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Background: Non-squamous Non-small Cell Lung Cancer (NSCLC) is among the
most common lung cancers that are therapy-resistant. Telisotuzumab Vedotin
(Teliso-V), an antibody-drug conjugate (ADC), targets mesenchymal-epithelial
transition factor (c-MET) high cells, with minimum side effects. Additionally,
Artificial Intelligence (Al) aids in enhancing diagnosis, detection of mutations
and advancing personalized care. Teliso-V, with the assistance of Al technologies
such as radiomics, enhances efficacy against cancer.

Objective: To assess the combined role of Teliso-V and Al in enhancing
diagnosis, treatment, and outcomes in non-squamous NSCLC.

Method: This review emphasizes the value of Teliso-V and the contribution of Al
in enhancing the diagnosis and therapy of NSCLC. It is based on PubMed and
ClinicalTrials.gov trials over the past two decades.

Result: Teliso-V is effective in MET-high non-squamous NSCLC, yielding a
response of 34.6% in the LUMINOSITY trial. Moreover, the combination with
epidermal growth factor receptor inhibitors like Osimertinib and Erlotinib
enhances outcomes, but the combination with immunotherapy (Nivolumab)
provided negligible benefit. Moreover, Al has emerged as a powerful agent in
cancer management, helping with diagnosis, foretelling mutations, and refining
treatment regimens. It also maximizes Teliso-V use in NSCLC with improved
patient selection, the ability to predict MET status from imaging and pathology,
and the combination of circulating tumor DNA with radiomics for real-time
tracking. Additionally, in silico experiments and machine learning algorithms
optimize the sequence of treatment and reduce toxicity. Consequently, Al-driven
Clinical Decision Support Systems in electronic medical records facilitate
precision prescribing. Though challenges such as data bias and black-box
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decision-making occur, there is potential for Al to optimize personalized

NSCLC therapy.

Conclusion: Teliso-V is highly effective in MET-high NSCLC with tolerable side
effects. Its combination with Al holds the hope of early diagnosis, individualized
treatment, and intelligent ADCs of the future, but for this to manifest, clinical data
and biomarker improvements must materialize.

Telisotuzumab Vedotin (Teliso-V), artificial intelligence (Al), non-squamous non-small
cell lung cancer (NSCLC), c-MET overexpression, antibody-drug conjugate (ADC)

Introduction

Lung cancer is the most commonly diagnosed cancer, with
GLOBOCAN 2022 reporting approximately 2.5 million new cases
in 2022 (1). It also remains the leading cause of cancer-related
mortality worldwide, resulting in an estimated 1.8 million deaths
per year (2). Non-small cell lung cancer (NSCLC) is the most common
malignancy associated with lung cancer, accounting for approximately
84% of all cases, of which the non-squamous variety remains the
dominant type (3), and histological findings suggest that lung
adenocarcinoma (LUAC) is the most pre-dominant subtype of
NSCLC among the non-squamous variety (4). Most non-squamous
NSCLC cases are usually diagnosed at an advanced stage and are
typically associated with a poor prognosis (5). This demonstrates the
fact that conventional treatment regimens such as chemotherapy,
tyrosine kinase inhibitors (TKIs), and immunotherapies impose
several limitations such as drug resistance, toxicity, and variable
response rates, demanding the need for innovative therapeutic
strategies along with technical insights to detect the disease in its
early stages (6).

Over the years, NSCLC has undergone progressive pathological
changes, developing complex molecular mechanisms that drive
resistance to conventional therapies and underscore its marked
heterogeneity, which remains a major challenge to effective
diagnosis and treatment (7). Different patients may present with
tumors driven by distinct genetic alterations such as EGFR, KRAS,
or ¢c-MET, each demanding a tailored therapeutic approach and
complicating management with standard treatment strategies (8).
Furthermore, recent studies highlight additional molecular drivers
of resistance and heterogeneity in NSCLC. For example, the
overexpression of the oncogene 5-3" exoribonuclease 2 (XRN2)
has been shown to enhance EGFR signaling, promote epithelial
mesenchymal transition (EMT), and facilitate metastatic spread,
thereby contributing to more aggressive phenotypes and
therapeutic resistance (9). Similarly, activation of the Wnt/B-
catenin pathway has been linked to PD-L1 overexpression, which
promotes immune evasion and resistance to EGFR-TKIs (10). Such
findings reinforce the urgent need for advanced targeted therapies
capable of overcoming these molecular escape mechanisms.
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Therefore, recent advancements in modern healthcare, such as
targeted drug therapies, as well as the novel integration of
artificial intelligence (AI) in the screening, early detection, and
treatment of patients with non-squamous NSCLC, have been shown
to have decreased the mortality trends among the patients by 6.3%
annually from 2013 through 2016 (11). Additionally, the long-term
survival outcomes of these patients have significantly improved
from 8% in 2008 to 25% in 2020 (7).

