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Background:Non-squamous Non-small Cell Lung Cancer (NSCLC) is among the

most common lung cancers that are therapy-resistant. Telisotuzumab Vedotin

(Teliso-V), an antibody-drug conjugate (ADC), targets mesenchymal-epithelial

transition factor (c-MET) high cells, with minimum side effects. Additionally,

Artificial Intelligence (AI) aids in enhancing diagnosis, detection of mutations

and advancing personalized care. Teliso-V, with the assistance of AI technologies

such as radiomics, enhances efficacy against cancer.

Objective: To assess the combined role of Teliso-V and AI in enhancing

diagnosis, treatment, and outcomes in non-squamous NSCLC.

Method: This review emphasizes the value of Teliso-V and the contribution of AI

in enhancing the diagnosis and therapy of NSCLC. It is based on PubMed and

ClinicalTrials.gov trials over the past two decades.

Result: Teliso-V is effective in MET-high non-squamous NSCLC, yielding a

response of 34.6% in the LUMINOSITY trial. Moreover, the combination with

epidermal growth factor receptor inhibitors like Osimertinib and Erlotinib

enhances outcomes, but the combination with immunotherapy (Nivolumab)

provided negligible benefit. Moreover, AI has emerged as a powerful agent in

cancer management, helping with diagnosis, foretelling mutations, and refining

treatment regimens. It also maximizes Teliso-V use in NSCLC with improved

patient selection, the ability to predict MET status from imaging and pathology,

and the combination of circulating tumor DNA with radiomics for real-time

tracking. Additionally, in silico experiments and machine learning algorithms

optimize the sequence of treatment and reduce toxicity. Consequently, AI-driven

Clinical Decision Support Systems in electronic medical records facilitate

precision prescribing. Though challenges such as data bias and black-box
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decision-making occur, there is potential for AI to optimize personalized

NSCLC therapy.

Conclusion: Teliso-V is highly effective in MET-high NSCLC with tolerable side

effects. Its combination with AI holds the hope of early diagnosis, individualized

treatment, and intelligent ADCs of the future, but for this to manifest, clinical data

and biomarker improvements must materialize.
KEYWORDS

Telisotuzumab Vedotin (Teliso-V), artificial intelligence (AI), non-squamous non-small
cell lung cancer (NSCLC), c-MET overexpression, antibody-drug conjugate (ADC)
Introduction

Lung cancer is the most commonly diagnosed cancer, with

GLOBOCAN 2022 reporting approximately 2.5 million new cases

in 2022 (1). It also remains the leading cause of cancer-related

mortality worldwide, resulting in an estimated 1.8 million deaths

per year (2). Non-small cell lung cancer (NSCLC) is themost common

malignancy associated with lung cancer, accounting for approximately

84% of all cases, of which the non-squamous variety remains the

dominant type (3), and histological findings suggest that lung

adenocarcinoma (LUAC) is the most pre-dominant subtype of

NSCLC among the non-squamous variety (4). Most non-squamous

NSCLC cases are usually diagnosed at an advanced stage and are

typically associated with a poor prognosis (5). This demonstrates the

fact that conventional treatment regimens such as chemotherapy,

tyrosine kinase inhibitors (TKIs), and immunotherapies impose

several limitations such as drug resistance, toxicity, and variable

response rates, demanding the need for innovative therapeutic

strategies along with technical insights to detect the disease in its

early stages (6).

Over the years, NSCLC has undergone progressive pathological

changes, developing complex molecular mechanisms that drive

resistance to conventional therapies and underscore its marked

heterogeneity, which remains a major challenge to effective

diagnosis and treatment (7). Different patients may present with

tumors driven by distinct genetic alterations such as EGFR, KRAS,

or c-MET, each demanding a tailored therapeutic approach and

complicating management with standard treatment strategies (8).

Furthermore, recent studies highlight additional molecular drivers

of resistance and heterogeneity in NSCLC. For example, the

overexpression of the oncogene 5′–3′ exoribonuclease 2 (XRN2)

has been shown to enhance EGFR signaling, promote epithelial

mesenchymal transition (EMT), and facilitate metastatic spread,

thereby contributing to more aggressive phenotypes and

therapeutic resistance (9). Similarly, activation of the Wnt/b-
catenin pathway has been linked to PD-L1 overexpression, which

promotes immune evasion and resistance to EGFR-TKIs (10). Such

findings reinforce the urgent need for advanced targeted therapies

capable of overcoming these molecular escape mechanisms.
02
Therefore, recent advancements in modern healthcare, such as

targeted drug therapies, as well as the novel integration of

artificial intelligence (AI) in the screening, early detection, and

treatment of patients with non-squamous NSCLC, have been shown

to have decreased the mortality trends among the patients by 6.3%

annually from 2013 through 2016 (11). Additionally, the long-term

survival outcomes of these patients have significantly improved

from 8% in 2008 to 25% in 2020 (7).

Telisotuzumab Vedotin (Teliso-V), an anti-MET antibody-drug

conjugate (ADC) targeting EGFR-mutant, c-MET-overexpressing

non-squamous NSCLC, is proving to be one of the most promising

contributors to the declining mortality rates of these cases (12). It

comprises the monoclonal antibody telisotuzumab, conjugated to

the microtubule inhibitor monomethyl auristatin E (MMAE) via a

cleavable dipeptide linker (13). The c-MET protein, a

transmembrane tyrosine kinase receptor activated by its ligand,

hepatocyte growth factor (HGF), is essential for regulating various

cellular processes (14). Its overexpression has been linked to

approximately 50% of non-squamous NSCLC cases (15). Teliso-V

targets tumor cells overexpressing c-MET by binding with them and

releasing cytotoxic components designed specifically to target them,

thereby minimizing off-target toxicity as would be in the case of

conventional chemotherapy (16). Current studies highlight the

promising efficacy of Teliso-V and its future benefits in the

treatment of non-squamous NSCLC, emphasizing the key

advancements made in the field of precision oncology (17).

The integration of AI in the field of precision medicine has

revolutionized the way healthcare professionals approach lung

cancer, and it is proving to be a key driver in the increased efficacy

of patients suffering from non-squamous NSCLC (6), as it plays a

crucial role in cancer diagnosis as well as imaging, efficacy evaluation,

survival prediction, early detection and histopathological findings (18).

