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rearrangement resulting from t
(8;21)(p12;q22) in acute myeloid
leukemia with plasmacytoid
dendritic cell expansion
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In recent years, acute myeloid leukemia with plasmacytoid dendritic cell

expansion (pDC-AML) has been recognized as a rare provisional subtype of

AML, comprising approximately 3–5% of all reported cases and associated with a

poorer clinical outcome compared with non–pDC-AML. Both RUNX1 mutations

and rare rearrangements can lead to either complete loss or dominant-negative

inhibition of RUNX1 function in pDC-AML, which may play a pivotal role in the

aberrant expansion or malignant transformation of plasmacytoid dendritic cells

(pDCs). To date, only two cases of pDC-AML with rare RUNX1 rearrangements

have been reported. Herein, we reported a rare RUNX1 rearrangement resulting

from t(8;21)(p12;q22) in a patient with pDC-AML, leading to the truncated RUNX1

that exhibit structural and functional similarities to RUNX1A and may act as a

dominant-inhibitor of wild-type RUNX1. Given the poor prognosis associated

with this subtype, CD123-targeted therapy, such as tagraxofusp-erzs, alone or in

combination with agents like azacitidine and venetoclax, may represent a rational

therapeutic approach. To our knowledge, this represents the third case report of

RUNX1 rearrangement in pDC-AML and may provide valuable insights for

future research.
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RUNX1 rearrangement, plasmacytoid dendritic cell expansion, RUNX1A, acute myeloid
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Introduction

In recent years, acute myeloid leukemia with plasmacytoid

dendritic cell expansion (pDC-AML) has been recognized as a

rare provisional subtype of AML, comprising approximately 3–5%

of all reported AML cases and associated with poor clinical

outcomes (1, 2). Mutations in the Runt-related transcription

factor 1 (RUNX1) gene are the most frequently observed genetic

alterations in pDC-AML, occurring in approximately 70% of cases,

and are potentially associated with the malignant transcriptional

program of plasmacytoid dendritic cells (pDCs) (1–3). Notably,

RUNX1 rearrangements in pDC-AML are relatively rare, with only

two cases reported to date (1, 4).

RUNX1, also known as AML1, CBFA2, or PEBP2aB, is a key

transcription factor essential for the emergence of definitive

hematopoiesis and the precise regulation of adult hematopoiesis,

whose dysregulation can lead to aberrant hematopoietic function (5).

Due to the involvement of two distinct promoters and alternative

splicing in RUNX1 synthesis, the protein exists in three major

isoforms: RUNX1A, RUNX1B, and RUNX1C. However, the

functional relationships among these isoforms have not been fully

elucidated and remain unknown (6). Recurrent genetic alterations in

RUNX1 gene, primarily including monoallelic rearrangement as well

as monoallelic or biallelic mutations, have been identified in both

hereditary and sporadic hematologic disorders, particularly in AML

or myelodysplastic syndromes (MDS) (5, 7).

RUNX1 rearrangements can give rise to two types of fusion

events: gene-gene fusions, which may be either in-frame or out-of-

frame, and gene-intergenic fusions (8). In-frame fusions typically

generate novel fusion proteins that may act as oncogenic drivers,

whereas out-of-frame and gene-intergenic fusions are more likely to

result in truncated upstream gene products or potential

haploinsufficiency of both genes involved (9, 10).

To date, more than 40 recurrent chromosomal rearrangements

involving RUNX1 gene have been identified in AML/MDS. Among

these, the most frequent partner genes are RUNX1T1 (8q21) and

MECOM (3q26, including MDS1 and EVI1) (6). The RUNX1::

RUNX1T1 fusion is associated with favorable prognosis, whereas

the RUNX1::MECOM fusion and other rare RUNX1 fusion may be

associated with unfavorable prognosis (4). Since the concept of

pDC-AML was proposed around 2018 and was not recorded in the

WHO classification until 2022, earlier reports of RUNX1

rearrangements may have lacked the information regarding pDCs

(1, 11). This retrospective gap likely limits our current

understanding of the association between RUNX1 rearrangements

and pDC-AML.