Telisotuzumab Vedotin (Teliso-V), an anti-MET antibody-drug
conjugate (ADC) targeting EGFR-mutant, c-MET-overexpressing
non-squamous NSCLC, is proving to be one of the most promising
contributors to the declining mortality rates of these cases (12). It
comprises the monoclonal antibody telisotuzumab, conjugated to
the microtubule inhibitor monomethyl auristatin E (MMAE) via a
cleavable dipeptide linker (13). The ¢-MET protein, a
transmembrane tyrosine kinase receptor activated by its ligand,
hepatocyte growth factor (HGF), is essential for regulating various
cellular processes (14). Its overexpression has been linked to
approximately 50% of non-squamous NSCLC cases (15). Teliso-V
targets tumor cells overexpressing c-MET by binding with them and
releasing cytotoxic components designed specifically to target them,
thereby minimizing off-target toxicity as would be in the case of
conventional chemotherapy (16). Current studies highlight the
promising efficacy of Teliso-V and its future benefits in the
treatment of non-squamous NSCLC, emphasizing the key
advancements made in the field of precision oncology (17).

The integration of Al in the field of precision medicine has
revolutionized the way healthcare professionals approach lung
cancer, and it is proving to be a key driver in the increased efficacy
of patients suffering from non-squamous NSCLC (6), as it plays a
crucial role in cancer diagnosis as well as imaging, efficacy evaluation,
survival prediction, early detection and histopathological findings (18).
Moreover, Al models can efficiently process substantial amounts of
data, providing clinicians with improved diagnostic accuracy to treat
cancer patients via a combination of different algorithms such as
machine learning (ML) and deep learning (DL) models for mutation
prediction and automated analysis of complex imaging and genomic
datasets (19), radiomics for quantitative assessment of tumor
heterogeneity from radiological scans (20), multi-omics integration
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for combining genomic, proteomic, and imaging data (21), natural
language processing (NLP) for extracting insights from clinical
narratives (22), and in silico trials for simulating patient-specific
treatment outcomes (23). By using specific Al-driven tools like
trained neural networks and support vector machine classifiers, Al
enables efficient analysis of radiological and molecular profiles of
patients having unique biomarkers and genetic mutations, including
EGFR-mutant and c-MET overexpressing genes (24, 25). Al assists in
targeting NSCLC patients by non-invasively predicting c-MET
overexpression status; DL models applied to hematoxylin and eosin
(H&E) stained histopathology slides help in the classification and
mutation prediction of NSCLC (26) as well as radiomics enables the
extraction of high dimensional quantitative image features from
routine imaging such as CT or PET scan that can capture tumor
heterogeneity, enabling precise patient selection and stratification for
targeted drug therapies while reducing the need for invasive biopsies
(27). Thus, these technical insights can be useful in the treatment of
non-squamous NSCLC by complementing them with modern
treatment options like Teliso-V, through identifying the disease
early in its stage and providing suitable personalized dosing
regimens to minimize limitations.

In order to tackle the challenges and obstacles imposed by non-
squamous NSCLC, there is an urgent need to explore new,
advanced, targeted, and personalized treatment strategies. Thus,
by incorporating the use of AI in the management of these cases,
optimal therapeutic effects may be achieved from targeted drug
therapies like Teliso-V. This narrative review aims to provide a
comprehensive overview of the pharmaceutical insights provided by
Teliso-V along with the technical advancements made by Al in the
management of non-squamous NSCLC and explore how these
innovations are leading us to a new era of precision medicine.