Moreover, AI models can efficiently process substantial amounts of

data, providing clinicians with improved diagnostic accuracy to treat

cancer patients via a combination of different algorithms such as

machine learning (ML) and deep learning (DL) models for mutation

prediction and automated analysis of complex imaging and genomic

datasets (19), radiomics for quantitative assessment of tumor

heterogeneity from radiological scans (20), multi-omics integration
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for combining genomic, proteomic, and imaging data (21), natural

language processing (NLP) for extracting insights from clinical

narratives (22), and in silico trials for simulating patient-specific

treatment outcomes (23). By using specific AI-driven tools like

trained neural networks and support vector machine classifiers, AI

enables efficient analysis of radiological and molecular profiles of

patients having unique biomarkers and genetic mutations, including

EGFR-mutant and c-MET overexpressing genes (24, 25). AI assists in

targeting NSCLC patients by non-invasively predicting c-MET

overexpression status; DL models applied to hematoxylin and eosin

(H&E) stained histopathology slides help in the classification and

mutation prediction of NSCLC (26) as well as radiomics enables the

extraction of high dimensional quantitative image features from

routine imaging such as CT or PET scan that can capture tumor

heterogeneity, enabling precise patient selection and stratification for

targeted drug therapies while reducing the need for invasive biopsies

(27). Thus, these technical insights can be useful in the treatment of

non-squamous NSCLC by complementing them with modern

treatment options like Teliso-V, through identifying the disease

early in its stage and providing suitable personalized dosing

regimens to minimize limitations.

In order to tackle the challenges and obstacles imposed by non-

squamous NSCLC, there is an urgent need to explore new,

advanced, targeted, and personalized treatment strategies. Thus,

by incorporating the use of AI in the management of these cases,

optimal therapeutic effects may be achieved from targeted drug

therapies like Teliso-V. This narrative review aims to provide a

comprehensive overview of the pharmaceutical insights provided by

Teliso-V along with the technical advancements made by AI in the

management of non-squamous NSCLC and explore how these

innovations are leading us to a new era of precision medicine.
Methodology

In this narrative review, we aimed to explore the management of

NSCLC by using Teliso-V and AI. We examined the pharmacologic

profile and clinical outcomes of Teliso-V. We also found out how AI

can improve diagnosis. In addition, it also discusses how AI can

help in patient selection and personalized treatment strategies.

Further evaluated whether it improved therapeutic efficacy or not.

This review examined articles from PubMed and Google Scholar

over the past two decades. Moreover, additional data were retrieved

from clinical trial websites (e.g., ClinicalTrials.gov) and from

regulatory authorities. This includes the U.S. Food and Drug

Administration (FDA) and the European Medicines Agency

(EMA), include the latest available information on Teliso-V and

AI. Searching included a combination of relevant words and MeSH

terms. These include “Telisotuzumab Vedotin (Teliso-V)”, “non-

squamous NSCLC”, “c-MET overexpression”, “antibody-drug

conjugate (ADC)”, “machine Learning” and “in silico trials”.

Inclusion criteria comprised randomized controlled trials,

systematic reviews, meta-analyses, observational studies, clinical
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guidelines, and high-quality narrative reviews. Eligible studies

were required to be published in peer-reviewed journals and

written in English. These studies should report on Teliso-V or AI

applications in NSCLC. Exclusion criteria included studies on

squamous cell carcinoma and pediatric patients. Furthermore,

non-human models, or conference abstracts without full data

were excluded too. Titles and abstracts were screened for

relevance. Full texts of potentially eligible articles were reviewed

to ensure they met the inclusion criteria. 107 studies met the

eligibility criteria and were included. Articles were chosen for

their importance and science. Studies were also selected if they

add value to the understanding of clinical, microbiological, and

pharmacological characteristics of Teliso-V. Additionally, studies

demonstrating the potential of AI-enhanced application of

Telisotuzumab Vedotin (Teliso-V) in the targeted management of

NSCLC were selected.
Telisotuzumab Vedotin: mechanism
and clinical development

Telisotuzumab Vedotin (Teliso-V), previously known as

ABBV-399, is a novel ADC developed for the treatment of

NSCLC (28). It is composed of the humanized monoclonal

antibody ABT-700 conjugated to the monomethyl auristatin E

(MMAE), a cytotoxic agent, through a cleavable valine–citrulline

linker, forming an ABT-700–vcMMAE (28, 29).

The mesenchymal-epithelial transition factor (c-MET) is a

receptor tyrosine kinase found on epithelial cells. It plays an

important role in regulating wound healing and tissue remodeling

processes under normal physiological conditions (30, 31). When

HGF binds to the c-MET receptor, it induces dimerization and

autophosphorylation of the receptor at tyrosine residues.

Additionally, it creates docking sites for various signaling

molecules like GRB2, PI3K, and STAT3 and triggers various

pathways for the growth, proliferation, and survival of cells (31).

MET, a proto-oncogene, encodes c-MET, which is composed of a
and b chains linked by disulfide bonds. The b chain contains the

signaling domain. HGF is activated by proteolysis and initiates the

downstream signaling pathways. MET exon 14 encodes a regulatory

juxta membrane domain that limits MET signaling. The mutation

and deletion of this gene prevent proper receptor degradation,

causing sustained MET activation and promoting uncontrollable

cell proliferation and tumor growth (32, 33).

Overexpression and dysregulation of c-MET are frequently

observed in NSCLC and are considered important therapeutic

targets. In a study of NSCLC cases, 17% of tumors showed MET

overexpression and 2.4% of patients had MET amplification.

Overexpression was common in adenocarcinomas and female

patients (34). Another study showed that NSCLC patients

expressed HGF-a (67.3%), c-Met (74.3%), and VEGF-C (65.5%),

significantly higher than the normal lung tissue levels (20.4%,

23.0%, and 23.9%, respectively) (35). Another study showed 95%
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of NSCLC patients had varying levels of c-MET expression, with

27% (+), 36% (++), and 32% (+++). Among genetically tested

patients, epidermal growth factor receptor (EGFR) mutations were

the most common (49%), followed by wild-type (37%) (36).

As described above, Teliso-V binds with high affinity to tumor

cells expressing c-MET. Upon binding, the ADC is internalized by

the tumor cells and delivers the MMAE directly into the cell.