Herein, we report a rare RUNX1 rearrangement resulting from t

(8;21)(p12;q22) in a patient with pDC-AML, leading to the

truncated RUNX1 that exhibit structural and functional

similarities to RUNX1A. The truncated RUNX1 may act as a

dominant inhibitor of wild-type RUNX1, potentially playing a

pivotal role in the aberrant expansion or malignant

transformation of pDCs. To our knowledge, this represents the

third case report of RUNX1 rearrangement in pDC-AML and may

provide valuable insights for future research.
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Case presentation

A 51-year-old woman presented to the hospital with a six-month

history of weakness and a two-week history of gingival swelling and

pain. Her complete blood count indicated the following: red blood

cell count of 2.96×1012/L, hemoglobin of 96 g/L, white blood cell

count of 10.49×109/L, with 38.3% monocytes and 27.9%

lymphocytes, and platelet count of 181×109/L. Bone marrow (BM)

biopsy revealed marked proliferative activity, with a decreased

proportion of granulocytes and lymphocytes, and a relative increase

in monocytes. Notably, 43% of the monocytes were identified as

promonocytes and immature forms, and Auer rods (red arrow) were

observed in some of these cells (Figure 1A). Physical examination and

computed tomography (CT) scan revealed no cutaneous lesions or

lymphadenopathy, and no hepatosplenomegaly was observed.

Flow cytometry analysis revealed 7.85% of abnormal myeloid

blasts (CD117+, CD34+, CD13+, CD33+, CD123+, HLA-DRdim+

and CD38dim+) and 40.69% of abnormal immature monocytes

(CD33bri+, HLA-DRbri+, CD38+, CD13+, CD123+, CD36+,

partially CD64+, partially CD11b+, partially CD15+, partially

CD14+ and CD4dim+). Additionally, 5.70% of pDCs were detected,

with the following phenotype: CD123bri+, HLA-DRbri+, CD303+,

CD304+, TDT-, CD34-, CD56-, and CD4+. The Wilm tumor gene-1

(WT1) expression was positive, with a quantitative value of 17.82%.

Conventional chromosome analysis revealed an abnormal

karyotype described as 46,XX,t(8;21)(p12;q22)[20] (Figure 1B).

The metaphase fluorescence in situ hybridization (FISH) analysis

utilizing LSI RUNX1/RUNX1T1 Dual Color Dual Fusion Probes

confirmed the presence of RUNX1 rearrangement. Part of the

RUNX1 signal on chromosome 21q22 was translocated to the

derivative chromosome 8. Initially, we proposed that DUSP4 gene

might be the potential partner of RUNX1 gene, and the metaphase

FISH utilizing LSI RUNX1/DUSP4 Dual Color Dual Fusion Probes

showed a 78% positive signal (Figures 1C, D). However, RNA

sequencing (RNA-seq) analysis revealed certain biases, indicating

that DUSP4 was not the partner gene.

RNA-seq analysis identified the RUNX1 rearrangement event

(Figure 1E). Exon 6 (Ex6) of the RUNX1 gene was fused to an

intergenic region on chromosome 8p12, located approximately

5,766 base pairs upstream of the DUSP4 gene. RT−qPCR analysis

and subsequent Sanger sequencing confirm the fusion between

RUNX1 and the intergenic region (Figure 1F), resulting in the

truncated RUNX1 fused with an additional 34 amino acid (aa)

peptide of unknown function (Figure 1G). The reciprocal fusion

transcript was not detected. Quantitative analysis revealed that the

expression level of the fusion transcript was 32.62%.

Unfortunately, the patient was transferred to another hospital

and passed away two months later, limiting the availability of

further treatment information.
Discussion

In the fifth edition of the World Health Organization

classification of hematolymphoid tumors (WHO-HEM5),
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FIGURE 1

Identification of the novel RUNX1 rearrangement. (A) BM biopsy revealed marked proliferation of promonocytes and immature monocytes. (B)
Conventional chromosome analysis demonstrated the t(8;21)(p12;q22) involving the RUNX1 gene. (C) Detection of RUNX1 rearrangement by
metaphase FISH Using LSI RUNX1/DUSP4 Dual Color Dual Fusion Probes. (D) Schematic diagram of LSI RUNX1/DUSP4 Dual Color Dual Fusion
Probes. (E) RNA-seq identified the RUNX1::8p12 fusion. (F) RT−qPCR analysis (Lane 2) and subsequent Sanger sequencing confirmed the
RUNX1::8p12 fusion. (G) Analysis of the mRNA sequence revealed an additional segment (34 aa) in the truncated RUNX1 transcript. (H) Schematic
diagram illustrated the three primary RUNX1 isoforms, and the truncated RUNX1 isoforms identified in this study. Abbreviation: NLS, nuclear
localization signal.
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neoplasms involving pDCs are classified into two entities: blastic

plasmacytoid dendritic cell neoplasm (BPDCN) and mature

plasmacytoid dendritic cell proliferation (MPDCP) associated

with myeloid neoplasms (11). However, given the typical

association of MPDCP with other myeloid neoplasms, the

International Consensus Classification (ICC) has not formally

recognized MPDCP as a distinct myeloid entity (12).