Methodology

In this narrative review, we aimed to explore the management of
NSCLC by using Teliso-V and AI. We examined the pharmacologic
profile and clinical outcomes of Teliso-V. We also found out how Al
can improve diagnosis. In addition, it also discusses how AI can
help in patient selection and personalized treatment strategies.
Further evaluated whether it improved therapeutic efficacy or not.
This review examined articles from PubMed and Google Scholar
over the past two decades. Moreover, additional data were retrieved
from clinical trial websites (e.g., ClinicalTrials.gov) and from
regulatory authorities. This includes the U.S. Food and Drug
Administration (FDA) and the European Medicines Agency
(EMA), include the latest available information on Teliso-V and
AL Searching included a combination of relevant words and MeSH

» o«

terms. These include “Telisotuzumab Vedotin (Teliso-V)”, “non-
squamous NSCLC”, “c-MET overexpression”, “antibody-drug
conjugate (ADC)”, “machine Learning” and “in silico trials”.
Inclusion criteria comprised randomized controlled trials,

systematic reviews, meta-analyses, observational studies, clinical
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guidelines, and high-quality narrative reviews. Eligible studies
were required to be published in peer-reviewed journals and
written in English. These studies should report on Teliso-V or Al
applications in NSCLC. Exclusion criteria included studies on
squamous cell carcinoma and pediatric patients. Furthermore,
non-human models, or conference abstracts without full data
were excluded too. Titles and abstracts were screened for
relevance. Full texts of potentially eligible articles were reviewed
to ensure they met the inclusion criteria. 107 studies met the
eligibility criteria and were included. Articles were chosen for
their importance and science. Studies were also selected if they
add value to the understanding of clinical, microbiological, and
pharmacological characteristics of Teliso-V. Additionally, studies
demonstrating the potential of Al-enhanced application of
Telisotuzumab Vedotin (Teliso-V) in the targeted management of
NSCLC were selected.

Telisotuzumab Vedotin: mechanism
and clinical development

Telisotuzumab Vedotin (Teliso-V), previously known as
ABBV-399, is a novel ADC developed for the treatment of
NSCLC (28). It is composed of the humanized monoclonal
antibody ABT-700 conjugated to the monomethyl auristatin E
(MMAE), a cytotoxic agent, through a cleavable valine—citrulline
linker, forming an ABT-700-vcMMAE (28, 29).

The mesenchymal-epithelial transition factor (c-MET) is a
receptor tyrosine kinase found on epithelial cells. It plays an
important role in regulating wound healing and tissue remodeling
processes under normal physiological conditions (30, 31). When
HGF binds to the c-MET receptor, it induces dimerization and
autophosphorylation of the receptor at tyrosine residues.
Additionally, it creates docking sites for various signaling
molecules like GRB2, PI3K, and STAT3 and triggers various
pathways for the growth, proliferation, and survival of cells (31).
MET, a proto-oncogene, encodes c-MET, which is composed of o
and B chains linked by disulfide bonds. The B chain contains the
signaling domain. HGF is activated by proteolysis and initiates the
downstream signaling pathways. MET exon 14 encodes a regulatory
juxta membrane domain that limits MET signaling. The mutation
and deletion of this gene prevent proper receptor degradation,
causing sustained MET activation and promoting uncontrollable
cell proliferation and tumor growth (32, 33).

Overexpression and dysregulation of ¢-MET are frequently
observed in NSCLC and are considered important therapeutic
targets. In a study of NSCLC cases, 17% of tumors showed MET
overexpression and 2.4% of patients had MET amplification.
Overexpression was common in adenocarcinomas and female
patients (34). Another study showed that NSCLC patients
expressed HGF-ou (67.3%), c-Met (74.3%), and VEGEF-C (65.5%),
significantly higher than the normal lung tissue levels (20.4%,
23.0%, and 23.9%, respectively) (35). Another study showed 95%
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of NSCLC patients had varying levels of c-MET expression, with
27% (+), 36% (++), and 32% (+++). Among genetically tested
patients, epidermal growth factor receptor (EGFR) mutations were
the most common (49%), followed by wild-type (37%) (36).

