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Dosimetric evaluations using
cycle-consistent generative
adversarial network synthetic
CT for MR-guided adaptive
radiation therapy
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Gregory A. Russo3,4, Gobind S. Gill4, Charles R. Thomas3,4,
Temiloluwa O. Prioleau1, Yuting Li5, Rongxiao Zhang2,6,
Yue Yan2,3,4* and Brady Hunt2,3

1Department of Computer Science, Dartmouth College, Hanover, NH, United States, 2Thayer School
of Engineering, Dartmouth College, Hanover, NH, United States, 3Geisel School of Medicine,
Dartmouth College, Hanover, NH, United States, 4Department of Radiation Oncology & Applied
Sciences, Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States, 5Department of
Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX, United States,
6Department of Radiation Oncology, University of Missouri, Columbia, MO, United States
Background:Magnetic resonance (MR) guided radiation therapy combines high-

resolution image capabilities of MRI with the precise targeting of radiation

therapy. However, MRI does not provide the essential electron density

information for accurate dose calculation, which limit the application of MRI. In

this presented work, we evaluated the potential for Deep Learning (DL) based

synthetic CT (sCT) generation using 3D MRI setup scans acquired during real-

time adaptive MRI-guided radiation therapy.

Methods: We trained and evaluated a Cycle-consistent Generative Adversarial

Network (Cycle-GAN) using paired MRI and deformably registered CT scan slices

(dCT) in the context of real-time adaptive MRI-guided radiation therapy.

Synthetic CT (sCT) volumes are output from the MR to CT generator of the

Cycle-GAN network. A retrospective study was conducted to train and evaluate

the DL model using data from patients undergoing treatment for kidney,

pancreas, liver, lung, bone, and prostate tumors. Data was partitioned by

patients using a stratified k-fold approach to ensure balanced representation of

treatment sites in the training and testing sets. Synthetic CT images were

evaluated using mean absolute error in Hounsfield Units (HU) relative to dCT,

and four image quality metrics (mean absolute error, structural similarity index

measure, peak signal-to-noise ratio, and normalized cross correlation) using the

deformed CT scans as a reference standard. Synthetic CT volumes were also

imported into a clinical treatment planning system and dosimetric calculations

re-evaluated for each treatment plan (absolute difference in delivered dose to

3cm radius of PTV).

Results:We trained the model using 8405 frames from 57 patients and evaluated

it using a test set of 357 sCT frames from 17 patients. Quantitatively, sCTs were

comparable to electron density of dCTs, while improving structural similarity with

on-table MRI scans. The MAE between sCT and dCT was 49.2±13.2 HU, sCT NCC

outperformed dCT by 0.06, and SSIM and PSNR were 0.97±0.01 and 19.9±1.6
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respectively. Furthermore, dosimetric evaluations revealed minimal differences

between sCTs and dCTs. Qualitatively, superior reconstruction of air-bubbles in

sCT compared to dCT reveal higher alignment between sCT than dCT with the

associated MR.

Conclusions: Accuracy of deep learning based synthetic CT generation using

setup scans on MR-Linacs was adequate for dose calculation/optimization. This

can enable MR-only treatment planning workflows on MR-Linacs, thereby

increasing the efficiency of simulation and adaptive planning for MRgRT.
KEYWORDS

deep learning, cycle-consistent generative adversarial network, deformable
registration, MRI-guided radiation therapy, synthetic CT
1 Introduction

MR-guided radiation therapy (MRgRT) is a relatively new

approach to radiation therapy (RT) which combines the high-

resolution imaging capabilities of magnetic resonance imaging

(MRI) with the precise targeting of radiation therapy. By using

real-time MRI linear accelerator systems (MRI-LINAC) during

treatment, MRgRT allows for more accurate targeting of the

tumor, which can lead to improved outcomes and reduced side

effects for patients (1). Several studies have demonstrated the

benefits of MRgRT, including improved target coverage, reduced

toxicity, and improved overall survival (2–4). Additionally, MRgRT

has been shown to be effective in treating a variety of cancer types,

including brain, prostate, and breast cancer (1, 5–7). Overall,

MRgRT is an innovative approach to radiation therapy that has

the potential to improve the radiation therapy workflow and

patient outcomes.