MMAE is released intracellularly by the proteolytic cleavage of

the valine–citrulline linker. It then binds to tubulin protein,

disrupting mitosis and causing the tumor cells’ death (28, 29).

ABT-700 has shown limited efficacy in tumors that overexpress c-

MET without gene amplification, whereas it’s combination with a

valine–citrulline linker and MMAE in Teliso-V has demonstrated

significantly higher efficacy. However, Teliso-V remains effective in

c-MET expressing tumors regardless of MET gene amplification

status. ABT-700 has been evaluated by enzyme-linked

immunosorbent assay (ELISA) and fluorescence-activated cell

sorting (FACS) to examine its binding characteristics. ABT-700

binds to c-MET with an affinity of 0.22 nanomolar and shows

comparable binding to c-MET from cynomolgus monkeys, but not

to mouse-derived c-MET. Furthermore, both hepatocyte growth

factor (HGF)-dependent and HGF-independent c-MET signaling

are blocked by ABT-700 (28).

A study showed that XRN2 overexpression increased cluster of

differentiation 31 (CD31) levels in lung metastatic lesions.

Additionally, XNR2 promoted migration, invasion, and epithelial–

mesenchymal transition (EMT). This triggered epidermal growth

factor receptor (EGFR) phosphorylation, activating its downstream

signaling pathway (9). In NSCLC cells, normal (wild-type) EGFR can

also trigger the phosphorylation and activation of c-MET (37).

Hence, teliso-V by blocking c-MET signaling, may reduce the

downstream effects of XRN2. This makes the tumor less able to

invade, metastasize, or form new blood vessels. Autophosphorylation

of c-MET can activate the Extracellular signal-regulated kinase (ERK)

(38). ERK, in turn, phosphorylates Oncoprotein 18 (Op18)/stathmin,

a protein that controls microtubule stability through

phosphorylation, affecting cell behavior and survival. Teliso-V

blocks c-MET, indirectly reducing (Op18)/stathmin activity and

causing cell death (39). Therefore, teliso-v may help overcome

Taxol resistance, a drug that exerts its cytotoxic effects partly by

targeting Op18/stathmin and inducing apoptosis.

Several trials and studies have been conducted to evaluate the

use of Teliso-V in the treatment of NSCLC. A phase I study showed

that Teliso-V at 2.7 mg/kg was tolerable with manageable toxicities.

Some efficacy was observed in c-Met–positive NSCLC (13). Another

phase I trial showed Teliso-V was well tolerated. At recommended

doses (≥1.6 mg/kg Teliso-V once every 2 weeks), it showed a 23%

response rate with durable responses (16). Moreover, the Phase II

LUMINOSITY trial evaluated Teliso-V in patients with NSCLC

with c-MET overexpression and showed that Teliso-V produced

durable responses in patients, particularly in those with high c-MET

expression (40). Additionally, three phase Ib trials also showed the

effectiveness of the combination of Teliso-V with erlotinib,

osimertinib and nivolumab in the treatment of NSCLC (41–43).

All of these combinations are well-tolerated. As shown in Figure 1.
Frontiers in Oncology 04
Artificial intelligence in NSCLC
treatment optimization

Artificial intelligence (AI), more specifically through machine

learning (ML) and natural language processing (NLP), is

transforming the care of NSCLC by greatly improving the

accuracy of histological subtype classification, molecular profiling,

and treatment personalization (44). Integration of AI into

radiomics, genomics, and pathology interpretation is

transforming traditional workflows to provide more precise,

efficient, and personalized care. Radiomics transforms imaging

information—e.g., CT or PET/CT scans—into high-dimensional,

quantifiable features with automated algorithms. Such models can

non-invasively extract subtle intra- and peri-tumoral features,

providing reproducible and cost-efficient insights into lung cancer

and its tumor microenvironment (45). Radiomics-enabled ML or

DL models are currently well established in every phase of lung

cancer management—diagnosis, staging, treatment planning, and

prognosis—with performance equal to or even superior to that of

radiologists (46). In the field of genomics, AI facilitates early

prediction of driver mutations like EGFR and KRAS. EGFR

mutations are associated with improved response to erlotinib and

gefitinib, while KRAS mutations indicate therapeutic resistance.

Early detection of these mutations using AI-based, image-guided

prediction allows targeted therapy and enhanced outcomes. While

conventional methods are effective, they tend to be invasive and

time-consuming. In contrast, AI-based image-guided mutation
FIGURE 1

Mechanism of action of Telisotuzumab Vedotin.
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prediction offers a promising, less invasive alternative (20). In

pathology, AI aids in the evaluation of biopsy and resection slides

to subtypes such as LUAD that require unique treatment strategies.

According to studies, image features learned through AI can be used

to predict prognosis and support personalized care (47). AI is also

applied to non-invasive diagnostics, such as electronic noses

(e-noses) that detect NSCLC from volatile organic compounds in

breath, with advanced models like SIR-3DCNN optimizing sensor

arrays and using 3D convolutional networks, achieving 100%

sensitivity and 92.94% accuracy, demonstrating potential for

early, real-time lung cancer detection (48). Therefore, AI greatly

improves diagnostic accuracy, clinical workflows, and precision

oncology in NSCLC.

Immunotherapy has revolutionized the management of

NSCLC, but not all patients are equally benefited (49). Pooled

analyses of randomized trials show that neoadjuvant or

perioperative immunotherapy improves pathological response

rates and clinical outcomes in resectable NSCLC. Subgroup

analyses suggest benefits for different patient populations, which

supports its potential as a standard perioperative strategy (50).

Predictive biomarkers are necessary to determine responders.

Immune checkpoint inhibitors (ICIs) against PD-1/PD-L1 have

emerged with striking survival advantages in clinical trials, with PD-

L1 as the prime biomarker. The evaluation of PD-L1 by

immunohistochemistry (IHC) is plagued by interobserver

variability, influencing treatment choice. As a solution, AI and

digital pathology provide standardized tools for precise PD-L1

assessment (51). Likewise, tumor mutational burden (TMB),

another immunotherapy biomarker, cannot be effectively assessed

by whole-exome sequencing because of its cost and complexity. To

address this challenge, AI-driven models such as Image2TMB can

predict TMB from standard histopathology images (52). In

addition, defining the tumor microenvironment (TME), a factor

that plays an essential role in tumor progression and response to

treatment, is hampered by conventional approaches. In this regard,

AI combines disparate data sources, such as imaging and omics, to

evaluate the TME more effectively. Moreover, DL enables AI to

chart immune cell distribution, reveal biological patterns, and

facilitate personalized treatment planning (53).