As described above, Teliso-V binds with high affinity to tumor
cells expressing c-MET. Upon binding, the ADC is internalized by
the tumor cells and delivers the MMAE directly into the cell.
MMAE is released intracellularly by the proteolytic cleavage of
the valine-citrulline linker. It then binds to tubulin protein,
disrupting mitosis and causing the tumor cells’ death (28, 29).
ABT-700 has shown limited efficacy in tumors that overexpress c-
MET without gene amplification, whereas it’s combination with a
valine—citrulline linker and MMAE in Teliso-V has demonstrated
significantly higher efficacy. However, Teliso-V remains effective in
c-MET expressing tumors regardless of MET gene amplification
status. ABT-700 has been evaluated by enzyme-linked
immunosorbent assay (ELISA) and fluorescence-activated cell
sorting (FACS) to examine its binding characteristics. ABT-700
binds to ¢-MET with an affinity of 0.22 nanomolar and shows
comparable binding to c-MET from cynomolgus monkeys, but not
to mouse-derived ¢-MET. Furthermore, both hepatocyte growth
factor (HGF)-dependent and HGF-independent ¢c-MET signaling
are blocked by ABT-700 (28).

A study showed that XRN2 overexpression increased cluster of
differentiation 31 (CD31) levels in lung metastatic lesions.
Additionally, XNR2 promoted migration, invasion, and epithelial-
mesenchymal transition (EMT). This triggered epidermal growth
factor receptor (EGFR) phosphorylation, activating its downstream
signaling pathway (9). In NSCLC cells, normal (wild-type) EGFR can
also trigger the phosphorylation and activation of ¢-MET (37).
Hence, teliso-V by blocking c¢-MET signaling, may reduce the
downstream effects of XRN2. This makes the tumor less able to
invade, metastasize, or form new blood vessels. Autophosphorylation
of c-MET can activate the Extracellular signal-regulated kinase (ERK)
(38). ERK, in turn, phosphorylates Oncoprotein 18 (Op18)/stathmin,
a protein that controls microtubule stability through
phosphorylation, affecting cell behavior and survival. Teliso-V
blocks ¢-MET, indirectly reducing (Opl18)/stathmin activity and
causing cell death (39). Therefore, teliso-v may help overcome
Taxol resistance, a drug that exerts its cytotoxic effects partly by
targeting Op18/stathmin and inducing apoptosis.

Several trials and studies have been conducted to evaluate the
use of Teliso-V in the treatment of NSCLC. A phase I study showed
that Teliso-V at 2.7 mg/kg was tolerable with manageable toxicities.
Some efficacy was observed in c-Met-positive NSCLC (13). Another
phase I trial showed Teliso-V was well tolerated. At recommended
doses (=1.6 mg/kg Teliso-V once every 2 weeks), it showed a 23%
response rate with durable responses (16). Moreover, the Phase II
LUMINOSITY trial evaluated Teliso-V in patients with NSCLC
with ¢-MET overexpression and showed that Teliso-V produced
durable responses in patients, particularly in those with high c-MET
expression (40). Additionally, three phase Ib trials also showed the
effectiveness of the combination of Teliso-V with erlotinib,
osimertinib and nivolumab in the treatment of NSCLC (41-43).
All of these combinations are well-tolerated. As shown in Figure 1.
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FIGURE 1
Mechanism of action of Telisotuzumab Vedotin.