However, a critical weakness of MRgRT is a reliance on electron

density maps which are derived from computed tomography (CT)

images for dose planning. Thus, to successfully carry out MRgRT,

MR images must be co-registered with CT images. Co-registration of

CT and MRI images is a critical step in MRgRT, however, it can also

be a source of errors which can impact the accuracy of the treatment.

The co-registration process aligns the CT and MRI images, allowing

for precise targeting of the tumor, but it is prone to errors due to the

inherent differences in the imaging modalities. CT images have

limited soft tissue contrast and do not provide functional

information about the tumor. On the other hand, MRI images have

a better soft-tissue contrast, and provide functional information

about the tumor, however, they are sensitive to motion artifacts

and the presence of metallic objects and contrast agents (1, 8). The

co-registration of CT and MRI images is conventionally performed

manually, which can also be a source of errors if not done carefully.

For example, this co-registration process has a systematic uncertainty

of approximately 2–5 mm (9). The errors that can occur during the
02
co-registration process can persist at multiple levels of the treatment

workflow and bring systematic errors (10).

Current MR to CT registration techniques involve generating a

deformed CT (dCT) from a baseline MR image and an existing CT

image of the patient. Many of the conventional CT image

registration techniques are time consuming and costly (11).

Computational time for atlas-based methods rises linearly with

dataset size and bulk segmentation requires longer acquisition time

compared to conventional MR sequences (12, 13). Thus, deep

learning (DL) based synthetic CT registration has been touted as

a promising alternative to previous registration techniques. These

deep-learning techniques offer several benefits over other methods.

These methods consistently achieve state-of-the-art results in terms

of registration performance according to Dice score evaluation.

Additionally, these methods offer considerable speedups over

traditional registration methods (12, 14, 15). These advantages

make deep-learning based CT registration an optimal choice for

real-time dose-calculations with novel MR-LINAC systems.

However, despite these advantages, there are several significant

hurdles for training generalizable deep-learning synthetic CT

generation models. First and foremost, datasets are often small.

Training machine-learning (ML) models require ground truth

labels, which means that for a MR to CT registration task, paired

CT/MR datasets are needed. Thus, datasets used in training

synthetic CT models tend to be small by machine learning

standards and can be afflicted by batch errors due to limited

diversity in acquisition settings such as MR and CT machines.

Additionally, many datasets suffer from data leakage, which inflates

model performance (16). Finally, large differences between intensity

values from different MRI manufacturers means that trained

models may struggle to generalize well.

Many studies evaluate the performance of various deep-

learning architectures on synthetic CT registration from MR

images. Generative adversarial networks (GAN) are among the

more popular techniques for mapping MR images to sCTs (17).
frontiersin.or
g

https://doi.org/10.3389/fonc.2025.1672778
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Asher et al. 10.3389/fonc.2025.1672778
However, GANs require strongly paired ground truths to train

properly. This poses an issue in the context of dataset generation

since MR images and CT images cannot be captured

simultaneously. Thus, CycleGANs have shown themselves to be a

promising method for synthetic CT generation. Due to a cycle-

consistency loss, CycleGANs can train on paired or unpaired data,

greatly increasing dataset size. Results from related CycleGAN

studies have shown promise, with mean absolute error between

ground-truth CT volume and sCT volumes between 30–150

Hounsfield Units (HU) (18–22). However, these studies demand

further investigation for the following reasons. Firstly, most prior

models were only trained with one or two sites in mind. Lei et al.

study the brain and pelvis (21), Farjam et al. the pancreas (23),

Wolterink et al. the brain (20), and Yang et al. study the brain and

abdomen (with different models for each) (18). Furthermore, due to

the limited size of datasets, many prior studies, such as Kang et al,

Farjam et al, and Lei et al, do not use a held out validation data set in

addition to their final test set (21–23). The lack of this validation set

means that these models implicitly overfit on the test data since

hyperparameters can be directly tuned on test data. Finally,

although some studies evaluated treatment planning dose

volumetrics on synthetic CTs (22), many of these studies did not

(18–21, 23).

