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Background: Magnetic resonance (MR) guided radiation therapy combines high-
resolution image capabilities of MRI with the precise targeting of radiation
therapy. However, MRI does not provide the essential electron density
information for accurate dose calculation, which limit the application of MRI. In
this presented work, we evaluated the potential for Deep Learning (DL) based
synthetic CT (sCT) generation using 3D MRI setup scans acquired during real-
time adaptive MRI-quided radiation therapy.

Methods: We trained and evaluated a Cycle-consistent Generative Adversarial
Network (Cycle-GAN) using paired MRI and deformably registered CT scan slices
(dCT) in the context of real-time adaptive MRI-guided radiation therapy.
Synthetic CT (sCT) volumes are output from the MR to CT generator of the
Cycle-GAN network. A retrospective study was conducted to train and evaluate
the DL model using data from patients undergoing treatment for kidney,
pancreas, liver, lung, bone, and prostate tumors. Data was partitioned by
patients using a stratified k-fold approach to ensure balanced representation of
treatment sites in the training and testing sets. Synthetic CT images were
evaluated using mean absolute error in Hounsfield Units (HU) relative to dCT,
and four image quality metrics (mean absolute error, structural similarity index
measure, peak signal-to-noise ratio, and normalized cross correlation) using the
deformed CT scans as a reference standard. Synthetic CT volumes were also
imported into a clinical treatment planning system and dosimetric calculations
re-evaluated for each treatment plan (absolute difference in delivered dose to
3cm radius of PTV).

Results: We trained the model using 8405 frames from 57 patients and evaluated
it using a test set of 357 sCT frames from 17 patients. Quantitatively, sCTs were
comparable to electron density of dCTs, while improving structural similarity with
on-table MRI scans. The MAE between sCT and dCT was 49.2+13.2 HU, sCT NCC
outperformed dCT by 0.06, and SSIM and PSNR were 0.97+0.01 and 19.9+1.6
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respectively. Furthermore, dosimetric evaluations revealed minimal differences
between sCTs and dCTs. Qualitatively, superior reconstruction of air-bubbles in
sCT compared to dCT reveal higher alignment between sCT than dCT with the

associated MR.

Conclusions: Accuracy of deep learning based synthetic CT generation using
setup scans on MR-Linacs was adequate for dose calculation/optimization. This
can enable MR-only treatment planning workflows on MR-Linacs, thereby
increasing the efficiency of simulation and adaptive planning for MRgRT.

deep learning, cycle-consistent generative adversarial network, deformable
registration, MRI-guided radiation therapy, synthetic CT

1 Introduction

MR-guided radiation therapy (MRgRT) is a relatively new
approach to radiation therapy (RT) which combines the high-
resolution imaging capabilities of magnetic resonance imaging
(MRI) with the precise targeting of radiation therapy. By using
real-time MRI linear accelerator systems (MRI-LINAC) during
treatment, MRgRT allows for more accurate targeting of the
tumor, which can lead to improved outcomes and reduced side
effects for patients (1). Several studies have demonstrated the
benefits of MRgRT, including improved target coverage, reduced
toxicity, and improved overall survival (2-4). Additionally, MRgRT
has been shown to be effective in treating a variety of cancer types,
including brain, prostate, and breast cancer (1, 5-7). Overall,
MRgRT is an innovative approach to radiation therapy that has
the potential to improve the radiation therapy workflow and
patient outcomes.

