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Objective: Stereotactic body radiotherapy (SBRT) is a standard curative treatment
for inoperable early-stage non-small cell lung cancer (NSCLC) patients.
However, the high rate of distant recurrence following radiotherapy remains a
significant clinical challenge. This study focuses on developing a machine
learning model for distant recurrence prediction using diverse dosiomic and
patient-specific clinical features. The proposed model aims to assist clinicians in
informed decision-making, individualized treatment decisions to improve post-
SBRT outcomes.

Method: This study utilized a multi-institutional dataset comprising 575 NSCLC
patients who underwent SBRT. A total of 21 features, comprising 14 dosimetric and
7 clinical variables, were incorporated for developing the predictive framework. The
predictive model was developed based on an artificial neural network (ANN)
architecture with several dense layers. Model training and internal validation were
conducted using data obtained from one institution, while external validation was
performed utilizing data from an independent institution. To enhance clinical
interpretability, SHAP analysis was employed to evaluate the relative importance
of each feature contributing to the model's output.

Results: The initial predictive model, developed using individual clinical and
dosimetric features, achieved area under the receiver operating characteristic
curve (ROC-AUC) in the range of 0.64 to 0.65 while validated with an external
dataset, respectively. To enhance predictive performance, dosimetric features
were integrated with clinical variables, resulting in improved ROC-AUC values of
0.75 for internal validation with 10-fold cross validation technique and 0.71 for
external validation with 1000 bootstrap iterations. Dosiomic features enhanced
performance by 9-11%, highlighting their importance in distant recurrence
prediction. Additionally, to enhance the interpretability of the model's
predictions, SHAP-based analysis was conducted, revealing that the number of
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treatment fractions, dose per fraction, and minimum dose to GTV were among
the five most influential dosiomic features.

Conclusion: This study introduces an ANN-based model for predicting distant
recurrence in NSCLC patients followed by SBRT. This study also demonstrates
the impactful dosimetric and clinical features for the designed predictive model,
highlighting its potential as an assistive tool for informed and individualized
treatment planning in clinical practice.

artificial neural network, machine learning, treatment response modeling, SBRT,
NSCLC, distant recurrence

1 Introduction

Lung cancer remains the foremost cause of cancer-related mortality,
with projections indicating that over 227,000 individuals will be
diagnosed with the disease by 2025 (1). Among these cases,
approximately 80%-85% are expected to be classified as non-small cell
lung cancer (NSCLC) (2-5). Stereotactic body radiotherapy (SBRT) is
recognized as one of the standard curative treatment modalities for
patients with early-stage NSCLC. A primary advantage of SBRT lies in
its ability to deliver high-dose radiation precisely to the tumor site over a
limited number of treatment fractions, thereby achieving a substantial
biologically effective dose. Clinical guidelines recommend the use of
SBRT primarily for patients who are medically unsuitable for surgical
intervention due to advanced age, compromised health status, or an
inability to accept the potential risks associated with conventional
surgery (6). Although dose-escalation studies in SBRT have
demonstrated enhanced patient outcomes, with improved local
recurrence control and overall survival rates, a significant proportion
of patients continue to develop distant recurrence, contributing to
elevated mortality risks (7-9). Therefore, there is a critical need for
accurate and noninvasive prediction of distant recurrence prior to
SBRT, assisting clinicians to tailor treatment strategies based on
individual patient risk profiles and optimize therapeutic
decision-making.

Treatment response predictive modeling is a crucial objective in
radiation therapy, enabling the correlation between treatment data
and clinical outcomes (10-15). Radiomics and imaging feature-
based machine learning models have recently advanced in
predicting post-treatment recurrence across various therapeutic
modalities (16-23). Nemoto et al. (21) demonstrated the efficacy
of machine learning-based recurrence (local, regional, and distant
recurrences) prediction models using Positron Emission
Tomography (PET) and Computed Tomography (CT) -based
radiomics features extracted from the 82 NSCLC patients treated
with SBRT. Furthermore, Kakino et al. (22) enhanced the model’s
performance to predict local and distant recurrences while
integrating clinical data and breath-hold CT-based clinical
features collected from a multi-institute SBRT cohort. However,
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the performance of radiomics-based models is highly influenced by
the quality of the imaging data; suboptimal image quality can result
in erroneous feature extraction, ultimately impairing the accuracy
of treatment response predictions.