Thus, in this research study, we aim to further evaluate the

performance of CycleGAN, a deep-learning algorithm, on synthetic

CT generation. We employ a novel, large, paired image dataset with

6 different sites. Furthermore, we employ a rigorous data splitting

regime to ensure minimal data leakage and the most generalizable

results possible. Finally, we use the model trained from this dataset

to investigate two tasks. Firstly, we assess the performance of

CycleGAN in generating synthetic CT images that accurately

correspond to their ground truths. Secondly, we evaluate our

synthetic CT images with treatment planning software to

determine whether they have adequate dosimetric outcomes to

enable MR-only planning on MR-LINACs.
2 Materials and methods

2.1 Study dataset

This study analyzed patients undergoing stereotactic body

radiation therapy using the ViewRay MRIdian MR-LINAC at the

Dartmouth-Hitchcock Medical Center (DHMC). Patients

underwent radiation therapy between March 2021 and June 2022.

All DICOM and treatment delivery records were retrospectively

accessed and anonymized before inclusion in the study in

accordance with a protocol approved by the DHMC institutional

review board. Simulation CT/MR scans were acquired on the same

day at the outset of RT treatment planning, typically one hour

between scans with CT scanning first. CT scans were acquired using

a simulation scanner (Siemens EDGE) using routine clinical

settings. MRI scans were obtained using a MR-Linac (ViewRay
Frontiers in Oncology 03
MRIdian) using built-in clinical protocols. Ground-truth deformed

CTs (dCT) were generated using the ViewRay treatment planning

system registration pipeline.
2.2 Image pre-processing and data
partitioning

After dCT generation, all dCT and MR images were extracted in

DICOM format with 144 slices and a 3mm axial resolution. The in-

plane dimensions were 310 x 360 pixels with a 1.5mm resolution.

DICOM volumes were converted to tiff images using the python

open-source pydicom and tifffile packages. After conversion to tiff

format, all images were padded to 440x440 pixels. Next, we

conducted a stratified k-fold data splitting scheme using

treatment site specified in the DICOM data as the category for

stratification including: adrenal, pancreas, liver, lung, bone,

prostate, and other. This split yielded 58 training patients, 11

validation patients, and 17 testing patients, ensuring that train

and test splits contained at least one patient from each treatment

site category. Prior to use in model training, all 8405 CT and MR

images were normalized. CT images were normalized with the

following linear formula:

Y =
X − X0

a
(1)

where X is the input voxel in HU, X0 =-1024, and a = the 99.99

percentile of HU values in the training set range. To ensure that all

normalized values were positive, in Equation 1, X0 was set to -1024,

considering that the minimumHU value in our training set was also

-1024. MR images were also normalized with Eq.1, with X0 set at 0,

since MR intensity values are all already nonnegative. Our pre-

processing pipeline is described in Figure 1.
2.3 Model and loss formulation

Our study utilized the CycleGAN (Cycle-Consistent Generative

Adversarial Network) model architecture (24). Training workflow

of the CycleGANmodel has been shown in Figure 2. Figure 3 details

the architecture of CycleGAN. This architecture is a derivative of

the generative adversarial network (GAN) (25), a popular deep-

learning architecture which leverages two competing networks: a

generator and a discriminator. In GANs, a generator generates a

synthetic image from an input image, and the discriminator

predicts whether this synthetic image is real of fake. The model

stops learning when the generator produces indistinguishable

images from the ground truth.

CycleGAN adopts a similar architecture as a GAN with two key

differences. Firstly, instead of having one generator and one

discriminator, CycleGAN has two generators (GMR,GCT) and two

discriminators (DMR,DCT). The generator GCTtakes a CT image and

generates an MR image, while the generator GMRtakes an MR image
frontiersin.org
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and generates a CT image. The loss functions used to train the

generators and discriminators in a Cycle-GAN typically include

three components: the adversarial loss, the cycle-consistency loss,

and the identity loss. Adversarial loss is used to ensure that the

generated images are realistic and can fool the discriminators. The

adversarial loss, Ladv is calculated using the mean squared error

between the discriminator’s output and the ground-truth label. The

loss formulation of our discriminators is a summation of the

adversarial loss with sCT as input and adversarial loss with dCT

as input. Cycle-consistency loss is used to ensure that the generated

images preserve the content of the original images and is calculated

as the mean absolute error (MAE) between the original image and

the translated image that has been translated back to the original

domain. The cycle loss, Lcyc for the generator GCT is calculated in

Equation 2 as:

    Lcyc =   ∥GMR(GCT (CTgt)) − CTgt ∥ ·   l (2)

, where l is a weight, and CTgt is a ground truth CT. The

identity loss is added to ensure that the images from the same

domain should not change after passing through the generator. The

identity loss, as shown in Equation 3, Lidt for GCT is:

    Lidt =   ∥GCT (CTgt) − CTgt ∥ (3)

The loss formulations for GMRare formulated similarly as GCT.