In silico trials, also known as virtual trials, are computer-

simulated clinical studies designed to evaluate the safety and

effectiveness of treatments through computer simulation and

modeling. They have been stimulated by the rapid growth in AI

and precise computational models (23). The In-silico trials

synthesize patient-specific and disease-specific data to generate

individualized virtual cohorts by drawing on real-world clinical-

genomic data. These systems mimic human pathology and

physiology, such as genetic differences influencing clinical

responses. In this aspect, AI allows for the merging of 3D

anatomical shapes, biochemical pathways, and gene networks. In

addition, Causal AI methods mimic control and efficacy arms,

direct patient recruitment, titrate regimens to optimize, and

facilitate precision subgroup analysis (54). While targeted

therapies have enhanced survival in patients with NSCLC and

actionable biomarkers, the relative 5-year survival rate for all
Frontiers in Oncology 05
patients is less than 20%. Historically, biomarkers have been

found utilizing linear statistical methods and are presumed to be

mutually exclusive in clinical decision-making. Recent data indicate

that more than one actionable biomarker can exist within a single

tumor and thus requiring models that are able to recognize linear

and non-linear patterns. AI/ML algorithms provide this flexibility

and have promise in biomarker discovery from high-dimensional

data. A few AI-powered devices already have Food and Drug

Administration’s (FDA) approval for performing activities such as

tissue segmentation by machine and feature extraction from lung

CT scans. Deep learning (DL) techniques also advance whole-slide

image analysis in digital pathology (55). AI pre-screening with

digitized H&E slides can potentially enhance MET detection and

decrease dependence on precious IHC and tissue samples. For

example, a convolutional neural network (CNN)-based deep

learning model that accurately predicted MET overexpression in

lung adenocarcinoma from routine histopathology slides (56).

Similarly, a logistic regression model using radiomics-style

morphological features (cell shape, texture, grayscale intensity)

extracted from whole-slide images, achieving an AUC of 0.77 for

identifying MET amplification and exon 14 skipping alterations

(57). Table 1 below summarizes AI applications in NSCLC showing

diagnosis, biomarker prediction and treatment optimization.

ML software can contain biases that amplify stereotypes and

healthcare inequities based on imperfections in electronic health

records that are tied to race, gender, age, insurance, and

socioeconomic status. Those biases impact big groups of people

around the world, with profound social and economic implications

(58). One of the biggest worries is the “black box”model of medical

AI—its decision-making process is inscrutable, so patients, doctors,

and even the developers of the software often have no

understanding of how treatment recommendations are generated.

This unexplainability will potentially do more harm than human

error, as it undermines patient autonomy to participate in shared

decision-making and causes tremendous psychological and

financial tolls on patients (59, 60). AI technologies, although in

their nascent stage, are gaining much attention in oncology for their

capability to personalize the management of NSCLC, as they

address the complexity of the disease and facilitate data-driven,

informed decision-making. Challenges remain despite such efforts,

but validation across institutions and populations is crucial to

facilitate real-world clinical adoption (45).
Clinical efficacy of Teliso-V and AI

As mentioned above, c-MET protein, a transmembrane

receptor tyrosine kinase, is overexpressed in approximately 50%

of NSCLC patients. Teliso-V is an ADC that targets c-MET to treat

NSCLC (12). Its efficacy is shown in MET-high NSCLC patients in

phase I and II trials, particularly in non-squamous EGFR- wildtype

subgroup, as summarized in Table 2.

The key trial that evaluated the efficacy of Teliso-V is the phase

II LUMINOSITY trial, where 172 patients with non-squamous

EGFR-wildtype were treated with Teliso-V in 2 stages, with a
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median follow-up of 20.2 months in c-MET high patients. In stage I,

patients with c-MET overexpressing NSCLC were identified,

whereas in stage II the efficacy was evaluated by administering

Teliso-V at 1.9 mg/kg once every 2 weeks (q2w). The primary
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endpoint, objective response rate (ORR) was 28.6% overall, with

34.6% for c-MET high and 22.9% for c-MET intermediate.

Meanwhile, the secondary endpoints included progression-free

survival (PFS) of 5.7 months overall, with 5.5 and 6.0 months for
TABLE 1 Summary of AI applications in NSCLC.

Domain AI application Examples/Models Advantages

Diagnosis
Radiomics (CT,
PET/CT)

Radiomics-enabled ML/DL models
Non-invasive, reproducible, cost-efficient; improves diagnosis, staging,
treatment planning, prognosis; equal/superior to radiologists

Pathology
AI evaluation of biopsy/resection slides; LUAD
classification; AI-learned image features predicting
prognosis

Improves diagnostic accuracy, supports personalized care

Non-invasive
diagnostics

Electronic noses (e-noses), SIR-3DCNN, 3D CNN
Optimized sensor arrays (22→8); converts multivariate time series
(MTS) to MTMIs; achieves 100% sensitivity, 92.94% accuracy; enables
early, real-time NSCLC detection

FDA-approved tools
AI-powered devices approved for tissue segmentation
and CT feature extraction

Streamlines workflows

Biomarker
Prediction

Genomics
AI predicting EGFR and KRAS mutations from
imaging

Early, less invasive, faster than conventional methods; enables targeted
therapy and better outcomes

Immunotherapy
biomarkers

- PD-L1: AI/digital pathology for standardized
assessment
- TMB: Image2TMB predicting TMB from
histopathology

Reduces interobserver variability in PD-L1 IHC; avoids costly/complex
WES for TMB

Predictive
biomarkers for
therapy response

Pooled analyses of randomized trials with AI
integration for neoadjuvant or perioperative
immunotherapy

Determines responders; improves pathological response rates and clinical
outcomes; supports standard perioperative strategy; benefits different
patient subgroups

Tumor
Microenvironment
(TME)

AI integrating imaging + omics; DL for immune cell
distribution

Defines TME more effectively; reveals biological patterns; aids
personalized treatment planning

Biomarker Discovery
AI/ML detecting >1 actionable biomarker within
single tumor

Recognizes linear & non-linear patterns; flexible vs linear statistics

Treatment
Optimization

In-silico Trials
AI-driven virtual trials; causal AI methods for
patient recruitment, regimen titration, subgroup
analysis

Individualized virtual cohorts; mimics human pathology/physiology;
facilitates precision medicine

Pre-screening AI using digitized H&E slides for MET detection Enhances MET detection; decreases dependence on IHC/tissue samples

Digital Pathology DL advancing whole-slide image analysis Enables precise feature extraction
TABLE 2 Summary of key clinical trials of Telisotuzumab Vedotin in NSCLC.