Moreover, in the existing literature, only a limited number of
studies (24, 25) have developed recurrence prediction models using
a small set of dosiomic features along with patient characteristics
and clinical data. Mohamed et al. (24) developed a recurrence
prediction model while incorporating a comprehensive set of
features, including diagnostic parameters (tumor classification
and histology), patient demographics, comorbidities, and detailed
treatment (chemotherapy, radiotherapy, and surgery) records.
Similarly, Hindocha et al. (25) incorporated a wide range of
patient-specific clinical variables along with radiation dose,
number of fractions, and planning target volume as well as types
of treatment modalities, to model recurrence and recurrence-free
survival. However, these studies (24, 25) lack specification of
predicted recurrence subtype and encompass heterogeneous
treatment modalities.

Therefore, the development of distant recurrence prediction
models for early-stage NSCLC patients treated with exclusively
SBRT remains limited. To address this research gap, this study
especially focuses on the development and validation of an Artificial
Neural Network (ANN)-based distant recurrence prediction model
for early-stage NSCLC patients treated with SBRT. A key
innovation of this work lies in the integration of diverse
dosimetric parameters from radiotherapy planning alongside
routinely available patient-specific clinical features. Dosimetric
features offer significant advantages by being directly associated
with treatment planning parameters and exhibiting reduced
dependence on imaging quality. This direct linkage enables
dosiomic models to effectively capture the influence of dose
heterogeneity on therapeutic outcomes. Additionally, as dosiomic
features are extracted from radiation treatment plans, they
inherently benefit from higher levels of standardization and
reproducibility, minimizing the variability often introduced by
differences in imaging protocols and acquisition systems. By
representing the actual therapeutic intervention rather than
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anatomical characteristics alone, dosiomic-based models can
enhance the precision and reliability of outcome prediction. This
approach provides deeper insights into individual patient responses
and potential treatment-related toxicities, ultimately supporting
more personalized and effective radiation therapy strategies.
Another important aspect of this study is the emphasis on
enhancing model’s interpretability by evaluating the impact of
each predictive feature, thereby facilitating easier understanding
and integrating the model’s insights into clinical decision-making
processes. The major contributions of this work are outlined below:

1. Design and development of an ANN-based distant
recurrence prediction model for early-stage NSCLC
patients treated with SBRT.

2. This study incorporates two institutes’ data (Dataset-A:
n=370; Dataset-B: n=205) for training and testing of our
designed model. A key strength of the methodology lies in
the use of Dataset-A for internal training and validation
through a 10-fold cross validation strategy. In parallel,
Dataset-B serves as an independent cohort for external
validation, implemented using 1000 bootstrap iterations.

3. In the field of machine learning-based treatment response
prediction models, limited information is often available
regarding the extent to which features contribute to model
prediction. To address this limitation, this study presents a
SHapley Additive exPlanations (SHAP)-based feature
importance analysis while providing enhanced interpretability
of the designed distant recurrence prediction model.

2 Methods and materials

2.1 Patient’s demographic and treatment
characteristics

Data were collected from 575 patients diagnosed with early-
stage NSCLC who underwent SBRT between 2013 and 2022 at two
distinct healthcare institutions. The distribution of disease stages at
the time of treatment revealed that the majority (85.4%) of patients
presented with stage I lung cancer, while 14.6% were classified as
stage II, whereas this study excluded advanced-stage disease (stage
III or IV). As per two institute datasets, distant recurrence was
observed in 84 patients within 5 years completing SBRT. This study
cohort consisted of 50.6% male and 49.4% female patients with the
median age of 75 years (range: 42-98 years). Following SBRT,
patients underwent clinical follow-up every three months during
the first two years. Between years three and five post-treatment,
evaluations were conducted at six-month intervals, transitioning to
annual assessments thereafter. SBRT for early-stage NSCLC in this
cohort was administered using various dose-fractionation treatment
parameters: 48 Gy in 3 fractions (n = 1), 48 Gy in 4 fractions (n = 7),
50 Gy in 4 fractions (n = 120), 50 Gy in 5 fractions (n = 244), 54 Gy
in 3 fractions (n = 60), 55 Gy in 5 fractions (n = 18), 57 Gy in 4
fractions (n = 1), 60 Gy in 3 fractions (n = 1), and 60 Gy in 5
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fractions (n = 123). In the present analysis, the prescribed radiation
doses for each patient yielded a biologically effective dose (BED),
calculated with an 5 ratio of 10, ranging from 100 Gy to 180 Gy,
with the criterion that at least 95% of the planning target volume
received the prescribed dose. The most frequently utilized
prescription dose was 50 Gy administered over 5 fractions,

corresponding to a BED of 100 Gy.