Finally, the total loss as shown in Equation 4, Ltotal is calculated as

follows:

Ltotal =   LadvMR +   LadvCT +   LcycleMR +   LcycleCT + LidtMR

+ LidtCT (4)

We trained our model on 1 Nvidia RTX 2080 Ti with 12GB of

GPU memory. Additionally, we used the following model
Frontiers in Oncology 04
parameters: random crop to 256x256, batch size of 1, 100 epochs.

Our model training code was from: https://github.com/junyanz/

pytorch-CycleGAN-and-pix2pix (24, 26).
2.4 Evaluations

After model training, we used the lowest loss model

(measured on the validation set) to generate a set of 2464

synthetic CT images from a held-out test set. However, whilst

evaluating image similarity, we found a large amount of our test

set dCTs were corrupted by artifacts in the beginning and end of

each series in the axial plane. Thus, we only conducted our

evaluations on the dosimetric relevant images within a 3cm

radius of the PTV.

2.4.1 Synthetic image quality assessments
We first evaluated our test set through image quality and

similarity metrics. We quantitatively measured the similarity

between our sCT and dCT through mean average error (MAE),

peak to signal noise ratio (PSNR), and structural similarity (SSIM).

The formulas for these metrics are shown in Equations 5–7):

MAE =  
1
no

n
i=1 ydefCT − ysynCT
�
�

�
� (5)

PSNR =   10 · log10
max(ydefCT )

2

1
n (on

i=1(ydefCT − y2synCT)  )
(6)

SSIM(x, y) =  
(2mixmiy + C1)(2sixiy + C2)

(m2
ix + m2

iy + C1)(s 2
ix + s 2

iy + C2)
(7)
FIGURE 1

(A) DICOM anonymization, preprocessing, and filtration (B) Model training and inference calls (C) Evaluation of model performance on Hounsfield
Unit level (D) Clinical evaluation of synthetic CTs.
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For SSIM, mix ,   uiy are the average HU values for the ith axial

slice of our dCT and sCT sieries respectively. s 2
ix ,s 2

iy represent the

variance of the aforementioned dCT and sCT slices. Finally, C1,  C2

are constants applied as suggested by Wang et al (27). Additionally,

we evaluated the similarity of sCT and dCT images to their

corresponding MR inputs using Normalized Cross-Correlation

(NCC). Normalized cross correlation (NCC) is a similarity

measure that ranges from -1 to 1, used to determine the degree of

similarity between two image regions, with 1 being most similar.

NCC was calculated using the xcdskd package on python.

2.4.2 Dosimetric assessments
The second evaluation criteria of our sCTs consists of a

comparison between the RT dose calculation in the sCT versus

the dCT. In order to calculate these differences, our tiff images were

reconverted to DICOM format. This was done by replacing the dCT

DICOM “Pixel Data” tag with our generated sCT image. Next, we

fed our DICOM sCTs into the ViewRay treatment planning

software with the same parameters used on the dCTs to create

dose volume histograms (DVHs). These DVHs were used to

calculate the absolute difference of dose delivered to the PTV at
Frontiers in Oncology 05
95%, 90%, and 85% of the volume. Additionally, we also calculate

the difference in dose delivered above 33Gy to all 3cm OAR sites.
3 Results

3.1 Image quantitative comparisons

Table 1 reports the mean absolute error (MAE) of our cycle-

GAN model. In total, 357 synthetic CT frames were analyzed from

17 patients. Of the treatment sites analyzed, the most common sites

were liver, pancreas, and lung, with 84, 105, and 63 frames

respectively. MAE was calculated by comparing synthetic CTs

versus deformed CTs. Median MAE values across sites ranged

between 44.7.4 HU to 55.6 HU with an overall median MAE of

49.2 HU. Pancreas and lung scans had the highest MAE standard

deviations with 20.1 and 9.8 HU respectively. Kidney showed the

least difference in MAE between scans with a standard deviation of

1.2 HU.

Table 2 reports SSIM and PSNR metrics, as well as the NCC of

our sCTs and dCTs versus our MR image ground truths. Our sCTs
FIGURE 2

Training workflow of the CycleGAN model.
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FIGURE 3

Deep learning architectures of the generator and the discriminator. The details of the ResNet block are shown on the right.
TABLE 2 Image quality metrics per site. NCC refers to normalized-cross-correlation, SSIM refers to structural similarity, and PSNR refers to peak
signal to noise ratio.