Artificial intelligence in NSCLC
treatment optimization

Artificial intelligence (AI), more specifically through machine
learning (ML) and natural language processing (NLP), is
transforming the care of NSCLC by greatly improving the
accuracy of histological subtype classification, molecular profiling,
and treatment personalization (44). Integration of AI into
radiomics, genomics, and pathology interpretation is
transforming traditional workflows to provide more precise,
efficient, and personalized care. Radiomics transforms imaging
information—e.g., CT or PET/CT scans—into high-dimensional,
quantifiable features with automated algorithms. Such models can
non-invasively extract subtle intra- and peri-tumoral features,
providing reproducible and cost-efficient insights into lung cancer
and its tumor microenvironment (45). Radiomics-enabled ML or
DL models are currently well established in every phase of lung
cancer management—diagnosis, staging, treatment planning, and
prognosis—with performance equal to or even superior to that of
radiologists (46). In the field of genomics, Al facilitates early
prediction of driver mutations like EGFR and KRAS. EGFR
mutations are associated with improved response to erlotinib and
gefitinib, while KRAS mutations indicate therapeutic resistance.
Early detection of these mutations using Al-based, image-guided
prediction allows targeted therapy and enhanced outcomes. While
conventional methods are effective, they tend to be invasive and
time-consuming. In contrast, Al-based image-guided mutation
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prediction offers a promising, less invasive alternative (20). In
pathology, Al aids in the evaluation of biopsy and resection slides
to subtypes such as LUAD that require unique treatment strategies.
According to studies, image features learned through Al can be used
to predict prognosis and support personalized care (47). Al is also
applied to non-invasive diagnostics, such as electronic noses
(e-noses) that detect NSCLC from volatile organic compounds in
breath, with advanced models like SIR-3DCNN optimizing sensor
arrays and using 3D convolutional networks, achieving 100%
sensitivity and 92.94% accuracy, demonstrating potential for
early, real-time lung cancer detection (48). Therefore, Al greatly
improves diagnostic accuracy, clinical workflows, and precision
oncology in NSCLC.

Immunotherapy has revolutionized the management of
NSCLC, but not all patients are equally benefited (49). Pooled
analyses of randomized trials show that neoadjuvant or
perioperative immunotherapy improves pathological response
rates and clinical outcomes in resectable NSCLC. Subgroup
analyses suggest benefits for different patient populations, which
supports its potential as a standard perioperative strategy (50).
Predictive biomarkers are necessary to determine responders.
Immune checkpoint inhibitors (ICIs) against PD-1/PD-L1 have
emerged with striking survival advantages in clinical trials, with PD-
L1 as the prime biomarker. The evaluation of PD-L1 by
immunohistochemistry (IHC) is plagued by interobserver
variability, influencing treatment choice. As a solution, AI and
digital pathology provide standardized tools for precise PD-L1
assessment (51). Likewise, tumor mutational burden (TMB),
another immunotherapy biomarker, cannot be effectively assessed
by whole-exome sequencing because of its cost and complexity. To
address this challenge, Al-driven models such as Image2TMB can
predict TMB from standard histopathology images (52). In
addition, defining the tumor microenvironment (TME), a factor
that plays an essential role in tumor progression and response to
treatment, is hampered by conventional approaches. In this regard,
Al combines disparate data sources, such as imaging and omics, to
evaluate the TME more effectively. Moreover, DL enables Al to
chart immune cell distribution, reveal biological patterns, and
facilitate personalized treatment planning (53).

In silico trials, also known as virtual trials, are computer-
simulated clinical studies designed to evaluate the safety and
effectiveness of treatments through computer simulation and
modeling. They have been stimulated by the rapid growth in AI
and precise computational models (23). The In-silico trials
synthesize patient-specific and disease-specific data to generate
individualized virtual cohorts by drawing on real-world clinical-
genomic data. These systems mimic human pathology and
physiology, such as genetic differences influencing clinical
responses. In this aspect, Al allows for the merging of 3D
anatomical shapes, biochemical pathways, and gene networks. In
addition, Causal AI methods mimic control and efficacy arms,
direct patient recruitment, titrate regimens to optimize, and
facilitate precision subgroup analysis (54). While targeted
therapies have enhanced survival in patients with NSCLC and
actionable biomarkers, the relative 5-year survival rate for all
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patients is less than 20%. Historically, biomarkers have been
found utilizing linear statistical methods and are presumed to be
mutually exclusive in clinical decision-making. Recent data indicate
that more than one actionable biomarker can exist within a single
tumor and thus requiring models that are able to recognize linear
and non-linear patterns. AI/ML algorithms provide this flexibility
and have promise in biomarker discovery from high-dimensional
data. A few Al-powered devices already have Food and Drug
Administration’s (FDA) approval for performing activities such as
tissue segmentation by machine and feature extraction from lung
CT scans. Deep learning (DL) techniques also advance whole-slide
image analysis in digital pathology (55). Al pre-screening with
digitized H&E slides can potentially enhance MET detection and
decrease dependence on precious IHC and tissue samples. For
example, a convolutional neural network (CNN)-based deep
learning model that accurately predicted MET overexpression in
lung adenocarcinoma from routine histopathology slides (56).
Similarly, a logistic regression model using radiomics-style
morphological features (cell shape, texture, grayscale intensity)
extracted from whole-slide images, achieving an AUC of 0.77 for
identifying MET amplification and exon 14 skipping alterations
(57). Table 1 below summarizes Al applications in NSCLC showing
diagnosis, biomarker prediction and treatment optimization.

