimum dose to GTV,

Conformity index, aCCI, GTV size, Age, and PET Max SUV were

identified as the top ten contributing features, as illustrated in

Figures 3A, B. This study also presents the SHAP force plot, which

enables patient-specific interpretation. Each feature’s contribution

to the prediction is visualized, where positive values increase the

prediction of distant recurrence and negative values reduce it

relative to a baseline. The baseline represents the mean SHAP

value across all features. In Figures 3C, D, the length of each arrow

indicates the strength of the contribution. Red arrows denote

positive effects, while blue arrows represent negative effects. For

Patient 1, the SHAP value exceeded the baseline, indicating a high

likelihood of distant recurrence, with the feature arrows

quantitatively representing their contributions to the prediction,

as shown in Figure 3C. Conversely, Patient 2, who did not

experience recurrence, was also evaluated (Figure 3D); in this

case, the SHAP value was below the baseline, reflecting a lower

likelihood of recurrence. It is to be noted that variables such as Dose

per fraction, T-stage, and dose distribution to the GTV were among

the top ten most influential features identified by our ANN-based
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predictive model, emphasizing their relevance in the context of

distant recurrence prediction. However, the existing study (25)

highlights that features like primary tumor dimension, and age

did not rank within the top ten, suggesting a comparatively lower

influence on the model’s predictive capacity in this specific clinical

context. In contrast, our feature importance analysis identified both

age and primary tumor dimension as belonging to the top ten

contributing features, suggesting a more prominent role in

predictive capacity within our model.

SHAP-based analysis addresses a key limitation of machine

learning-based prediction models by providing the transparency or

quantitative justification for the model’s prediction. In this study,

SHAP-based approach identified the influential features which are

aligns with the clinical knowledge. This transparency may enhance

the clinician confidence in ANN-based prediction model and

facilitate the integration into multidisciplinary decision-making.

This insight could assist clinicians in refining the future treatment

planning strategy while optimizing the dose scheduling. Moreover,

SHAP summary plots identify T-stage as one of the most

contributing features for our designed prediction model. Notably,

higher T-stage, indicating larger or more locally advanced tumors,

was often associated with a high likelihood of distant recurrence in

our study. This may assist the clinicians to plan toward more

intensive treatment approaches, closer monitoring, or the use of

adjuvant therapies. Minimum dose to GTV was also identified as a

key contributing factor. SHAP-based feature importance analysis

indicates that lower minimum dose is associated with an increased

probability of distant recurrence. Therefore, clinicians can use this

insight to identify the underdosed tumor region and optimize the

radiation plans accordingly. Thus, the developed prediction model

while providing insights into key contributing features, may

facilitate the early assessment of distant recurrence in NSCLC

patients and enable the design of individual optimized treatment

strategies for subsequent care followed by the initial course

of therapy.
4 Discussions

In this study, an ANN-based deep learning model was

developed to predict distant recurrence by integrating patient-

specific clinical parameters and SBRT dose distribution

characteristics. The primary aim of this study is to stratify early-

stage NSCLC patients based on their likelihood of experiencing

distant recurrence after SBRT, irrespective of the timing of the

event. This problem is formulated as a binary classification

problem, wherein the model is designed to predict the likelihood

of distant recurrence while ensuring interpretability to facilitate

clinical insight and decision-making. The innovative aspect of this

study lies in the integration of diverse dose distribution

characteristics commonly available clinical variables. Notably, the

distribution of BED values in this study demonstrates a diverse

dosing range compared to that reported in existing studies (21, 22).

While existing literature predominantly focuses on clinical features

in combination with only total prescribed dose and PTV or GTV
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sizes. The proposed model demonstrated superior predictive

performance, reflecting a higher ROC-AUC when utilizing a

comprehensive set of twenty-one input features, in comparison to

traditional machine learning approaches. To ensure the robustness

of the designed model, the predictive performance was also

conducted on an independent dataset from a different institute.