Value description Other Kidney Pancreas Liver Lung Bone Prostate All

Deformed NCC 0.769 0.825 0.827 0.839 0.826 0.803 0.707 0.818

Synthetic NCC 0.763 0.826 0.83 0.847 0.83 0.812 0.718 0.824

Median SSIM 0.974 0.978 0.969 0.974 0.967 0.965 0.976 0.971

SSIM std 0.002 0.002 0.016 0.008 0.015 0.003 0.002 0.013

Median PSNR 20.3 20.8 19.6 19.9 19.3 19 20.4 19.9

PSNR std 0.98 0.76 2.05 1.54 1.51 0.17 0.33 1.64

Number of frames 42 21 105 84 63 21 21 357

Number of patients 2 1 5 4 3 1 1 17
F
rontiers in Oncology
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TABLE 1 The mean absolute error (MAE) of our cycle-GAN model per site.

Value description Other Kidney Pancreas Liver Lung Bone Prostate All

MAE min (HU) 44.4 42.6 37.7 35.6 46.9 52.3 48.3 35.6

MAE median (HU) 49.4 44.7 47.6 44.4 55.6 55.2 51.4 49.2

MAE max (HU) 57.7 47 100.4 67.5 87.8 58.3 53.9 100.4

std (HU) 4.3 1.2 20.1 7.7 9.8 1.6 1.8 13.2

Number of frames 42 21 105 84 63 21 21 357

Number of patients 2 1 5 4 3 1 1 17
frontiersin.org
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demonstrate a higher (better) NCC value in comparison to

deformed CTs in all but one treatment site (Other). Although

differences were generally minimal, sCT NCC scores on bone,

prostate, and liver showed the largest improvements compared to

our deformable registration ground truths. Additionally, we report

high SSIM values across all sites, with a median SSIM value of 0.971.

Thus, the structural similarity between our sCTs and dCTs is near

perfect. Additionally, we report a median PSNR of 19.9 across all

sites. This high PSNR value indicates that the sCT is a good

representation of the dCT.
Frontiers in Oncology 07
Figure 4 presents selected images from the scans with the

lowest, median, and highest MAE (HU) from our test set.

Figure 5 shows zoomed in panel of spinal region of interest. We

compare sCT spinal reconstruction on lowest, median, and highest

HU MAE patients. As is evident in all three examples, our model

struggled to properly predict skin, bone, and limbs outside of the

torso region (arms). Difficulty predicting bone is consistent with

prior works (20, 21). Additionally, we view differences between the

sCT and dCT with regards to air bubbles. For example, in the

median HU images, we observe that our synthetic CT images
FIGURE 4

The lowest, median, and highest sCT mean average errors (HU) in the test set.
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correctly include air bubbles present in MR, whereas the deformed

CTs do not include said bubbles. However, from a qualitative

perspective, our sCT reconstructions are minimally different from

their deformed CT counterparts.
3.2 Dose comparisons

Table 3 reports the absolute difference of RT dose delivered to

PTV at 85%, 90%, and 95% of the volume based on RT dose

recalculations using our sCTs. Averaged sCT vs CT dose

volumetrics per site is shown in Figure 6. Our results indicate

minimal differences in dose delivered using sCTs. Median difference

in dose delivered to PTV across all sites is.45Gy,.47Gy, and.46Gy for

85%, 90%, and 95% of volume respectively. Additionally, we found

that dose above 33Gy delivered to OARs within 3cm of the PTV

also showed minimum differences between sCT and dCT RT dose

calculations. The median difference in dose delivered to 3cm OARs

minimally increased by 0.01 Gy after switching from sCT to dCT.