2.2 Study dataset

In this study, datasets from two independent institutions (IRB
No. xxxx and xxxx) were incorporated to enhance the robustness
and generalizability of the designed prediction framework. The
dataset from the first institute, referred as Dataset-A that comprised
370 early-stage NSCLC patients’ records, which was utilized for the
predictive model’s training and validation. Concurrently, an
independent dataset from the second institute, designated as
Dataset-B that included 205 patients, which was employed for the
model’s external validation purpose to assess the robustness of the
model. A comprehensive overview of the characteristics of both
datasets is presented in Table 1. Each dataset encompassed a total of
twenty-one variables, consisting of 7 patient specific relevant
clinical features and 14 important dosiomic inputs. The 7 clinical
features were Age (years), Tumor lobe, Age adjusted Charlson
comorbidity index (aCCI), PET Max SUV, T-stage, Histology,
and Smoking pack per year. Fourteen dosimetric features were
planning target volume (PTV) (cc), gross tumor volume (GTV)
(cc), Total lung volume (cc), Prescription dose (Gy), Number of
fractions, Dose per fraction (Gy), Minimum dose to PTV (Gy),
Maximum dose to PTV (Gy), Median dose to PTV (Gy), Minimum
dose to GTV (Gy), Maximum dose to GTV (Gy), Mean dose to
GTV (Gy), Mean dose to lung (Gy) (average dose across bilateral
lung contours excluding GTV), and Conformity index. In addition,
Spearman’s rank correlation analysis was conducted using a two-
tailed test with a 95% confidence interval to determine the
significance with the study endpoint, as reflected by the
corresponding p-values (given in Table 1). The details regarding
the dosiomic feature extraction procedure are provided in the
Supplementary File. The distribution of features across the two
datasets was analyzed and is presented in Supplementary Figure S2
(in Supplementary File).

2.3 Development of distant recurrence
prediction model

A major contribution of this study lies in the development of a
distant recurrence prediction model utilizing ANN framework,
while deploying a comprehensive set of twenty-one clinical and
dosimetric features. The constructed feedforward neural network
architecture comprised with several fully connected hidden layers
and the pipeline of the developed model is given in Supplementary
File (Supplementary Figure S1). Each hidden layer employed the
Rectified Linear Unit (ReLU) as an activation function, whereas the
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TABLE 1 Data cohort of 575 early-stage NSCLC patients: description of dosimetric and clinical features.

Feature groups Feature variables Data-cohort: A (n=370) median ( P-value Data-cohort: B (h=205) median (range)/(%)
Age (yr) 75 (49-92) 0.65 74 (42-98) 0.96
Clinical numerical Smoking Pack years 50 (0-150) 0.23 40 (0-145) 0.06
features PET Max SUV 5.5 (0.8-37.4) 0.73 5.97 (0.84-35) 0.39
aCCl 8 (3-14) 0.99 7 (2-13) 0.04
Tumor Upper 65.1% 70.73%
Lobe: PP o R
.84 .
Middle 6.5% 08 14.15% 0-99
Lower 28.4% 15.12%
T-stage: la 11.6% 58.54%
1b 51.1% 26.34%
Clinical categorical 1c 23% 0.55 0% 0.88
features
2a 11.9% 13.17%
2b 2.4% 1.95%
Histology: Squamous cell carcinoma = 42.4% 62.93%
Non-small cell carcinoma = 8.4% 0%
0.94 0.79
Adenocarcinoma ~ 31.1% 26.83%
Others = 18.1% 10.24%
Conformity index 1.12 (0.92-2.86) 0.44 1.04 (0.58-1.7) 0.76
PTV volume (cc) 34.83 (5.5-214.19) 0.74 20.2 (4.2-127.2) 0.47
GTV volume (cc) 10.64 (0.63-126) 0.46 5.1 (0.4-67.3) 0.49
Total lung volume (cc) 3808.75 (1472.48-9509.5) 0.83 3411.3 (1297.8-6875.3) 0.26
Prescription dose (Gy) 50 (48-60) 0.01 60 (48-60) 0.83
Dosimetric parameters
Dose per fraction (Gy) 10 (10-20) 0.007 12 (9-27) 0.42
Number of fractions 5(3-5) 0.002 5(3-5) 0.34
Minimum dose to GTV (Gy) 53.45 (30.58-70.11) 0.04 60.06 (42.61-71.27) 0.67
Maximum dose to GTV (Gy) 65.38 (31.18-82.75) 0.05 66.55 (50.67-84.53) 0.69
Mean dose to GTV (Gy) 60.10 (6.21-72.31) 0.07 63.47 (50.03-77.18) 0.65
(Continued)
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0.70

67.11 (51.21-84.53)

0.50

65.61 (6.47-83.92)

Maximum dose to PTV (Gy)