Furthermore, the definition of MPDCP remains ambiguous, and

the use of the term “mature” is considered inappropriate, as

MPDCP cases associated with AML often comprise pDCs at early

to intermediate stages of differentiation (3). The introduction of the

term pDC-AML aimed to distinguish cases of MPDCP associated

with AML from those involving chronic myelomonocytic leukemia

(CMML) or MDS.

pDC-AML is typically characterized by cross-lineage antigen

expression, adverse risk stratification, and poor outcomes, with a

high frequency of RUNX1 mutations and upregulation of pDC

transcriptional programs expression (1, 13). The pDCs display a

spectrum of maturation from early pDCs to fully mature pDCs and

are thought to originate from early pDC progenitors (14). Notably,

the pDCs are predominantly at an early maturation stage. In two

related studies, the expression of CD34 in pDCs from patients with

pDC-AML was reported at 61% (25/41) and 98% (52/53),

respectively (1, 2). In our case, pDCs were negative for CD34,

suggesting that they may represent intermediate to late stages of

maturation. At present, it remains unclear whether pDCs at

different maturation stages have differential effects in pDC-AML.

In the study by Wenbin Xiao et al. (1), 78% (32/41) of the pDC-

AML cases exhibited alterations in the RUNX1 gene, including 29

patients with RUNX1 mutations, 2 with atypical RUNX1

rearrangements, and 1 with a deletion in the region including

RUNX1. Combined with data from two additional studies, the

frequency of RUNX1 mutations in pDC-AML is approximately

70%, markedly higher than the 6~15% reported in overall AML (2,

3, 15) Based on the available data, the frequency of rare RUNX1

rearrangements in pDC-AML is approximately 5%, compared to

less than 1% in overall AML, showing a significant increase

comparable to that of RUNX1 mutations (1, 4). Therefore, we

propose that rare RUNX1 rearrangements may also be associated

with the development of pDC-AML.

As shown in Figure 1H, all three RUNX1 isoforms share a

conserved 128 aa runt homology domain (RHD), which mediates

heterodimerization with core-binding factor subunit beta (CBFB)

and facilitates DNA binding to form a transcription factor complex.

Additionally, RUNX1B and RUNX1C also contain a transactivation

domain (TAD), an inhibitory domain (ID) and the conserved C-

terminal pentapeptide motif, VWRPY. The TAD and ID regulate

gene activation and repression by interacting with various proteins,

while the VWRPY motif mediates transcriptional repression

through interactions with Groucho/TLE transcriptional

corepressors (5). RUNX1B and RUNX1C exhibit similar
Frontiers in Oncology 04
functions, whereas RUNX1A exerts a dominant-negative effect on

both isoforms (16). Alterations in RUNX1 can generally be

classified into two categories (1): those that disrupt the RHD,

leading to complete loss of RUNX1 function, and (2) those that

retain an intact RHD but disrupt the TAD, ID, or VWRPY motif,

conferring dominant negative activity to wild-type RUNX1 (7).

Rare RUNX1 rearrangement resulting from t (8,21)(p12;q22) in

our case led to the RUNX1 truncation. The predicted proteins retain

the RHD but lacks the TAD, ID and VWRPY, thereby exhibiting

structural and functional similarities to RUNX1A that may act as a

dominant-inhibitor of wild-type RUNX1 by competing for DNA

binding and interaction with CBFB (4, 16). In pDC-AML, both

RUNX1 mutations (Supplementary Table 1) and rare

rearrangements (Table 1) can lead to either complete loss or

dominant-negative inhibition of RUNX1 function, which may

play a pivotal role in the aberrant expansion or malignant

transformation of pDCs. Additionally, functional suppression of

RUNX1 may also occur in pDC-AML cases without detectable

RUNX1 alterations.

As shown in Table 1, rare RUNX1 rearrangements, including

both gene-gene and gene-intergenic fusions, are likely associated

with poor prognosis. Notably, approximately half of the gene–gene

fusions are out-of-frame. Since the concept of pDC-AML was

proposed around 2018 and was not recorded in the WHO

classification until 2022, earlier case reports may lack the

information regarding pDCs (1, 11). To date, only two cases of

pDC-AML with RUNX1 rearrangement have been reported (4).