Additionally, 4 patients had no change in dose delivered to these
Frontiers in Oncology 08
sites, and 6 patients had less dose above 33Gy delivered to

these sites.
4 Discussion

This report presents strong results supporting an MRI-only RT

workflow. From a synthetic image quality perspective, our

CycleGAN implementation reports comparable or superior MAE

compared to prior studies conducted using a CycleGAN

architecture (18, 28). Additionally, our results indicate that

CycleGAN architecture generalizes well to several treatment sites

with minimal additional training data. For example, despite only

having 1 kidney, bone, and 3 prostate series each in our training

data, we still report a mean MAE of 50.4 HU across these sites. Also,

our overall median MAE of 49.2 HU is a strong result in

comparison to prior work. This improved synthetic image quality

may be a result of a larger dataset. Of the prior CycleGAN studies

performed, this study analyzed 86 patient scans, compared with 24,

45, and 38, patients in works from Wolterink et al. (20), Yang et al
FIGURE 5

Zoomed in panel of spinal region of interest. We compare sCT spinal reconstruction on lowest, median, and highest HU MAE patients.
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TABLE 3 DVH metrics per patient. Reports absolute difference between sCT and CT of dose delivered to 85%, 90%, and 95%.

Patient Site Gy diff@85% Gy diff@90% Gy diff@95% Diff OAR dose > 33gy

PT0049 OTHER 0.19 0.21 0.23 0

PT0059 KIDNEY 0.5 0.49 0.47 -0.16

PT0066 PANCREAS 0.23 0.14 0.09 0.07

PT0067 LIVER 0 0.06 0.01 0

PT0069 LIVER 0.48 0.56 0.47 0

PT0070 PANCREAS 1.56 1.16 1.21 -0.26

PT0074 LIVER 0.04 0.04 0.05 0

PT0075 LIVER 0.86 0.82 0.28 -0.18

PT0076 PANCREAS 0.7 0.7 0.45 0.65

PT0077 LUNG 0.16 0.04 0.42 0.98

PT0078 PANCREAS 0.12` 0.07 0.01 -0.19

PT0080 PANCREAS 0.19 0.12 0.21 0.08

PT0081 BONE 0.57 0.57 0.41 NAN

PT0082 PROSTATE 0.16 0.16 0.17 0.25

PT0083 LUNG 1.23 1.64 1.76 0.11

PT0084 LUNG 0.25 0.68 1.13 -1.11

PT0085 OTHER NAN NAN NAN -0.03

ALL ALL 0.45 0.47 0.46 0.01
F
rontiers in Oncology
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This table also reports the difference in dose delivered above 33Gy in 3cm OAR sites, where a negative value indicates that less dose above 33Gy was delivered with the sCT.
FIGURE 6

Averaged sCT vs CT dose volumetrics per site (dotted = sCT, solid = CT). The shaded region corresponds to the standard deviation between the sCT
and CT DVHs.
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(18), and Brou et al (28). Thus, given our superior reconstruction

results, we demonstrate that dataset size is paramount in creating

strong generative synthetic CT models.

Our treatment dose comparison also supports an MRI-only RT

workflow. Our 0.45 Gy, 0.47 Gy, and 0.46 Gy average difference in

dose delivered to PTV for 85%, 90%, and 95% of the volume

indicates that sCTs have minimal effects on dose delivered.

Additionally, NCC comparisons in Table 4 indicate that synthetic

CTs capture an equivalent to better representation of the MR scans

taken during treatment. Thus, we can extrapolate that synthetic CT

scans may present a more precise image to calculate RT dose with.

Exemplary of this claim are the air bubbles in the median MAE

frame of Figure 3. From a visual comparison to the real MR, we can

see that the synthetic CT better models air bubbles. Thus, the

synthetic CT is likely a better representation to use when

performing dose calculations. Another observed benefit of

synthetic CTs is the elimination of artifacts compared to

deformable CTs. Given that sCT generation is wholly dependent

on the MR image fed into the model, if this MR image has no

artifacts the resulting sCT will be artifact-free as well.

The key strength of using a deep learning model in synthetic CT

generation is speed. Conventional image registration techniques

rely on an iterative image update process. However, this process is

slow and requires lengthy computation, which is a bottleneck when

performing real-time dose calculation. On the other hand, our

deep-learning model is fixed after training and requires a single

forward pass to generate an output. Therefore, our DL model is

much more suited to real-time RT strategies.