However, a critical weakness of MRgRT is a reliance on electron
density maps which are derived from computed tomography (CT)
images for dose planning. Thus, to successfully carry out MRgRT,
MR images must be co-registered with CT images. Co-registration of
CT and MRI images is a critical step in MRgRT, however, it can also
be a source of errors which can impact the accuracy of the treatment.
The co-registration process aligns the CT and MRI images, allowing
for precise targeting of the tumor, but it is prone to errors due to the
inherent differences in the imaging modalities. CT images have
limited soft tissue contrast and do not provide functional
information about the tumor. On the other hand, MRI images have
a better soft-tissue contrast, and provide functional information
about the tumor, however, they are sensitive to motion artifacts
and the presence of metallic objects and contrast agents (1, 8). The
co-registration of CT and MRI images is conventionally performed
manually, which can also be a source of errors if not done carefully.
For example, this co-registration process has a systematic uncertainty
of approximately 2-5 mm (9). The errors that can occur during the
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co-registration process can persist at multiple levels of the treatment
workflow and bring systematic errors (10).

Current MR to CT registration techniques involve generating a
deformed CT (dCT) from a baseline MR image and an existing CT
image of the patient. Many of the conventional CT image
registration techniques are time consuming and costly (11).
Computational time for atlas-based methods rises linearly with
dataset size and bulk segmentation requires longer acquisition time
compared to conventional MR sequences (12, 13). Thus, deep
learning (DL) based synthetic CT registration has been touted as
a promising alternative to previous registration techniques. These
deep-learning techniques offer several benefits over other methods.
These methods consistently achieve state-of-the-art results in terms
of registration performance according to Dice score evaluation.
Additionally, these methods offer considerable speedups over
traditional registration methods (12, 14, 15). These advantages
make deep-learning based CT registration an optimal choice for
real-time dose-calculations with novel MR-LINAC systems.

However, despite these advantages, there are several significant
hurdles for training generalizable deep-learning synthetic CT
generation models. First and foremost, datasets are often small.
Training machine-learning (ML) models require ground truth
labels, which means that for a MR to CT registration task, paired
CT/MR datasets are needed. Thus, datasets used in training
synthetic CT models tend to be small by machine learning
standards and can be afflicted by batch errors due to limited
diversity in acquisition settings such as MR and CT machines.
Additionally, many datasets suffer from data leakage, which inflates
model performance (16). Finally, large differences between intensity
values from different MRI manufacturers means that trained
models may struggle to generalize well.

Many studies evaluate the performance of various deep-
learning architectures on synthetic CT registration from MR
images. Generative adversarial networks (GAN) are among the
more popular techniques for mapping MR images to sCTs (17).
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However, GANs require strongly paired ground truths to train
properly. This poses an issue in the context of dataset generation
since MR images and CT images cannot be captured
simultaneously. Thus, CycleGANs have shown themselves to be a
promising method for synthetic CT generation. Due to a cycle-
consistency loss, CycleGANSs can train on paired or unpaired data,
greatly increasing dataset size. Results from related CycleGAN
studies have shown promise, with mean absolute error between
ground-truth CT volume and sCT volumes between 30-150
Hounsfield Units (HU) (18-22). However, these studies demand
further investigation for the following reasons. Firstly, most prior
models were only trained with one or two sites in mind. Lei et al.
study the brain and pelvis (21), Farjam et al. the pancreas (23),
Wolterink et al. the brain (20), and Yang et al. study the brain and
abdomen (with different models for each) (18). Furthermore, due to
the limited size of datasets, many prior studies, such as Kang et al,
Farjam et al, and Lei et al, do not use a held out validation data set in
addition to their final test set (21-23). The lack of this validation set
means that these models implicitly overfit on the test data since
hyperparameters can be directly tuned on test data. Finally,
although some studies evaluated treatment planning dose
volumetrics on synthetic CTs (22), many of these studies did not
(18-21, 23).

Thus, in this research study, we aim to further evaluate the
performance of CycleGAN, a deep-learning algorithm, on synthetic
CT generation. We employ a novel, large, paired image dataset with
6 different sites. Furthermore, we employ a rigorous data splitting
regime to ensure minimal data leakage and the most generalizable
results possible. Finally, we use the model trained from this dataset
to investigate two tasks. Firstly, we assess the performance of
CycleGAN in generating synthetic CT images that accurately
correspond to their ground truths. Secondly, we evaluate our
synthetic CT images with treatment planning software to
determine whether they have adequate dosimetric outcomes to
enable MR-only planning on MR-LINAC:s.