0.68

61.62 (48.81-72.53)

0.01

56.90 (6.11-67.42)

Mean dose to PTV (Gy)
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output layer utilized a sigmoid activation function to facilitate
binary classification. The output layer of the proposed ANN
model was configured to classify early-stage NSCLC patients into
two outcome categories: distant recurrence and non-recurrence. In
this study, a ten-fold stratified cross-validation procedure was
applied to the internal dataset (n = 370). For each fold, 90% of
the data were allocated for model development, while the remaining
10% were reserved as an independent holdout set with a positive
incident rate of 18%. Within the 90% subset, data were further
partitioned into 70% for training and 30% for validation. The
threshold was optimized during this validation phase using the
Fl-score as the performance criterion. The F1-score, derived from
the harmonic mean of precision and recall using Precision-Recall
(PR) curve. Once the optimal threshold was obtained, it was fixed
and subsequently employed for evaluation on both the holdout
portion of the internal dataset and an external independent dataset
from a separate institution (as presented in the Supplementary File:
Pseudo code). Overall schematic representation of the model
architecture and the validation workflow is illustrated in Figure 1.
The supervised ANN-based model was trained using the Adaptive
Moment Estimation (Adam) optimizer (26). To mitigate overfitting,
L2 regularization with a penalty coefficient of 0.01 was applied to
the kernel weights of each hidden layer. Furthermore, batch
normalization was incorporated to each hidden layer, thereby
mitigating the challenges associated with vanishing and exploding
gradients. An early stopping criterion was also employed to stop the
training when no further improvement in the model’s performance
on the validation set was observed, thereby avoiding unnecessary
iterations and potential overfitting. The detailed description of the
designed ANN-based prediction model, including pseudo code, is
provided in Supplementary File. In this study, class imbalance is a
significant concern in constructing reliable models for predicting
treatment response. To address this issue, two strategies were
employed: class weighting and focal loss. The class weighting
scheme was introduced to assign higher penalties to
misclassifications of the minority class, thereby improving its
representation during training. In parallel, focal loss was
integrated into the optimization process to diminish the influence
of easily classified majority samples, ensuring that the model
emphasized harder-to-classify minority instances. The combined
application of these methods effectively alleviated the adverse effects
of class imbalance and enhanced predictive performance,
particularly for the minority class.

3 Results

3.1 ANN-based distant recurrence
predictive model’s performance

In this study, two different performance analyses were carried
out to assess the efficacy and robustness of our designed prediction
model. Table 2 summarizes the evaluation results for distant
recurrence prediction on Dataset-A, utilizing 10-fold cross
validation technique. To further validate the generalizability and
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FIGURE 1

Schematic representation of the proposed machine learning-based framework for distant recurrence prediction with model design and validation