Some limitations of our approach include limited frame to frame

cohesion on the axial plane. We observed that although primary

image structures and features remained fixed, there were some frame-

to-frame shifts in axial position along the extremities of each scan.

These shifts may have occurred because the CycleGAN architecture

trains on a single image at a time as opposed to a whole volume.

Therefore, the model has more difficulty learning frame to frame

continuance. Another observed limitation to our method is that our

model has difficulty predicting HU values for high-intensity regions.

For example, in Figure 4, we see that for all 3 image examples our
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model had difficulty reconstructing and predicting spine intensity

values. We believe that this is due to the intrinsic distribution of HU

values. Bone HU values are typically above 700, whereas all other

tissue HU values fall between -100 and 300 HU. Thus, distribution

imbalances may have led to difficulties predicting HU values for high-

intensity regions. Finally, we believe that some distribution-matching

losses may have caused anomalously shaped structures in certain

already hard-to-predict regions such as the spine. For example, the

spinal structure of all three sCTs in Figure 4 differs from their dCT

ground truths. Given their relative similarity to each other, we believe

that these differences may correspond to hallucinated features caused

by distribution-matching losses, a phenomenon previously observed

in Cycle-GAN based image translation (29).

Future work will involve two key advancements. Firstly, larger

and higher quality datasets must be created. Our study shows that

despite similar architectures; dataset scale improved our results in

comparison to prior studies. Additionally, we believe that on top

of scaling dataset, some incorporation of newer DL architectures

could improve results. For example, although some work has

already been done on MRI to CT conversion using diffusion

models (30), given the remarkable performance of diffusion

models in other image-processing domains (31), these models

are promising for a synthetic CT generation task. As our dataset

and compute resources grow, we plan to evaluate volumetric (3D)

CycleGAN variants to improve through-plane consistency and

integrate them into our framework.
5 Conclusions

In this study, we developed a deep learning algorithm based on

CycleGAN (24) to derive sCT from MRI. We have demonstrated

that the sCT provides comparable dose accuracy as the clinical CT.

Accuracy of deep learning based synthetic CT generation using

setup scans on MR-Linacs was adequate for dose calculation/

optimization. This can enable MR-only treatment planning

workflows on MR-Linacs, thereby increasing the efficiency of

simulation and adaptive planning for MRgRT.
TABLE 4 Quantitative evaluation of synthetic versus deformed images across multiple organs.

Value Description LIVER PANCREAS KIDNEY PROSTATE LUNG OTHER BONE ALL

Deformed NCC 0.827 0.825 0.817 0.685 0.827 0.759 0.808 0.815

Synthetic NCC 0.838 0.831 0.815 0.705 0.830 0.778 0.824 0.824

SSIM 0.967 0.966 0.974 0.953 0.967 0.969 0.956 0.966

SSIMSTD 0.028 0.052 0.038 0.079 0.010 0.017 0.009 0.040

PSNR 19.406 19.232 20.614 17.978 19.395 19.015 18.496 19.150

PSNR STD 2.050 2.649 1.685 3.367 1.539 1.418 0.923 2.235

Number of Frames 235 340 72 76 228 152 72 1175

Number of Patients 4 5 1 1 3 2 1 17
f

NCC stands for normalized cross-correlation. SSIM stands for structural similarity. PSNR stands for peak to signal noise ratio.
rontiersin.org

https://doi.org/10.3389/fonc.2025.1672778
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Asher et al. 10.3389/fonc.2025.1672778
Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.
Ethics statement

The studies involving humans were approved by Dartmouth-

Hitchcock Institutional Review Board. The studies were conducted in

accordance with the local legislation and institutional requirements.