2 Materials and methods

2.1 Study dataset

This study analyzed patients undergoing stereotactic body
radiation therapy using the ViewRay MRIdian MR-LINAC at the
Dartmouth-Hitchcock Medical Center (DHMC). Patients
underwent radiation therapy between March 2021 and June 2022.
All DICOM and treatment delivery records were retrospectively
accessed and anonymized before inclusion in the study in
accordance with a protocol approved by the DHMC institutional
review board. Simulation CT/MR scans were acquired on the same
day at the outset of RT treatment planning, typically one hour
between scans with CT scanning first. CT scans were acquired using
a simulation scanner (Siemens EDGE) using routine clinical
settings. MRI scans were obtained using a MR-Linac (ViewRay
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MRIdian) using built-in clinical protocols. Ground-truth deformed
CTs (dCT) were generated using the ViewRay treatment planning
system registration pipeline.

2.2 Image pre-processing and data
partitioning

After dCT generation, all dCT and MR images were extracted in
DICOM format with 144 slices and a 3mm axial resolution. The in-
plane dimensions were 310 x 360 pixels with a 1.5mm resolution.
DICOM volumes were converted to tiff images using the python
open-source pydicom and tifffile packages. After conversion to tiff
format, all images were padded to 440x440 pixels. Next, we
conducted a stratified k-fold data splitting scheme using
treatment site specified in the DICOM data as the category for
stratification including: adrenal, pancreas, liver, lung, bone,
prostate, and other. This split yielded 58 training patients, 11
validation patients, and 17 testing patients, ensuring that train
and test splits contained at least one patient from each treatment
site category. Prior to use in model training, all 8405 CT and MR
images were normalized. CT images were normalized with the
following linear formula:

(1)

where X is the input voxel in HU, X, =-1024, and & = the 99.99
percentile of HU values in the training set range. To ensure that all
normalized values were positive, in Equation 1, X, was set to -1024,
considering that the minimum HU value in our training set was also
-1024. MR images were also normalized with Eq.1, with X set at 0,
since MR intensity values are all already nonnegative. Our pre-
processing pipeline is described in Figure 1.

2.3 Model and loss formulation

Our study utilized the CycleGAN (Cycle-Consistent Generative
Adversarial Network) model architecture (24). Training workflow
of the CycleGAN model has been shown in Figure 2. Figure 3 details
the architecture of CycleGAN. This architecture is a derivative of
the generative adversarial network (GAN) (25), a popular deep-
learning architecture which leverages two competing networks: a
generator and a discriminator. In GANs, a generator generates a
synthetic image from an input image, and the discriminator
predicts whether this synthetic image is real of fake. The model
stops learning when the generator produces indistinguishable
images from the ground truth.

CycleGAN adopts a similar architecture as a GAN with two key
differences. Firstly, instead of having one generator and one
discriminator, CycleGAN has two generators (Gyr,Ger) and two
discriminators (Dysgr,Dcr). The generator Gertakes a CT image and
generates an MR image, while the generator Gy grtakes an MR image
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and generates a CT image. The loss functions used to train the
generators and discriminators in a Cycle-GAN typically include
three components: the adversarial loss, the cycle-consistency loss,
and the identity loss. Adversarial loss is used to ensure that the
generated images are realistic and can fool the discriminators. The
adversarial loss, L,4y is calculated using the mean squared error
between the discriminator’s output and the ground-truth label. The
loss formulation of our discriminators is a summation of the
adversarial loss with sCT as input and adversarial loss with dCT
as input. Cycle-consistency loss is used to ensure that the generated
images preserve the content of the original images and is calculated
as the mean absolute error (MAE) between the original image and
the translated image that has been translated back to the original

domain. The cycle loss, L, for the generator G¢r is calculated in

cyc
Equation 2 as:

Lye = || Gur(Ger(CTy)) = CTy |- A 2

, where A is a weight, and CT,, is a ground truth CT. The
identity loss is added to ensure that the images from the same
domain should not change after passing through the generator. The
identity loss, as shown in Equation 3, Ly, for Ger is:

Lige = || Ger(CTy) = CTy || 3)

The loss formulations for Gprare formulated similarly as Ger.
Finally, the total loss as shown in Equation 4, Ly, is calculated as
follows:

Liotar = Loaymr + Laaver + LcycleMR + LcycleCT + Ligar
+ Liacr @)

We trained our model on 1 Nvidia RTX 2080 Ti with 12GB of
GPU memory. Additionally, we used the following model
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parameters: random crop to 256x256, batch size of 1, 100 epochs.
Our model training code was from: https://github.com/junyanz/
pytorch-CycleGAN-and-pix2pix (24, 26).

2.4 Evaluations

After model training, we used the lowest loss model
(measured on the validation set) to generate a set of 2464
synthetic CT images from a held-out test set. However, whilst
evaluating image similarity, we found a large amount of our test
set dCTs were corrupted by artifacts in the beginning and end of
each series in the axial plane. Thus, we only conducted our
evaluations on the dosimetric relevant images within a 3cm
radius of the PTV.

2.4.1 Synthetic image quality assessments

We first evaluated our test set through image quality and
similarity metrics. We quantitatively measured the similarity
between our sCT and dCT through mean average error (MAE),
peak to signal noise ratio (PSNR), and structural similarity (SSIM).
The formulas for these metrics are shown in Equations 5-7):

1 n
MAE = ;2;:1 ’ydefCT _ysynCT} (5)
2
max e
PSNR = 10108}y 7 (}’dfcr)2 ©
7 1 Oager = Yomer) )
2 i +C zo-ixi +C
SSIM(x, y) = ity + C)(204, + Cy) o

(U + 3, + C)(03 + 0 + Cy)
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FIGURE 2
Training workflow of the CycleGAN model.

For SSIM, u;, u;, are the average HU values for the ith axial
slice of our dCT and sCT sieries respectively. 62, Gé represent the
variance of the aforementioned dCT and sCT slices. Finally, C;, C,
are constants applied as suggested by Wang et al (27). Additionally,
we evaluated the similarity of sCT and dCT images to their
corresponding MR inputs using Normalized Cross-Correlation
(NCC). Normalized cross correlation (NCC) is a similarity
measure that ranges from -1 to 1, used to determine the degree of
similarity between two image regions, with 1 being most similar.
NCC was calculated using the xcdskd package on python.

2.4.2 Dosimetric assessments

The second evaluation criteria of our sCTs consists of a
comparison between the RT dose calculation in the sCT versus
the dCT. In order to calculate these differences, our tiff images were
reconverted to DICOM format. This was done by replacing the dCT
DICOM “Pixel Data” tag with our generated sCT image. Next, we
fed our DICOM sCTs into the ViewRay treatment planning
software with the same parameters used on the dCTs to create
dose volume histograms (DVHs). These DVHs were used to
calculate the absolute difference of dose delivered to the PTV at
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95%, 90%, and 85% of the volume. Additionally, we also calculate
the difference in dose delivered above 33Gy to all 3cm OAR sites.

3 Results
3.1 Image quantitative comparisons

Table 1 reports the mean absolute error (MAE) of our cycle-
GAN model. In total, 357 synthetic CT frames were analyzed from
17 patients. Of the treatment sites analyzed, the most common sites
were liver, pancreas, and lung, with 84, 105, and 63 frames
respectively. MAE was calculated by comparing synthetic CTs
versus deformed CTs. Median MAE values across sites ranged
between 44.7.4 HU to 55.6 HU with an overall median MAE of
49.2 HU. Pancreas and lung scans had the highest MAE standard
deviations with 20.1 and 9.8 HU respectively. Kidney showed the
least difference in MAE between scans with a standard deviation of
1.2 HU.