workflow

robustness of our designed predictive model, an external validation
was performed using an independent dataset (Dataset-B) using
1000 bootstrap iterations and the corresponding performance
analysis is presented in Table 3. Tables 2 and 3 demonstrate that
the model incorporating only seven clinical features achieved ROC-
AUC of 0.69 and 0.65 for internal and external datasets,
respectively. Evaluation with dosimetric features alone resulted
the mean ROC-AUC:s of 0.71 for Dataset-A and 0.64 for Dataset-
B. Furthermore, to provide a more comprehensive assessment of
performance evaluation, additional evaluation metrics were also
considered, including Sensitivity, Specificity, Weighted average F1-
score, Precision-Recall AUC (PR-AUC), Matthews correlation
coefficient (MCC), and Positive predictive value. As established in
prior literatures (27, 28), the assessment of predictive performance
in the context of imbalanced datasets must be interpreted relative to
the class distribution. Specifically, the baseline performance is
determined by the prevalence of the positive (minority) class,
which serves as the expected outcome under random prediction.
Notably, the model developed with clinical and dosiomic
feature individually demonstrated substantial performance based
on positive predictive value, MCC, and PR-AUC metrics. Mostly,
the lower bound of 95% confidence interval (CI) was below the
prevalence level, indicating reduced prediction performance.
However, our designed ANN-based model with the combination
of dosimetric data with clinical features, demonstrated an improved
performance as mean ROC-AUC of 0.75 (0.04) for the Dataset-A in
10-fold cross validation technique, while a comparable ROC-AUC
score as 0.71(95% CI: 0.65-0.82) for external dataset. Tables 2 and 3
present the detailed performance analysis of our designed model,
indicating reliable classification performance across multiple
evaluation metrics. The comprehensive performance analyses also
highlighted that incorporating dosimetric features significantly
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improve the predictive capability of our designed ANN model,
yielding ROC-AUC gains of 5.6-8.7% and 9.2-10.9% in ROC-AUC
metric across the two datasets, respectively. Moreover, the
improvement based on PR-AUC was observed as 15% relative to
dosiomic feature based model and 39.4% relative to clinical feature-
based model for Dataset-A. Specifically, the mean PR-AUC
increased with the lift (performance metric/model’s prevalence)
range of 2.11 to 2.55 from the baseline, indicating a meaningful
improvement in model performance (27). Similarly, the model
yielded the MCC score of 0.48 for Dataset-A and 0.36 for
Dataset-B under the influence of model imbalance. Previous study
(28) has reported that, for datasets with an imbalance rate of
approximately 25%, the baseline MCC is around 0.20. In contrast,
our proposed model exhibited a comparable performance,
achieving the lift of 1.8 to 2.4 over the mentioned baseline. This
improvement indicates a moderate to strong predictive capability in
addressing binary classification tasks under conditions of class
imbalance (17-18%). Meanwhile, the MCC metric’s lift also
evaluated based on our model’s prevalence and it is observed as
approximately 2.1 to 2.7, further supporting its robustness.
Collectively, these findings suggest that the developed model
provides competitive predictive performance in imbalanced
settings, with MCC and PR-AUC values confirming a statistically
meaningful enhancement over the baseline expectations.
Additionally, comprehensive comparative analyses were
conducted to benchmark the proposed model against established
conventional machine learning algorithms. This evaluation was
carried out using the ROC curves as the primary performance
metric along with the PR curves. The results of this comparative
assessment are illustrated in Figure 2 and Supplementary Figure S3,
highlighting the relative effectiveness of each algorithm. In which
the conventional machine learning models (Naive Bayes (NB),
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TABLE 2 Performance evaluation of the proposed distant recurrence-predictor model incorporating clinical and dosimetric features, assessed on Dataset-A using 10-fold cross validation.

Performance metrics

Features

Weighted average fl-score Positive predictive value MCC

Specificity

Sensitivity

8]
2
=5
O
®)
o

0.33 (0.14)

0.34 (0.14)

0.38 (0.17)

0.70 (0.19) 0.67 (0.21) ‘ 0.71 (0.14)

0.69 (0.09)

Clinical Features only

‘ 0.40 (0.13)

0.38 (0.14)

0.42 (0.21)

0.74 (0.18) 0.69 (0.21) ‘ 0.72 (0.13)

0.71 (0.06)

Dosimetric Features only
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0.46 (0.09)

0.48 (0.09)

0.54 (0.20)

0.69 (0.21) 0.81 (0.16) 0.80 (0.08)

0.75 (0.04)

Dosimetric and Clinical

Features

[mean (standard deviation)].
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Random Forest (RF), Gradient Boosting (GB), Support Vector
Machine (SVM), and K-nearest Neighbor (KNN)) achieved the
ROC-AUC in the range of 0.59 to 0.65. From the comparative
performance perspective, our designed ANN-based model
demonstrated enhanced predictive capability, showing an
improvement of 15.4% in ROC-AUC relative to traditional
machine learning approaches. Additionally, statistical
comparisons of the ROC-AUC values were conducted using the
DeLong test. The results are summarized in Supplementary File
(Supplementary Table S1), where each comparison pair the
proposed predictive model with one of the existing models,
evaluated against the true class labels. The DeLong test was
implemented through the “MLstatkit” Python package. For each
pairwise comparison, both the z-score and the corresponding
p-value are evaluated. As shown in Supplementary Table SI (in
Supplementary File), all p-values are observed below the statistical
significance level (0.05), thereby indicating the difterence between
the two ROC-AUCs to be statistically significant. Furthermore,
negative z-scores indicate the ROC-AUC of the proposed model is
higher than other models.