Compared with non–pDC-AML, pDC-AML is associated with a

poorer prognosis. At present, pDC-AML remains a provisional

entity within the broader category of AML, and consensus on its

treatment is yet to be reached, necessitating further research.

Similar to BPDCN, pDC-AML is characterized by pDC

expansion, which is associated with poor prognosis. However, the

pattern of organ involvement differs between the two entities:

BPDCN most commonly presents with cutaneous lesions,

whereas pDC-AML predominantly affects the BM and only rarely

involves the skin (1, 17). Consequently, therapeutic strategies aimed

at eliminating pDCs are considered critical for both BPDCN and

pDC-AML, and interleukin-3 receptor a chain (IL3RA or CD123)-

targeted therapy represents a promising approach. CD123 is

aberrantly overexpressed across a broad spectrum of hematologic

malignancies, especially in BPDCN and AML (18). In AML, CD123

can be found in blasts, CD34+ progenitors, CD34+CD38- leukemia

stem cells (LSCs), whereas normal HSCs have little (less than 1%) to

no CD123 expression (18). This highly restricted expression profile

makes CD123 an ideal target both for diagnostic applications and

therapeutic interventions in AML, particularly in the context of

pDC-AML.

Currently, tagraxofusp-erzs is the only CD123-targeted agent

approved by the US Food and Drug Administration (FDA) and has

demonstrated robust clinical efficacy in BPDCN, while several other
frontiersin.org
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TABLE 1 The clinical outcomes in AML/MDS patients with rare RUNX1 rearrangements.

Patient
Age/
sex

Partner gene Frameshift
Reciprocal
fusion

Follow-
up

Survival
status

Doi

1 NA (Ex8) RUNX1::EAP (RPL22P1, Ex1) Out-of-frame NA NA NA 10.1073/pnas.90.16.7784

2 76/M (Ex6) RUNX1::CPNE8 (Ex3) Out-of-frame No NA D 10.1038/sj.leu.2403048

3 74/M (Ex6) RUNX1::PRDX4 (Ex2) In-frame No 5 m D 10.1002/gcc.20050

4 77/F (Ex6) RUNX1::PRDM16 (Ex1) Both Yes 2 m R 10.1002/gcc.20241

5 78/M (Ex6) RUNX1::FOG2 (ZFPM2, Ex6) In-frame Yes NA D 10.1182/blood-2004-07-2762

6 7/M (Ex6) RUNX1::USP42 (Ex2) In-frame No 10 yr A 10.1038/sj.leu.2404076

7
56/M

(Ex5/6) RUNX1::TRPS1 (Ex1)
In-frame

No 2 yr D
10.1182/blood-2006-01-
031781

8
73/F (Ex5) RUNX1::CBFA2T3(MTG16,

Ex4)
In-frame

NA NA NA
10.1016/
j.cancergencyto.2008.04.011

9 NA (Ex5/6) RUNX1::LPXN (Ex8/9) Both Yes NA NA 10.1002/gcc.20704

10 1/M (Ex3) RUNX1::ZNF687 (5`UTR) In-frame No NA NA

10.1002/gcc.2035511 68/M (Ex5) RUNX1::YTHDF2 (Ex6) In-frame No NA NA

12 81/M (Ex5/6) RUNX1::SH3D19 (Ex2) In-frame No NA NA

13
63/F (Ex5/6) RUNX1::LRP16 (MACROD1)

(Ex2)
In-frame

Yes 2 yr R
10.1111/j.1600-
0609.2007.00858.x

14 69/M (Ex6/7) RUNX1::CBFA2T2 (Ex2/3) Out-of-frame No 7 m D

10.1038/leu.2010.106
15

62/M (NOL4L, Ex5/6) C20orf112::RUNX1
(Ex3/4/5)

Out-of-frame
Yes 8 m D

16
63/M

(Ex6) RUNX1::CLCA2 (Ex2/5/6)
Out-of-frame

No 1 m D
10.1016/
j.cancergencyto.2010.07.116

17
82/F (Ex6) RUNX1::reversed UPK3B::