Table 2 reports SSIM and PSNR metrics, as well as the NCC of
our sCTs and dCTs versus our MR image ground truths. Our sCTs

05 frontiersin.org
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FIGURE 3
Deep learning architectures of the generator and the discriminator. The details of the ResNet block are shown on the right.

TABLE 1 The mean absolute error (MAE) of our cycle-GAN model per site.

Value description Other Kidney Pancreas Liver Lung Bone Prostate All
MAE min (HU) 44.4 426 37.7 35.6 469 523 483 35.6
MAE median (HU) 49.4 447 476 44.4 55.6 55.2 51.4 492

MAE max (HU) 57.7 47 100.4 67.5 87.8 58.3 53.9 100.4

std (HU) 43 12 20.1 7.7 9.8 16 18 13.2
Number of frames 42 21 105 84 63 21 21 357
Number of patients 2 1 5 4 3 1 1 17

TABLE 2 Image quality metrics per site. NCC refers to normalized-cross-correlation, SSIM refers to structural similarity, and PSNR refers to peak
signal to noise ratio.

Value description Other Kidney Pancreas Liver Lung Bone Prostate All
Deformed NCC 0.769 0.825 0.827 0.839 0.826 0.803 0.707 0.818
Synthetic NCC 0.763 0.826 0.83 0.847 0.83 0.812 0.718 0.824

Median SSIM 0.974 0978 0.969 0.974 0.967 0.965 0.976 0971
SSIM std 0.002 0.002 0.016 0.008 0.015 0.003 0.002 0.013
Median PSNR 203 208 19.6 19.9 193 19 204 19.9
PSNR std 0.98 0.76 2.05 1.54 1.51 0.17 033 1.64
Number of frames 42 21 105 84 63 21 21 357
Number of patients 2 1 5 4 3 1 1 17
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Highest HU MAE

The lowest, median, and highest sCT mean average errors (HU) in the test set

demonstrate a higher (better) NCC value in comparison to
deformed CTs in all but one treatment site (Other). Although
differences were generally minimal, sCT NCC scores on bone,
prostate, and liver showed the largest improvements compared to
our deformable registration ground truths. Additionally, we report
high SSIM values across all sites, with a median SSIM value of 0.971.
Thus, the structural similarity between our sCTs and dCTs is near
perfect. Additionally, we report a median PSNR of 19.9 across all
sites. This high PSNR value indicates that the sCT is a good
representation of the dCT.

Frontiers in Oncology

Figure 4 presents selected images from the scans with the
lowest, median, and highest MAE (HU) from our test set.
Figure 5 shows zoomed in panel of spinal region of interest. We
compare sCT spinal reconstruction on lowest, median, and highest
HU MAE patients. As is evident in all three examples, our model
struggled to properly predict skin, bone, and limbs outside of the
torso region (arms). Difficulty predicting bone is consistent with
prior works (20, 21). Additionally, we view differences between the
sCT and dCT with regards to air bubbles. For example, in the
median HU images, we observe that our synthetic CT images
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Real MR

Absolute Difference

Zoomed in panel of spinal region of interest. We compare sCT spinal reconstruction on lowest, median, and highest HU MAE patients.

correctly include air bubbles present in MR, whereas the deformed
CTs do not include said bubbles. However, from a qualitative
perspective, our sCT reconstructions are minimally different from
their deformed CT counterparts.