3.2 Feature importance study

To enhance clinical interpretability of the developed ANN-
based model for predicting distant recurrence, a SHAP framework
was applied. The associations between treatment response following
SBRT and the feature variables (dosiomic and clinical factors) used
to construct the distant recurrence prediction model were evaluated
using a SHAP-based approach. The SHAP summary (beeswarm)
plot shown in Figure 3A depicts the relative contributions of all 21
features to the prediction of distant recurrence in early-stage
NSCLC patients treated with SBRT. Features with a broader
absolute distribution of SHAP values exert a stronger influence
on the prediction outcome. In this model, Number of fractions,
Dose per fraction, T-stage, Tumor lobe, Minimum dose to GTV,
Conformity index, aCCI, GTV size, Age, and PET Max SUV were
identified as the top ten contributing features, as illustrated in
Figures 3A, B. This study also presents the SHAP force plot, which
enables patient-specific interpretation. Each feature’s contribution
to the prediction is visualized, where positive values increase the
prediction of distant recurrence and negative values reduce it
relative to a baseline. The baseline represents the mean SHAP
value across all features. In Figures 3C, D, the length of each arrow
indicates the strength of the contribution. Red arrows denote
positive effects, while blue arrows represent negative effects. For
Patient 1, the SHAP value exceeded the baseline, indicating a high
likelihood of distant recurrence, with the feature arrows
quantitatively representing their contributions to the prediction,
as shown in Figure 3C. Conversely, Patient 2, who did not
experience recurrence, was also evaluated (Figure 3D); in this
case, the SHAP value was below the baseline, reflecting a lower
likelihood of recurrence. It is to be noted that variables such as Dose
per fraction, T-stage, and dose distribution to the GTV were among
the top ten most influential features identified by our ANN-based
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predictive model, emphasizing their relevance in the context of
distant recurrence prediction. However, the existing study (25)
highlights that features like primary tumor dimension, and age
did not rank within the top ten, suggesting a comparatively lower
influence on the model’s predictive capacity in this specific clinical

(0.15-0.60)
(0.14-0.39)
(0.20-0.62)

0.32
0.21
0.36

context. In contrast, our feature importance analysis identified both

age and primary tumor dimension as belonging to the top ten
contributing features, suggesting a more prominent role in
predictive capacity within our model.

SHAP-based analysis addresses a key limitation of machine

0.29
(0.08-0.60)
0.23
(0.10-0.46)
0.36
(0.25-0.61)

learning-based prediction models by providing the transparency or
quantitative justification for the model’s prediction. In this study,
SHAP-based approach identified the influential features which are
aligns with the clinical knowledge. This transparency may enhance
the clinician confidence in ANN-based prediction model and
facilitate the integration into multidisciplinary decision-making.
This insight could assist clinicians in refining the future treatment
planning strategy while optimizing the dose scheduling. Moreover,
SHAP summary plots identify T-stage as one of the most

041
(0.18-1)
0.26
(0.19-0.47)
0.36
(0.23-0.86)

contributing features for our designed prediction model. Notably,

higher T-stage, indicating larger or more locally advanced tumors,
was often associated with a high likelihood of distant recurrence in
our study. This may assist the clinicians to plan toward more
intensive treatment approaches, closer monitoring, or the use of
adjuvant therapies. Minimum dose to GTV was also identified as a
key contributing factor. SHAP-based feature importance analysis
indicates that lower minimum dose is associated with an increased

Performance metrics

probability of distant recurrence. Therefore, clinicians can use this
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(0.17-0.88)

(0.26-0.82)
(0.47-0.89)

insight to identify the underdosed tumor region and optimize the

0.69
0.60
0.68

radiation plans accordingly. Thus, the developed prediction model
while providing insights into key contributing features, may
facilitate the early assessment of distant recurrence in NSCLC
patients and enable the design of individual optimized treatment
strategies for subsequent care followed by the initial course
of therapy.

Specificity

0.70
(0.08-1)
0.75
(0.40-1)
0.80
(0.40-1)

4 Discussions

In this study, an ANN-based deep learning model was

Sensitivity
0.59

(0.20-1)

0.53
(0.14-0.88)
0.63
(0.39-0.98)

developed to predict distant recurrence by integrating patient-
specific clinical parameters and SBRT dose distribution
characteristics. The primary aim of this study is to stratify early-
stage NSCLC patients based on their likelihood of experiencing
distant recurrence after SBRT, irrespective of the timing of the
event. This problem is formulated as a binary classification
problem, wherein the model is designed to predict the likelihood

ROC-AUC
0.65
(0.53-0.80)
0.64
(0.56-0.77)
071
(0.65-0.82)

of distant recurrence while ensuring interpretability to facilitate
clinical insight and decision-making. The innovative aspect of this
study lies in the integration of diverse dose distribution
characteristics commonly available clinical variables. Notably, the
distribution of BED values in this study demonstrates a diverse
dosing range compared to that reported in existing studies (21, 22).
While existing literature predominantly focuses on clinical features

Features

Clinical Features only
Dosimetric Features only
Dosimetric and Clinical
Features

in combination with only total prescribed dose and PTV or GTV

TABLE 3 Performance evaluation of the proposed distant recurrence-predictor model incorporating clinical and dosimetric features, assessed on external independent Dataset-B using 1000 bootstrap

iterations.
[mean (95% CI)].
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Comparative analysis based on ROC curves demonstrating the performance of conventional machine learning algorithms and our designed distant
recurrence prediction framework: (A) Proposed artificial neural network (ANN)-based, (B) Naive bayes (NB)-based, (C) Random forest (RF)-based,
(D) Gradient boost (GB)-based, (E) Support vector machine (SVM)-based, and (F) k-nearest neighbor (KNN)-based, predictive models.