Trial name Phase Patient type ORR (%) PFS (months) OS (months) References

LUMINOSITY II
c-MET+, non-squamous
EGFR-wildtype NSCLC

28.6 (overall); 34.6 (c-MET
high); 22.9 (c-MET

intermediate)

5.7 (overall); 5.5 (c-MET
high); 6.0 (c-MET
intermediate)

14.5 (40)

First-in-Human
Dose Escalation

Study
I Advanced NSCLC – – – (13)

Study of 2 or 3-
week Dosing

I c-MET+ NSCLC 22 5.2 – (16)

Teliso-V +
Osimertinib

Ib
c-MET+, EGFR mutant

advanced NSCLC
50 7.4 – (42)

Teliso-V +
Erlotinib

Ib
EGFR mutant, c-MET+

NSCLC
30.6 (Total); 32.1 (EGFR+);

62.5 (MET-advanced)
5.9 – (41)

Teliso-V +
Nivolumab

Ib Advanced NSCLC 7.4 7.2 – (43)
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c-MET high and intermediate, respectively. The median overall

survival (OS) of 14.5 months and the duration of response (DOR) of

8.3 months (40).

Prior to that, a phase I First-in-Human Dose-Escalation trial

assessed the dosage and scheduling. Teliso-V was given as

monotherapy intravenously at 3.0 mg/kg and 3.3 mg/kg once

every 3 weeks (q3w) to 9 and 3 patients, respectively, with one in

each category experiencing dose-limiting toxicity. However, it was

well-tolerated at 2.7 mg/kg q3w and hence it was the recommended

phase II dose (RP2D) (13). Another phase I trial evaluated Teliso-V

monotherapy given either q2w (1.6-2.2 mg/kg) or q3w (0.15-3.3

mg/kg), in 28 and 24 patients, respectively, out of a total of 52

NSCLC patients. Of these, 40 were c-MET+ and included in the

efficacy-evaluable population. On the basis of safety and antitumor

activity in c-MET+ NSCLC shown, RP2D was established at 1.9 mg/

kg q2w and 2.7 mg/kg q3w. The median PFS was 5.2 months and

ORR in c-MET H-score ≥ 150 patients was 22%, underscoring the

importance for MET stratification (16).

Combination strategies were established and evaluated as part of

the phase Ib trials. When given in combination with osimertinib

(80 mg OD), Teliso-V (1.6 mg/kg or 1.9 mg/kg), resulted in an ORR

of 50% and median PFS of 7.4 months, in 38 patients, even showing

effectiveness in osimertinib-refractory cases (42). Another study with

erlotinib (150 mg OD) in 42 EFGR-mutation NSCLC patients

demonstrated an ORR of 30.6% overall; 32.1% in EGFR+ and 62.5%

in MET-advanced subgroup, along with a median PFS of 5.9 months

and disease-control rates (DCR) of 86.1% in EGFR+ and 100% in

MET-advanced subgroup (41). However, phase Ib trial combining

Teliso-V (1.6, 1.9 or 2.2 mg/kg q2w) with nivolumab (3 mg/kg,

240 mg), an ICI, did not show a promising result with an ORR of

7.4% and median PFS of 7.2 months in 27 patients. This shows the

combined strategy did not improve outcomes as the pharmacokinetic

profile was similar to Teliso-V monotherapy, despite the theory that

Teliso-V-induced tumor death should improve antigen release and

work well with PD-1 inhibition. The lack of PD-L1-based patient

selection and low baseline T-cell infiltration in MET+ malignancies

may be the cause of the limited effect. The overall benefits were less

and the side effects remained (43). When assessing potential

immunotherapy combinations, our results highlight the necessity of

biomarker-driven methodologies and logical trial design, such as

integrating immune-infiltration profiling or dynamic biomarkers.

Across multiple trials, the most common adverse events (AE)

include peripheral sensory neuropathy, nausea, decreased appetite,

vomiting, peripheral edema and fatigue (13, 16, 40). Grade ≥ 3 AEs

were less frequent but included peripheral neuropathy (7% in

LUMINOSITY), anemia, fatigue, hypoalbuminemia and fatigue,

(4% each in phase I) and pulmonary embolism (8% in

combination with osimertinib and 14% with erlotinib) (13, 40–

42). In comparison of dosing schedules, q2w dosing regimens had

higher rates of AEs including neuropathy and resulted in dose-

reduction in 25% and interruption in 54% patients as compared to

q3w regimen which resulted in dose-reduction in 13% and

interruption in 38%, respectively (16).

Treatment discontinuations were not uncommon with 21.5% in

LUMINOSITY trial due to AEs like peripheral sensory neuropathy
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(7%) and pneumonitis (7.6%) (40). Moreover, discontinuations were

also reported in nivolumab combinations due to dose-limiting toxicity

and in combination with erlotinib due to neuropathy (26%) (41, 43).

This outlines the need for optimum dosing regimens to minimize the

toxic findings.

While most of the trials gave evidence for Teliso-V’s clinical

benefit, LUNG-MAP S1400K study, which enrolled patients with c-

MET+ squamous NSCLC, reported that DCR was 52% and the PFS

and OS were 2.4 and 5.6 months respectively, showing limited

efficacy in the squamous subtype. Thus, the study supports the

effectiveness of Teliso-V in the non-squamous subtype but not the

squamous (61).