3.2 Dose comparisons

Table 3 reports the absolute difference of RT dose delivered to
PTV at 85%, 90%, and 95% of the volume based on RT dose
recalculations using our sCTs. Averaged sCT vs CT dose
volumetrics per site is shown in Figure 6. Our results indicate
minimal differences in dose delivered using sCTs. Median difference
in dose delivered to PTV across all sites is.45Gy,.47Gy, and.46Gy for
85%, 90%, and 95% of volume respectively. Additionally, we found
that dose above 33Gy delivered to OARs within 3cm of the PTV
also showed minimum differences between sCT and dCT RT dose
calculations. The median difference in dose delivered to 3cm OARs
minimally increased by 0.01 Gy after switching from sCT to dCT.
Additionally, 4 patients had no change in dose delivered to these
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sites, and 6 patients had less dose above 33Gy delivered to
these sites.

4 Discussion

This report presents strong results supporting an MRI-only RT
workflow. From a synthetic image quality perspective, our
CycleGAN implementation reports comparable or superior MAE
compared to prior studies conducted using a CycleGAN
architecture (18, 28). Additionally, our results indicate that
CycleGAN architecture generalizes well to several treatment sites
with minimal additional training data. For example, despite only
having 1 kidney, bone, and 3 prostate series each in our training
data, we still report a mean MAE of 50.4 HU across these sites. Also,
our overall median MAE of 49.2 HU is a strong result in
comparison to prior work. This improved synthetic image quality
may be a result of a larger dataset. Of the prior CycleGAN studies
performed, this study analyzed 86 patient scans, compared with 24,
45, and 38, patients in works from Wolterink et al. (20), Yang et al
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TABLE 3 DVH metrics per patient. Reports absolute difference between sCT and CT of dose delivered to 85%, 90%, and 95%.

Patient Gy diff@85% Gy diff@90% Gy diff@95% Diff OAR dose > 33gy
PT0049 OTHER 0.19 021 023 0
PT0059 KIDNEY 05 0.49 047 -0.16
PT0066 PANCREAS 023 0.14 0.09 0.07
PT0067 LIVER 0 0.06 0.01 0
PT0069 LIVER 0.48 0.56 047 0
PT0070 PANCREAS 1.56 1.16 121 -0.26
PT0074 LIVER 0.04 0.04 0.05 0
PT0075 LIVER 0.86 0.82 028 -0.18
PT0076 PANCREAS 0.7 0.7 045 0.65
PT0077 LUNG 0.16 0.04 042 0.98
PT0078 PANCREAS 0.12° 0.07 0.01 -0.19
PT0080 PANCREAS 0.19 0.12 021 0.08
PT0081 BONE 0.57 0.57 041 NAN
PT0082 PROSTATE 0.16 0.16 0.17 025
PT0083 LUNG 1.23 1.64 1.76 0.11
PT0084 LUNG 025 0.68 113 -111
PT0085 OTHER NAN NAN NAN -0.03

ALL ALL 0.45 047 0.46 0.01

This table also reports the difference in dose delivered above 33Gy in 3cm OAR sites, where a negative value indicates that less dose above 33Gy was delivered with the sCT.

synCT vs defCT: Average RT Doses per Site
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(18), and Brou et al (28). Thus, given our superior reconstruction
results, we demonstrate that dataset size is paramount in creating
strong generative synthetic CT models.

Our treatment dose comparison also supports an MRI-only RT
workflow. Our 0.45 Gy, 0.47 Gy, and 0.46 Gy average difference in
dose delivered to PTV for 85%, 90%, and 95% of the volume
indicates that sCTs have minimal effects on dose delivered.
Additionally, NCC comparisons in Table 4 indicate that synthetic
CTs capture an equivalent to better representation of the MR scans
taken during treatment. Thus, we can extrapolate that synthetic CT
scans may present a more precise image to calculate RT dose with.
Exemplary of this claim are the air bubbles in the median MAE
frame of Figure 3. From a visual comparison to the real MR, we can
see that the synthetic CT better models air bubbles. Thus, the
synthetic CT is likely a better representation to use when
performing dose calculations. Another observed benefit of
synthetic CTs is the elimination of artifacts compared to
deformable CTs. Given that sCT generation is wholly dependent
on the MR image fed into the model, if this MR image has no
artifacts the resulting sCT will be artifact-free as well.