sizes. The proposed model demonstrated superior predictive
performance, reflecting a higher ROC-AUC when utilizing a
comprehensive set of twenty-one input features, in comparison to
traditional machine learning approaches. To ensure the robustness
of the designed model, the predictive performance was also
conducted on an independent dataset from a different institute.
Furthermore, this study identified and highlighted the most
influential features contributing to the ANN model’s predictive
capacity for distant recurrence. Preliminary findings, as illustrated
in Tables 2 and 3, highlight the emerging potential of predictive
modeling to support clinical decision-making in the context of

Frontiers in Oncology

treatment planning for distant recurrence. This approach is
especially pertinent to post-treatment outcomes following SBRT,
a modality that is increasingly established as a standard of care for
early-stage NSCLC patients who are unsuitable for surgical
intervention. Moreover, this study employed a comprehensive set
of performance metrics, including ROC-AUC, PR-AUC, sensitivity,
specificity, weighted average F1-score, MCC, and positive predictive
value, to evaluate the proposed model. In contrast, most existing
studies on recurrence prediction have primarily reported ROC-
AUC, with only one study also considering PR-AUC (24). Such
limited evaluation may be insufficient in the context of low
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SHAP summary visualization, highlighting the contribution of individual dosimetric and clinical features on distant recurrence prediction in NSCLC
patients treated with SBRT: (A) Beeswarm plot illustrating feature contribution to model's predictive performance, (B) Feature importance ranking
plot using 10-fold cross validation technique, and (C, D) SHAP force plots for two patients (Patient-1: recurrence & Patient-2: non-recurrence).

recurrence rates, where class imbalance poses a significant
challenge. By incorporating a broader range of performance
metrics, our study provides a more thorough assessment of model
performance and strengthens the evidence for its predictive utility.

The key finding of this study is that integrating clinical and
dosimetric features enhanced the predictive model’s performance. As
shown in Table 2, the combined approach yielded a notable
improvement in ROC-AUC, outperforming models that relied solely
on either clinical or dosimetric factors by 6% and 9%, respectively.
Furthermore, the integrated model demonstrated superior performance
across multiple metrics. Specifically, PR-score improved by 39% over
the clinical-only model and 15% over the dosiomic-only model; MCC
increased by 41% and 26%, respectively; and positive predictive value
rose by 42% and 29%, respectively. However, in the context of
predicting distant recurrence among patients with early-stage NSCLC
followed by SBRT, the development of prediction models based on
dosimetric features remains relatively underexplored. Few previous
studies have primarily focused on integrating selected clinical
parameters with a limited set of dosiomic features to develop models
for treatment response prediction (24, 25). For example, Mohamed et al.
(24) utilized only patient-specific clinical features, including
demographic, diagnostic, and biomarker data, to predict early disease
recurrence in NSCLC patients. Their random forest-based model
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achieved an ROC-AUC of 0.68 (0.03) using five-fold cross-validation.
In contrast, our model, which combines both dosimetric and clinical
features, demonstrated improved performance, with ROC-AUC
increases of 10% on the internal dataset and 4% on the external
dataset. Another existing study by Hindocha et al. (25), incorporated
additional treatment-related parameters, including total radiation dose,
PTV size, number of fractions, and treatment modality along with
demographic and clinical factors, in developing predictive models for
recurrence, recurrence-free survival, and overall survival outcomes. In
their study, the highest predictive performance for recurrence was
achieved using KNN and RF models, yielding a ROC-AUC of 0.68
for internal validation and 0.72 for external validation. However, the
analysis did not specify the subtype of recurrence being predicted, and
the study cohort comprised patients treated with various treatment
approaches, including chemoradiotherapy, SBRT, and
conventional radiotherapy.