Furthermore, this study identified and highlighted the most

influential features contributing to the ANN model’s predictive

capacity for distant recurrence. Preliminary findings, as illustrated

in Tables 2 and 3, highlight the emerging potential of predictive

modeling to support clinical decision-making in the context of
Frontiers in Oncology 09
treatment planning for distant recurrence. This approach is

especially pertinent to post-treatment outcomes following SBRT,

a modality that is increasingly established as a standard of care for

early-stage NSCLC patients who are unsuitable for surgical

intervention. Moreover, this study employed a comprehensive set

of performance metrics, including ROC-AUC, PR-AUC, sensitivity,

specificity, weighted average F1-score, MCC, and positive predictive

value, to evaluate the proposed model. In contrast, most existing

studies on recurrence prediction have primarily reported ROC-

AUC, with only one study also considering PR-AUC (24). Such

limited evaluation may be insufficient in the context of low
FIGURE 2

Comparative analysis based on ROC curves demonstrating the performance of conventional machine learning algorithms and our designed distant
recurrence prediction framework: (A) Proposed artificial neural network (ANN)-based, (B) Naive bayes (NB)-based, (C) Random forest (RF)-based,
(D) Gradient boost (GB)-based, (E) Support vector machine (SVM)-based, and (F) k-nearest neighbor (KNN)-based, predictive models.
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recurrence rates, where class imbalance poses a significant

challenge. By incorporating a broader range of performance

metrics, our study provides a more thorough assessment of model

performance and strengthens the evidence for its predictive utility.

The key finding of this study is that integrating clinical and

dosimetric features enhanced the predictive model’s performance. As

shown in Table 2, the combined approach yielded a notable

improvement in ROC-AUC, outperforming models that relied solely

on either clinical or dosimetric factors by 6% and 9%, respectively.

Furthermore, the integrated model demonstrated superior performance

across multiple metrics. Specifically, PR-score improved by 39% over

the clinical-only model and 15% over the dosiomic-only model; MCC

increased by 41% and 26%, respectively; and positive predictive value

rose by 42% and 29%, respectively. However, in the context of

predicting distant recurrence among patients with early-stage NSCLC

followed by SBRT, the development of prediction models based on

dosimetric features remains relatively underexplored. Few previous

studies have primarily focused on integrating selected clinical

parameters with a limited set of dosiomic features to develop models

for treatment response prediction (24, 25). For example, Mohamed et al.

(24) utilized only patient-specific clinical features, including

demographic, diagnostic, and biomarker data, to predict early disease

recurrence in NSCLC patients. Their random forest-based model
Frontiers in Oncology 10
achieved an ROC-AUC of 0.68 (0.03) using five-fold cross-validation.

In contrast, our model, which combines both dosimetric and clinical

features, demonstrated improved performance, with ROC-AUC

increases of 10% on the internal dataset and 4% on the external

dataset. Another existing study by Hindocha et al. (25), incorporated

additional treatment-related parameters, including total radiation dose,

PTV size, number of fractions, and treatment modality along with

demographic and clinical factors, in developing predictive models for

recurrence, recurrence-free survival, and overall survival outcomes. In

their study, the highest predictive performance for recurrence was

achieved using KNN and RF models, yielding a ROC-AUC of 0.68

for internal validation and 0.72 for external validation. However, the

analysis did not specify the subtype of recurrence being predicted, and

the study cohort comprised patients treated with various treatment

approaches, including chemoradiotherapy, SBRT, and

conventional radiotherapy.

Several studies also explored the radiomic-based imaging

features to develop the recurrence prediction model (16, 17, 19–

23). Nonetheless, the existing literature reveals limited studies (19–

21) specifically addressing the prediction of distant recurrence

following SBRT in patients with early-stage NSCLC. An existing

study by Coroller et al. (19) reported a C-index of 0.60 for their

developed multivariable Cox-regression model to predict distant
FIGURE 3

SHAP summary visualization, highlighting the contribution of individual dosimetric and clinical features on distant recurrence prediction in NSCLC
patients treated with SBRT: (A) Beeswarm plot illustrating feature contribution to model’s predictive performance, (B) Feature importance ranking
plot using 10-fold cross validation technique, and (C, D) SHAP force plots for two patients (Patient-1: recurrence & Patient-2: non-recurrence).
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recurrence, while integrating clinical variables and planning CT-