The key strength of using a deep learning model in synthetic CT
generation is speed. Conventional image registration techniques
rely on an iterative image update process. However, this process is
slow and requires lengthy computation, which is a bottleneck when
performing real-time dose calculation. On the other hand, our
deep-learning model is fixed after training and requires a single
forward pass to generate an output. Therefore, our DL model is
much more suited to real-time RT strategies.

Some limitations of our approach include limited frame to frame
cohesion on the axial plane. We observed that although primary
image structures and features remained fixed, there were some frame-
to-frame shifts in axial position along the extremities of each scan.
These shifts may have occurred because the CycleGAN architecture
trains on a single image at a time as opposed to a whole volume.
Therefore, the model has more difficulty learning frame to frame
continuance. Another observed limitation to our method is that our
model has difficulty predicting HU values for high-intensity regions.
For example, in Figure 4, we see that for all 3 image examples our

10.3389/fonc.2025.1672778

model had difficulty reconstructing and predicting spine intensity
values. We believe that this is due to the intrinsic distribution of HU
values. Bone HU values are typically above 700, whereas all other
tissue HU values fall between -100 and 300 HU. Thus, distribution
imbalances may have led to difficulties predicting HU values for high-
intensity regions. Finally, we believe that some distribution-matching
losses may have caused anomalously shaped structures in certain
already hard-to-predict regions such as the spine. For example, the
spinal structure of all three sCTs in Figure 4 differs from their dCT
ground truths. Given their relative similarity to each other, we believe
that these differences may correspond to hallucinated features caused
by distribution-matching losses, a phenomenon previously observed
in Cycle-GAN based image translation (29).

Future work will involve two key advancements. Firstly, larger
and higher quality datasets must be created. Our study shows that
despite similar architectures; dataset scale improved our results in
comparison to prior studies. Additionally, we believe that on top
of scaling dataset, some incorporation of newer DL architectures
could improve results. For example, although some work has
already been done on MRI to CT conversion using diffusion
models (30), given the remarkable performance of diffusion
models in other image-processing domains (31), these models
are promising for a synthetic CT generation task. As our dataset
and compute resources grow, we plan to evaluate volumetric (3D)
CycleGAN variants to improve through-plane consistency and
integrate them into our framework.

5 Conclusions

In this study, we developed a deep learning algorithm based on
CycleGAN (24) to derive sCT from MRI. We have demonstrated
that the sCT provides comparable dose accuracy as the clinical CT.
Accuracy of deep learning based synthetic CT generation using
setup scans on MR-Linacs was adequate for dose calculation/
optimization. This can enable MR-only treatment planning
workflows on MR-Linacs, thereby increasing the efficiency of
simulation and adaptive planning for MRgRT.

TABLE 4 Quantitative evaluation of synthetic versus deformed images across multiple organs.

Value Description  LIVER PANCREAS  KIDNEY PROSTATE LUNG OTHER BONE ALL
Deformed NCC 0.827 0.825 0.817 0.685 0.827 0.759 0.808 0.815
Synthetic NCC 0.838 0.831 0.815 0.705 0.830 0.778 0.824 0.824
SSIM 0.967 0.966 0.974 0.953 0.967 0.969 0.956 0.966
SSIMSTD 0.028 0.052 0.038 0.079 0.010 0.017 0.009 0.040
PSNR 19.406 19.232 20.614 17.978 19.395 19.015 18.496 19.150
PSNR STD 2.050 2.649 1.685 3.367 1.539 1.418 0.923 2.235
Number of Frames 235 340 72 76 228 152 72 1175
Number of Patients 4 5 1 1 3 2 1 17

NCC stands for normalized cross-correlation. SSIM stands for structural similarity. PSNR stands for peak to signal noise ratio.
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