Several studies also explored the radiomic-based imaging
features to develop the recurrence prediction model (16, 17, 19-
23). Nonetheless, the existing literature reveals limited studies (19-
21) specifically addressing the prediction of distant recurrence
following SBRT in patients with early-stage NSCLC. An existing
study by Coroller et al. (19) reported a C-index of 0.60 for their
developed multivariable Cox-regression model to predict distant
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recurrence, while integrating clinical variables and planning CT-
image-based radiomic features. This performance is comparatively
lower than that of our model. Furthermore, Lafata et al. (20) also
explored the relationship between radiomic features extracted from
pre-treatment X-ray CT scans and clinical outcomes in NSCLC
patients undergoing SBRT. Utilizing a multivariable logistic
regression framework, they assessed the model’s ability to
distinguish between non-recurrence, local recurrence, and non-
local recurrence, based on 70 NSCLC patients’ data from a single
institution. Notably, their designed model achieved the ROC-AUC
of 0.60 (0.04) for predicting non-local recurrence, encompassing
both regional and distant recurrence Meanwhile, our developed
model achieved superior predictive performance with the
improvements of 25% on Dataset-A and 18% on Dataset-B
compared to the other results (20). Similarly, Nemoto et al. (21)
reported that their SVM model, trained on the ten most important
radiomic features from pre-treatment PET and CT images of 82
NSCLC patients, achieved ROC-AUC values of 0.64 for CT-based
features, and 0.60 for PET-based features in predicting recurrence
after SBRT. In contrast, our designed model based on dosiomic and
clinical features exhibited relative superior performance while
assessing a diverse set of performance metrics, as shown in
Table 2 and 3. Notably, heterogeneity in imaging protocols across
diverse clinical settings poses substantial challenges to the
standardization of radiomics-based predictive models. This
heterogeneity can degrade the reproducibility and comparability
of model outcomes. Furthermore, in busy clinical environments, the
complexity and large number of radiomics features may hinder
interpretability for clinicians, potentially reducing the efficiency and
effectiveness of clinical decision-making.

In contrast to prior studies on distant recurrence prediction
using machine learning models, the strength of our investigation
was conducted using data from two independent institutions and
included a substantially larger cohort of early-stage NSCLC patients
treated with SBRT only. The proposed model based on dosiomic
and clinical features demonstrated superior predictive performance
in comparison to existing studies on predicting distant recurrence
(20, 21, 24, 25). To the best of our knowledge, the existing literature
on distant recurrence prediction in early-stage NSCLC patients
undergoing SBRT has not comprehensively explored the integration
of heterogeneous dose distribution parameters alongside clinically
relevant features in the development of machine learning-based
predictive models. Furthermore, the application of SHAP in this
study facilitated the interpretation of feature contributions, enabling
the identification of the input variables that most significantly
influenced the predictive performance of the designed ANN model.

This study has certain limitations related to treatment
heterogeneity, as the model was specifically developed for patients
with early-stage NSCLC (stage I-IT) undergoing SBRT. Obtaining a
sufficiently large dataset from a single institution posed challenges;
therefore, data from two institutions were included in this
retrospective analysis. Nonetheless, to enhance the generalizability
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and robustness of the proposed model, future investigations should
incorporate larger patient cohorts and data from multiple
institutions. Another limitation of this study is the imbalance rate
of distant recurrence events. According to existing literature (29),
the recurrence rate is approximately 30%, and such an imbalance
can substantially influence model performance. To more effectively
demonstrate the utility of the proposed model, additional data from
patients with recurrence are needed to capture broader patterns and
improve predictive accuracy. Despite this limitation, our model,
with an approximately 15% imbalance rate, achieved significantly
enhanced performance by applying class weighting and focal loss;
however, the imbalance still had an impact on PR-AUC and MCC
values. In addition, factors beyond dosimetric and clinical variables,
such as pathological and genomic data, may also contribute to
distant recurrence prediction, but these were not available within
the constraints of our dataset. Future work will therefore focus on
incorporating a broader spectrum of features, including
pathological and genomic information. The promising findings of
this study may serve as a foundation for developing future models
that are more specific for a diverse set of dose data and clinical
factors. Several studies (22, 30-33) have emphasized the prediction
of distant recurrence survival risk. In this context, evaluating
temporal drift and the stability of predictive performance across
different time windows is crucial. This represents an important
avenue for future research, and subsequent studies will aim to
extend our framework to include temporal split sensitivity analyses.
Accordingly, future work will also focus on adapting our model to
survival-based approaches to capture time-dependent risk.

5 Conclusions

This study demonstrates the design and external validation of
an ANN-based distant recurrence prediction model for early-stage
NSCLC patients treated with SBRT. This study also emphasizes the
influence of combination of diverse dosiomic and clinical features
that significantly enhance the model’s predictive performance while
involving a detailed SHAP-based feature importance analysis. These
findings underscore the model’s enhanced performance,
highlighting its potential as a supportive tool for clinicians in
optimizing personalized and effective radiation therapy strategies.
However, investigation into model’s impact on assisting in clinical
decision-making process will be essential to assess its practicability
in real-world clinical settings.
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