image-based radiomic features. This performance is comparatively

lower than that of our model. Furthermore, Lafata et al. (20) also

explored the relationship between radiomic features extracted from

pre-treatment X-ray CT scans and clinical outcomes in NSCLC

patients undergoing SBRT. Utilizing a multivariable logistic

regression framework, they assessed the model’s ability to

distinguish between non-recurrence, local recurrence, and non-

local recurrence, based on 70 NSCLC patients’ data from a single

institution. Notably, their designed model achieved the ROC-AUC

of 0.60 (0.04) for predicting non-local recurrence, encompassing

both regional and distant recurrence Meanwhile, our developed

model achieved superior predictive performance with the

improvements of 25% on Dataset-A and 18% on Dataset-B

compared to the other results (20). Similarly, Nemoto et al. (21)

reported that their SVM model, trained on the ten most important

radiomic features from pre-treatment PET and CT images of 82

NSCLC patients, achieved ROC-AUC values of 0.64 for CT-based

features, and 0.60 for PET-based features in predicting recurrence

after SBRT. In contrast, our designed model based on dosiomic and

clinical features exhibited relative superior performance while

assessing a diverse set of performance metrics, as shown in

Table 2 and 3. Notably, heterogeneity in imaging protocols across

diverse clinical settings poses substantial challenges to the

standardization of radiomics-based predictive models. This

heterogeneity can degrade the reproducibility and comparability

of model outcomes. Furthermore, in busy clinical environments, the

complexity and large number of radiomics features may hinder

interpretability for clinicians, potentially reducing the efficiency and

effectiveness of clinical decision-making.

In contrast to prior studies on distant recurrence prediction

using machine learning models, the strength of our investigation

was conducted using data from two independent institutions and

included a substantially larger cohort of early-stage NSCLC patients

treated with SBRT only. The proposed model based on dosiomic

and clinical features demonstrated superior predictive performance

in comparison to existing studies on predicting distant recurrence

(20, 21, 24, 25). To the best of our knowledge, the existing literature

on distant recurrence prediction in early-stage NSCLC patients

undergoing SBRT has not comprehensively explored the integration

of heterogeneous dose distribution parameters alongside clinically

relevant features in the development of machine learning-based

predictive models. Furthermore, the application of SHAP in this

study facilitated the interpretation of feature contributions, enabling

the identification of the input variables that most significantly

influenced the predictive performance of the designed ANN model.

This study has certain limitations related to treatment

heterogeneity, as the model was specifically developed for patients

with early-stage NSCLC (stage I-II) undergoing SBRT. Obtaining a

sufficiently large dataset from a single institution posed challenges;

therefore, data from two institutions were included in this

retrospective analysis. Nonetheless, to enhance the generalizability
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and robustness of the proposed model, future investigations should

incorporate larger patient cohorts and data from multiple

institutions. Another limitation of this study is the imbalance rate

of distant recurrence events. According to existing literature (29),

the recurrence rate is approximately 30%, and such an imbalance

can substantially influence model performance. To more effectively

demonstrate the utility of the proposed model, additional data from

patients with recurrence are needed to capture broader patterns and

improve predictive accuracy. Despite this limitation, our model,

with an approximately 15% imbalance rate, achieved significantly

enhanced performance by applying class weighting and focal loss;

however, the imbalance still had an impact on PR-AUC and MCC

values. In addition, factors beyond dosimetric and clinical variables,

such as pathological and genomic data, may also contribute to

distant recurrence prediction, but these were not available within

the constraints of our dataset. Future work will therefore focus on

incorporating a broader spectrum of features, including

pathological and genomic information. The promising findings of

this study may serve as a foundation for developing future models

that are more specific for a diverse set of dose data and clinical

factors. Several studies (22, 30–33) have emphasized the prediction

of distant recurrence survival risk. In this context, evaluating

temporal drift and the stability of predictive performance across

different time windows is crucial. This represents an important

avenue for future research, and subsequent studies will aim to

extend our framework to include temporal split sensitivity analyses.

Accordingly, future work will also focus on adapting our model to

survival-based approaches to capture time-dependent risk.
5 Conclusions

This study demonstrates the design and external validation of

an ANN-based distant recurrence prediction model for early-stage

NSCLC patients treated with SBRT. This study also emphasizes the

influence of combination of diverse dosiomic and clinical features

that significantly enhance the model’s predictive performance while

involving a detailed SHAP-based feature importance analysis. These

findings underscore the model ’s enhanced performance,

highlighting its potential as a supportive tool for clinicians in

optimizing personalized and effective radiation therapy strategies.

However, investigation into model’s impact on assisting in clinical

decision-making process will be essential to assess its practicability

in real-world clinical settings.
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