Artificial Intelligence (AI) is a newly emerging tool in treatment

of NSCLC; from therapy selection to prediction of responses, AI has

multidimensional benefits. DL models have shown potential in

predicting response to ICI in advanced NSCLC patients using

H&E stained slides. Area under curve (AUC) for ORR prediction

were 0.75 in internal test and 0.66 in validation cohort. Moreover,

DL models have proven to be beneficial over TMB, tumor-

infiltrating lymphocytes (TILs) and PD-L1, and when combining

with PD-L1, the AUC upgraded to 0.70 and the response rate to

51%, supporting multi model approach (62).

Circulating tumor DNA (ctDNA) assessed via mPCR-based assay

has shown a strong association between detection and relapse risk in

early-stage NSCLC, and hence shows a potential for early risk

stratification and real-time monitoring (63). Another trial integrated

blood-based TMB (bTMB) with DL model and ctDNA clearance

showing improved AUC of 0.820 as compared to 0.703 (DL model

alone) in predicting response to neoadjuvant immunotherapy (64).

TMB radiomic biomarkers (TMBRB) have shown potential in

predicting TMB and response to immunotherapy, with AUC of 0.85

(training) and 0.81 (validation). Moreover, combining with Eastern

Cooperative Oncology Group (ECOG) improves performance

status and shows a better prediction of OS (p=0.007) and PFS

(p=0.003) (65). Additionally, combination of radiomics (Rad), DL

and Clinical with an AUC of 0.88 is an emerging non-invasive

approach for presurgical decision-making in NSCLC (66).

AI models have also demonstrated capability in defining dosing

schedules and predicting toxicity in NSCLC patients using machine

learning (ML) (67). Another model derived from ML, mass-

spectrometry based proteomic signatures, demonstrated improved

PFS and OS in NSCLC patients treated via immunotherapy, proving

it has the potential for better survival outcome (68).

There are certain drawbacks that affect the implementation of

Teliso-V and AI despite their numerous benefits. Most Teliso-V

trials have a limited sample size, exploratory nature, and exclude the

comparator arms (13, 40). Moreover, c-MET+ had a predefined H-

score of ≥ 150, limiting the patient number (16). Additionally,

achieving AUC score of above 0.8 was difficult in all DL models,

indicating the need of refinements to enhance accuracy. A major

challenge faced by AI models in oncology is validation when the

performance declines in external cohorts as compared to internal

training sets (62). In addition, many models are trained on narrowly

defined or single-institution datasets, limiting dataset diversity and

reducing applicability across different patient populations (64). This
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highlights the concerns regarding generalizability and widespread

adoption of these models. Furthermore, TMBRB was assessed in

patients with early-stage NSCLC; further studies are needed

to identify TMB levels among patients with advanced NSCLC and

to explore the clinical utilization of ctDNA to advise

management (65).
Combining Teliso-V and AI for
improved outcomes

Artificial intelligence (AI) brings an innovative approach in patient

selection for Teliso-V, especially effective in NSCLC patients with MET

overexpression orMET exon 14 skippingmutations. In a Phase I study,

Teliso-V illustrated an ORR of 23% in MET-positive NSCLC patients,

with a median DOR of 8.7 months, highlighting the need for accurate

patient classification (16). Conventional diagnostics like IHC and PCR

are usually limited due to tumor heterogeneity and observer bias (69).

In this regard, AI, particularly ML and DL, enhances selection by

integrating multi-omics data, i.e., genomics, transcriptomics,

proteomics, imaging, and clinical records into predictive models (70).

Most of these investigations have been retrospective in design, usually

using datasets such as The Cancer Genome Atlas Program (TCGA)

(71). Besides that, Convolutional Neural Networks (CNNs) have

been used in pathology slides for mutation prediction, while

ensemble methods like random forest (RF) and gradient tree

boosting (XGB) are commonly used in radiomics for response

classification (26, 72). Additionally, reinforcement learning methods,

particularly deep Q-learning, have been investigated in silico for

adaptive therapy sequencing. For instance, in NSCLC, a quantum

deep reinforcement learning framework that uses deep Q-networks in a
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virtual radiotherapy setting has been shown to improve dose

adaptation decisions, improving local control and reducing treatment

toxicity (73).

Studies reveal that DL models help in predicting MET RNA

overexpression directly from H&E-stained pathology slides with

high accuracy, providing non-destructive, scalable screening tools

(56). Furthermore, modern DL frameworks such as the SIR-

3DCNN model, which applies 3D convolutional neural networks

to multivariate time-series imaging data, show the potential for

dynamic AI-based classification in the detection of lung cancer (48).

Similarly, ML-driven radiomics improves selection by identifying

subtle imaging and clinical features associated with treatment

response (74). Combination of multi-omics data often depends

on fusion strategies like autoencoders or late-fusion neural

networks, to harmonize genomic, transcriptomic, and proteomic

inputs into joint embeddings (75). Moreover, radiomic features

including tumor heterogeneity, edge sharpness, and entropy are

extracted from CT or PET scans and classified using algorithms

such as SVMs or XGBoost (76). Additionally, many of these

approaches have been validated externally on independent

NSCLC cohorts, including TCGA and international radiogenomic

repositories, revealing that the results are consistent and applicable

in different contexts (77). These AI-enabled approaches reduce

empirical treatment decisions, maximizing therapeutic benefit and

advancing the paradigm of precision oncology.

Additionally, the combined use of AI and Teliso-V in NSCLC

treatment has been demonstrated below in Figure 2.

In NSCLC, the conventional Response Evaluation Criteria in

Solid Tumors (RECIST) is usually unable to detect early or atypical

responses to ADCs like Teliso-V, especially in case of necrosis or

delayed tumor shrinkage (78). Combining ctDNA analysis with AI-
FIGURE 2

The synergistic integration of AI and Teliso-V in NSCLC treatment.
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supported imaging provides a strong, non-invasive approach.

Studies suggest that serial ctDNA profiling using next-generation

sequencing (NGS) in MET-positive NSCLC patients who are being

treated with Teliso-V reveals real-time mutational changes and

aligns with treatment response, promoting its use in tracking tumor

evolution (79) Besides this, a meta-analysis evaluating over 3,000

advanced NSCLC patients confirmed that ctDNA clearance during

therapy strongly predicted improved PFS and OS (80).

Additionally, radiomics enables the extraction of quantitative

features, such as tumor texture and heterogeneity, from CT or

PET-CT scans, and AI algorithms can detect early imaging changes

before anatomical size reductions occur. Moreover, a study of

NSCLC patients undergoing chemoradiotherapy further revealed

that when combined, ctDNA and radiomics improve the accuracy

of prediction (81).