DTX2 (Ex10)
NA

NA NA NA
10.1007/s12185-012-1112-z

18
78/M (Ex5/6) RUNX1::KIAA1549L

(C11orf41, Ex13)
In-frame

No 2 yr D
10.1016/
j.cancergen.2012.10.001

19 43/F (Ex1) RUNX1::SV2B (Ex2) Out-of-frame No NA NA 10.1002/gcc.22105

20 54/F (Ex25/26) CHD1::RUNX1 (Ex6) Out-of-frame No 2 yr D 10.1186/s12943-015-0353-x

21 76/M (Ex5) RUNX1::TMEM48(NDC1, Ex3) Out-of-frame No 1 yr D 10.1038/onc.2015.70

22
69/M

(Ex7) RUNX1::SYNE2 (Ex62)
Out-of-frame

Yes >2 yr A
10.1016/
j.cancergen.2017.07.002

23 50/M (Ex5/6) RUNX1::TACC1 (Ex6) Out-of-frame No ~1 m D 10.1111/bjh.16444

24 74/F (Ex7) RUNX1::ZFPM2 (Ex6) In-frame No 14 m D

10.1002/gcc.22901

25 80/M (Ex2) RUNX1::RCAN1 (Ex2) Out-of-frame Yes 5 m D

26 66/M (Ex8) RUNX1::DSCAM (Ex4) In-frame Yes 2 m D

27 23/F (Ex8) RUNX1::LINC00478 (Ex5) Out-of-frame No NA NA

28* 61/F (Ex2) RUNX1::PLAG1 (Ex2) Out-of-frame Yes NA NA

29 57/M (Ex2) RUNX1::WSB2 (Ex2) In-frame No 19 m D

30 49/M (Ex6) RUNX1::KIF2C (Ex7) In-frame Yes NA NA

31 33/F (Ex2) RUNX1::CRYZL1 (Ex2) In-frame No 7 m D

32 69/F (Ex7) RUNX1::SEPT7 (SEPTIN7, Ex2) In-frame No NA NA

33*
75/F (AFG2B, Ex2) SPATA5L1::RUNX1

(Ex2)
NA

No 8 m D

(Continued)
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CD123-targeting agents are in development or undergoing

evaluation in clinical trials (18, 19). Preclinical studies in murine

models have shown that tagraxofusp-erzs can effectively eliminate

pDCs in pDC-AML and reduce leukemic burden, mirroring its

activity in BPDCN (1). These findings suggest that CD123-directed

therapy, alone or in combination with other anti-leukemic agents,

may improve outcomes in pDC-AML, although its clinical efficacy

has yet to be validated. Encouragingly, ongoing phase I/II clinical

trials are evaluating combinations of tagraxofusp-erzs with

azacitidine and venetoclax in untreated, relapsed, or refractory

AML including cases of pDC-AML (NCT03113643), which may

provide further insight into the therapeutic potential of CD123-

targeted strategies in this disease (20). In the absence of patient

transfer, we would favor this therapeutic strategy for the current

case. Moreover, the t (8,21)(p12;q22) or RUNX1 rearrangement

may serve as a potential marker for measurable residual disease

(MRD) monitoring and assessment of therapeutic response.

In conclusion, current research on pDC-AML remains limited,

and the molecular mechanisms underlying the development of

pDCs are still poorly understood. Based on previous studies,

signaling pathways involving the RUNX1 gene may play a critical

role. Both RUNX1 mutations and rare rearrangements can result in

either complete loss of RUNX1 function or exert dominant-negative

effects on the wild-type RUNX1. However, the precise impact of

these alterations on pDC differentiation and expansion remains

unclear. It is also unknown whether certain mutations in other

genes might promote pDC expansion indirectly by suppressing

wild-type RUNX1. Given the poor prognosis associated with pDC-

AML, further elucidation of its molecular pathogenesis is essential

to guide the development of targeted therapeutic strategies and

improve clinical outcomes.
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TABLE 1 Continued

Patient
Age/
sex

Partner gene Frameshift
Reciprocal
fusion

Follow-
up

Survival
status

Doi

34 1/M (Ex5) RUNX1::ZNF423 (Ex4) NA No NA NA 10.1038/s41375-023-02024-6

35 79/F (Ex2) RUNX1::WIF1 (Ex3) Out-of-frame No 1 yr D 10.1007/s12308-024-00597-4
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sequence)
Out-of-frame
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10.3892/or.2016.5119
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NA

Yes 9 m R
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42*
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sequence)
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No ~2 m D
this case
Ex, exon; NA, not available; D, deceased; R, relapsed; A, alive; *: pDC-AML.
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