Written informed consent for participation was not required from the

participants or the participants’ legal guardians/next of kin because

The study is a retrospective study based on previous patients’ data.
Author contributions

GA: Conceptualization, Formal Analysis, Methodology,

Writing – original draft, Writing – review & editing. SW:

Methodology, Writing – review & editing. BZ: Data curation,

Writing – review & editing. GR: Data curation, Writing – review

& editing. GG: Data curation, Writing – review & editing. CT: Data

curation, Resources, Writing – review & editing. TP: Methodology,

Writing – review & editing. YL: Funding acquisition, Writing –

review & editing, Validation. RZ: Supervision, Writing – review &

editing. YY: Funding acquisition, Supervision, Writing – review &

editing. BH: Methodology, Supervision, Writing – review & editing.
Funding

The author(s) declare financial support was received for the

research and/or publication of this article. This work was supported
Frontiers in Oncology 11
in part by funding from the Dartmouth-Hitchcock Medical Center

Department of Medicine through the Scholarship Enrichment in

Academic Medicine program.
Conflict of interest

The authors declare that the research was developed in the

absence of any commercial or financial relationship that could be

construed as a potential conflict of interest.

The author(s) declared that they were an editorial board

member of Frontiers, at the time of submission. This had no

impact on the peer review process and the final decision.
Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this

article has been generated by Frontiers with the support of artificial

intelligence and reasonable efforts have been made to ensure

accuracy, including review by the authors wherever possible. If

you identify any issues, please contact us.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
References
1. Cao Y, Tseng CL, Balter JM, Teng F, Parmar HA, Sahgal A, et al. MR guided
radiation therapy: transformative technology and its role in the central nervous system.
Neuro Oncol. (2017) 19:ii16–29.

2. Chin S, Eccles CL, McWilliam A, Chuter R, Walker E, Whitehurst P, et al.
Magnetic resonance-guided radiation therapy: a review. J Med Imaging Radiat Oncol.
(2020) 64:163–77.

3. Wang W, Dumoulin CL, Viswanathan AN, Tse ZTH, Mehrtash A, Loew W, et al.
Real-time active MR-tracking of metallic stylets in MR-guided radiation therapy.Magn
Reson Med. (2015) 73:1803–11.

4. Wooten HO, Rodriguez VL, Green OL, Kashani R, Santanam L, Tanderup K, et al.
Benchmark IMRT evaluation of a Co-60 MRI-guided radiation therapy system.
Radiother Oncol. (2015) 114:402–5.

5. Tenhunen M, Korhonen J, Kapanen M, Seppälä T, Koivula L, Collan J, et al. MRI-
only based radiation therapy of prostate cancer: workflow and early clinical experience.
Acta Oncol. (2018) 57:902–7.

6. Bohoudi O, Bruynzeel AME, Senan S, Cuijpers JP, Slotman BJ, Lagerwaard FJ,
et al. Fast and robust online adaptive planning in stereotactic MR-guided adaptive
radiation therapy (SMART) for pancreatic cancer. Radiother Oncol. (2017) 125:439–44.

7. Pollard JM, Wen Z, Sadagopan R, Wang J, Ibbott GS. The future of image-guided
radiotherapy will be MR guided. Br J Radiol. (2017) 90:20160667.

8. Hargreaves BA, Worters PW, Pauly KB, Pauly JM, Koch KM, Gold GE. Metal-
induced artifacts in MRI. AJR Am J Roentgenol. (2011) 197:547–55.
9. Edmund JM, Nyholm T. A review of substitute CT generation for MRI-only
radiation therapy. Radiat Oncol. (2017) 12:28.

10. Owrangi AM, Greer PB, GlideHurst CK. MRI-only treatment planning: benefits
and challenges. Phys Med Biol. (2018) 63:05TR01.

11. Liu Y, Lei Y, Wang T, Fu Y, Tang X, Curran WJ, et al. MRI-based treatment
planning for liver stereotactic body radiotherapy: validation of a deep learning-based
synthetic CT generation method. Br J Radiol. (2019) 92:20190067.

12. Arabi H, Dowling JA, Burgos N, Han X, Greer PB, Koutsouvelis N, et al.
Comparative study of algorithms for synthetic CT generation from MRI: consequences
for MRI-guided radiation planning in the pelvic region. Med Phys. (2018) 45:5218–5233.

13. Rank CM, Tremmel C, Hünemohr N, Nagel AM, Jäkel O, Greilich S. MRI-based
treatment plan simulation and adaptation for ion radiotherapy using a classification-
based approach. Radiat Oncol. (2013) 8:1–13.

14. De Vos BD, Berendsen FF, Viergever MA, Sokooti H, Staring M, Isǧum I. A deep
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