Furthermore, Teliso-V has shown potential in NSCLC

treatment when combined with other modalities such as immune

checkpoint inhibitors, i.e., anti-PD-1, chemotherapy, or EGFR-

TKIs (43). Preclinical models and early-phase trials reveal that

Teliso-V may synergize with immune therapies by increasing tumor

immunogenicity through ADC-induced cell death and antigen

release, potentially priming tumors for immune activation (43).

Nevertheless, adverse events remain a concern. In Teliso-V

monotherapy, the most frequent grade ≥3 toxicities include

peripheral neuropathy, neutropenia, and pulmonary adverse

events such as interstitial lung disease (40). When combined with

checkpoint inhibitors such as nivolumab, Teliso-V has been

associated with overlapping toxicities, including pulmonary

embolism, colitis, hypertension, fatigue, and peripheral

neuropathy, highlighting the need for careful sequencing and

monitoring in combination regimens (43). Additionally, AI-based

Clinical Decision Support Systems CDSS platforms may help

mitigate these risks by integrating labs, imaging, and patient-

reported data to trigger early safety alerts (82). However, the

timing and order of drug administration are important;

inadequate sequencing may lead to resistance or increased

toxicity. As a solution, an in silico platform powered by DL and

quantitative systems pharmacology (QSP) can simulate thousands

of treatment combinations and dosing sequences using patient-level

data from clinical trials and electronic health records. These

simulations help in determining optimal regimens with minimal

toxicity and maximum efficacy (83, 84). Furthermore, ML models

using acute phosphoproteomic responses predicted NSCLC drug

sensitivity better than the traditional biomarkers, while predicted

drug combinations matched experimental Bliss synergy scores,

supporting the role of ML-guided proteomics in optimizing

therapies such as Teliso-V (85). Additionally, deep Q-learning

techniques enable adaptive treatment sequencing, dynamically

adjusting regimens in silico as resistance develops (86).

Effective use of Teliso-V in NSCLC demands adequate

sequencing with biomarkers such as MET overexpression, as

inappropriate administration in MET-negative tumors may result

in no therapeutic benefit but increase toxicity risk, especially

pulmonary adverse events (40). To support accurate prescribing,

AI-enhanced CDSS combined with Electronic Medical Records
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(EMRs) can standardize Teliso-V use at the point of care. These

systems automatically alert clinicians to order MET IHC or NGS

testing when NSCLC is diagnosed, and flag eligibility for Teliso-V

based on biomarker status and treatment history. Advanced CDSS

modules can also screen for contraindications, such as prior lung

conditions, and monitor for emerging adverse events by integrating

real-time lab and clinical note data (87). In a broader oncology

context, CDSS tools have been shown to increase adherence to

biomarker-directed therapies and reduce prescription errors by

over 30% (87). From a regulatory standpoint, several AI-based

diagnostic tools have already been approved under the FDA’s

Software as a Medical Device (SaMD) framework, especially in

radiology and pathology (82). However, AI platforms designed for

Teliso-V eligibility or sequencing are still under investigation as

regulatory agencies like the FDA and EMA stress the importance of

transparency, external validation, and clinician oversight before

these tools can be used clinically (88). Therefore, AI-based

applications in oncology, including potential (CDSS) for Teliso-V,

should be seen as supportive tools rather than independent

decision-makers (89). As AI models evolve, these systems will

increasingly personalize dosing, sequence therapies, and suggest

trial options based on dynamic patient profiles. Thus, EMR-

integrated CDSS not only improve the safety and efficacy of

Teliso-V administration but also promote evidence-based

treatment delivery in NSCLC care.

Standard randomized controlled trials (RCTs) are often unable to

address real-time developments, i.e., developing resistance or shifting

biomarker profiles, a key limitation when assessing targeted therapies

like Teliso-V in NSCLC (90). In this context, AI-powered adaptive

trial designs promise a solution by allowing dynamic trial adjustments

based on early response data, toxicity predictions, and patient

classification. For example, ML algorithms can evaluate interim

ctDNA dynamics or imaging features to identify non-responders

early and reassign them to more effective treatments, reducing

exposure to ineffective therapies (91). Moreover, AI can also predict

adverse events using electronic health record (EHR) data and adjust

dosage beforehand, improving safety without delay (92). Additionally,

site selection algorithms that assess demographic, genomic, and

referral data can boost the recruitment of patients by identifying

regions having a greater number of MET-positive NSCLC cases,

lowering trial delays and improving enrollment diversity (93).

Despite all the above factors, many clinical as well as technical

challenges limit the implementation on a large scale. Clinically, many

oncologists and support staff are not trained enough to understand AI-

generated insights such as biomarker-driven treatment

recommendations or toxicity forecasts (94). Additionally, skepticism

persists due to concerns over data privacy, legal liability, and trust in

algorithmic decision-making, especially when these decisions impact the

treatment outcomes of patients (95). Technically, hospital EMRs,

imaging systems, and AI platforms usually lack interoperability,

making integration difficult (95). Moreover, data silos, fragmented,

incomplete, or non-standardized datasets, further disturb the accuracy

and reproducibility of algorithms, especially when real-time inputs like

ctDNA levels or radiomic metrics are needed (96). Moreover, as

mentioned above, regulatory and ethical frameworks have not fully
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caught up with the pace of AI, limiting real-time use in clinical decision-

making due to concerns over accountability and patient consent (97).

Overcoming these challenges demands combined efforts across multiple

sectors, i.e., oncologists, data scientists, informatics experts, and

pharmaceutical developers need to work together to create

transparent, interoperable, and clinically validated AI tools according

to regulatory standards while maintaining clinician oversight.
Summary of trials and
multidisciplinary potential

With the recent approval of Teliso-V by the FDA for NSCLC, this

ADC has shown encouraging signs, being significantly more effective in

MET-high populations. 172 adults diagnosed with non-squamous

EGFR-wildtype NSCLC were given Teliso-V in stages I and II. The

median duration of response was 8.3 months while the median overall

survival was 14.5 months. Similarly, the median progression-free

survival was 5.7 months. The effectiveness is highlighted by the fact

that it shows a much higher ORR of 34.6% in MET-high and 22.9% in

MET-intermediate populations based on the phase II LUMINOSITY

trial, compared to other second line therapy drugs (40, 98, 99).

Although patients experienced treatment-related adverse effects

(TRAEs) like peripheral sensory neuropathy, peripheral edema and

pneumonitis being the most common, the trial indicated that these side

effects were manageable and rarely led to any serious complication

(100). Furthermore, with the recent development of technology and

AI being integrated in the field of medicine, AI has shown promising

results in early diagnosis of not only the type but also the stage of

cancer (26, 101).With algorithms likeML andDL being able to analyze

multimodal data at incredibly high rates, AI can process radiomics and

not only help to evaluate the efficacy of an immunotherapic drug, but

also allow doctors to make a consistent and accurate decision for the

best treatment plan (102, 103).

Showing a durable response and tolerable side effects, Teliso-V

became the first approved therapy specifically targeting c-Met-

overexpressing NSCLC. Similarly, flexible dosages and time interval

of the drug not only help adjust the optimization, tolerability and

individual’s metabolic needs, but could also be used potentially in a

broader population (104). The effectiveness can be shown by the fact

that phase III LUMINOSITY trial is being conducted which in the

future could help us evaluate further the response as well as the safety

and tolerability profile factor to treat EGFR- non-squamous NSCLC.

Teliso-V, showing ADC’s mechanism has shown multidisciplinary

potential in fields other than oncology such as Pathology and

Molecular Diagnostics where immunohistochemistry SP44 assay was

used in c-MET population categorization (40). Similarly, pneumonitis

being presented as any-grade TRAE could involve pulmonology to

tackle its toxicities. Being able to observe tumors and the treatment

response via RECIST v1.1 as well as adjusting the dosages and time

intervals of the drug highlights the importance of Radiology and

Pharmacology respectively (40).
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Limitations

However, a few research gaps were seen in the results, one of

them being non-randomization and the need for prospective

randomized trial. The trial was unable to compare Teliso-V with

standard treatments, resulting in doctors facing a dilemma whether

the efficacy was validated. Furthermore, absence of a control arm,

testing predominantly white population and the drug being tested

on previously treated EGFR- non-squamous NSCLC has brought

selection bias, some of which are said to be addressed in the Phase

III LUMINOSITY trial (40). Additionally, the use of IHC-assay to

measure c-MET overexpression has led to another limitation as it

could only be stratified to just high and intermediate c-MET

population, which in turn shows a conundrum while evaluating

the ORR and OS. Improved and composite biomarkers in the future

could not only help to evaluate the functional activity of c-MET

protein accurately but also use alternative indicators such as MET

gene alterations and EGFR mutations to precisely determine the

type of NSCLC (105). Short follow-up duration and small group

analysis could make doctors unable to evaluate the long-term side

effects and generalize it to a broader population.
Conclusion and future perspectives

In conclusion, AI integrated with ADCs like Teliso-V can show

a promising efficacy in the coming years not only in terms of time

management, but also the reliability and accuracy. The next decade

holds the potential for ADCs such as Teliso-V to address the

shortcomings of conventional treatments and enhance outcomes

in treatment-resistant cancers. Furthermore, AI incorporated in

oncology could not only help in the development of personalized

medicines in the future, but could also optimize the affinity and

efficacy of ADCs for better treatment (106). AI would not just be

limited to screening cancers, but also be used to expand the

development of “Intelligent ADCs” which could be used in real-

time sensing and dynamic response (107).
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NSCLC Non-small Cell Lung Cancer
Frontiers in Oncology
LUAC Lung Adenocarcinoma
TKIs Tyrosine Kinase Inhibitors
EGFR Epidermal Growth Factor Receptor
KRAS Kirsten rat sarcoma viral oncogene homolog
c-MET Mesenchymal-epithelial Transcription Factor
AI Artificial Intelligence
Teliso-V Telisotuzumab Vedotin
ADC Antibody-drug Conjugate
MMAE Monomethyl Auristatin E
vcMMAE Valine-citrulline MMAE
HGF Hepatocyte Growth Factor
ML Machine Learning
DL Deep Learning
GRB2 Growth Factor Receptor-bound Protein 2
PI3K Phosphoinositide 3-kinase
STAT3 Signal Transducer and Activator of Transcription 3
VEGF-C Vascular Endothelial Growth Factor C
ELISA Enzyme-linked Immunosorbent Essay
FACS Fluorescence-activated Cell Sorting
PK Pharmacokinetics
NLP Natural Language Processing
CT Computed Tomography
PET-CT Positron-emission Tomography-CT
ICIs Immune Checkpoint Inhibitors
PD-1 Programmed Cell Death Protein 1
PD-L1 Programmed Cell Death Ligand 1
IHC Immunohistochemistry
TMB Tumor Mutational Burden
TME Tumor Microenvironment
FDA Food and Drug Administration
q2w Once every 2 weeks
ORR Objective Response Rate
PFS Progression-free Survival
14
OS Overall Survival
DOR Duration of Response
q3w Once every 3 weeks
RP2D Recommended Phase 2 Dose
OD Once Daily
DCR Disease-control Rates
AEs Adverse Events
AUC Area Under Curve
TILs Tumor-infiltrating Lymphocytes
ctDNA Circulating Tumor DNA
bTMB Blood-based TMB
TMBRB TMB Radiomic Biomarkers
ECOG Eastern Cooperative Oncology Group
Rad Radiomics
H-score Histochemical Scoring
PCR Polymerase Chain Reaction
RNA Ribonucleic Acid
H&E Hematoxylin and Eosin Stain
RECIST Response Evaluation Criteria in Solid Tumors
NGS Next-generation sequencing
QSP Quantitative Systems Pharmacology
CDSS Clinical Decision Support Systems
EMRs Electronic Medical Records
RCTs Randomized Control Trials
EHR Electronic Health Records
TCGA The Cancer Genome Atlas Program
CNNs Convolutional Neural Networks
RF Random Forest
XGB Gradient Tree Boosting
SaMD Software as a Medical Device
TRAEs Treatment-related Adverse Events
CD31 Cluster of Differentiation 31
EMT Epithelial-Mesenchymal Transition
ERK Extracellular signal-regulated Kinase;OP-18, Oncoprotein 18.
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