ML software can contain biases that amplify stereotypes and
healthcare inequities based on imperfections in electronic health
records that are tied to race, gender, age, insurance, and
socioeconomic status. Those biases impact big groups of people
around the world, with profound social and economic implications
(58). One of the biggest worries is the “black box” model of medical
Al—its decision-making process is inscrutable, so patients, doctors,
and even the developers of the software often have no
understanding of how treatment recommendations are generated.
This unexplainability will potentially do more harm than human
error, as it undermines patient autonomy to participate in shared
decision-making and causes tremendous psychological and
financial tolls on patients (59, 60). Al technologies, although in
their nascent stage, are gaining much attention in oncology for their
capability to personalize the management of NSCLC, as they
address the complexity of the disease and facilitate data-driven,
informed decision-making. Challenges remain despite such efforts,
but validation across institutions and populations is crucial to
facilitate real-world clinical adoption (45).

Clinical efficacy of Teliso-V and Al

As mentioned above, c-MET protein, a transmembrane
receptor tyrosine kinase, is overexpressed in approximately 50%
of NSCLC patients. Teliso-V is an ADC that targets c-MET to treat
NSCLC (12). Its efficacy is shown in MET-high NSCLC patients in
phase I and II trials, particularly in non-squamous EGFR- wildtype
subgroup, as summarized in Table 2.

The key trial that evaluated the efficacy of Teliso-V is the phase
II LUMINOSITY trial, where 172 patients with non-squamous
EGFR-wildtype were treated with Teliso-V in 2 stages, with a
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TABLE 1 Summary of Al applications in NSCLC.

Domain Al application = Examples/Models Advantages
Radiomics (CT, Non-invasive, ducible, cost-efficient; i di is, staging,
Diagnosis adiomics ( Radiomics-enabled ML/DL models on-invasive, reproducible, cost-efficient; improves diagnosis, staging
PET/CT) treatment planning, prognosis; equal/superior to radiologists
Al evaluation of biopsy/resection slides; LUAD
Pathology classification; Al-learned image features predicting Improves diagnostic accuracy, supports personalized care
prognosis
Non-invasive Optimized sensor arrays (22—8); converts multivariate time series
-invasive
diaenostics Electronic noses (e-noses), SIR-3DCNN, 3D CNN (MTS) to MTMIs; achieves 100% sensitivity, 92.94% accuracy; enables
8 early, real-time NSCLC detection
Al- d devi d for ti tati
EDA-approved tools powered devices approved for tissue segmentation | o L fows
and CT feature extraction
Biomarker Genomics Al predicting EGFR and KRAS mutations from Early, less invasive, faster than conventional methods; enables targeted
Prediction imaging therapy and better outcomes
- PD-L1: Al/digital pathology for standardized
Immunotherapy assessment Reduces interobserver variability in PD-L1 IHC; avoids costly/complex
biomarkers - TMB: Image2TMB predicting TMB from WES for TMB
histopathology
Predictive Pooled analyses of randomized trials with AI Determines responders; improves pathological response rates and clinical
biomarkers for integration for neoadjuvant or perioperative outcomes; supports standard perioperative strategy; benefits different
therapy response immunotherapy patient subgroups
Tumor . L. . . . . . . .
. . Al integrating imaging + omics; DL for immune cell | Defines TME more effectively; reveals biological patterns; aids
Microenvironment distribution ersonalized treatment plannin
(TME) P planning
AI/ML detecting >1 actionable bi ker withi
Biomarker Discovery | ! etecting > actionable biomarker within Recognizes linear & non-linear patterns; flexible vs linear statistics
single tumor
Al-dri irtual trials; al Al methods f
Treatment - . . rven v1r- ual s 'caus . x'ne ocs for Individualized virtual cohorts; mimics human pathology/physiology;
o In-silico Trials patient recruitment, regimen titration, subgroup . . .
Optimization X facilitates precision medicine
analysis
Pre-screening AT using digitized H&E slides for MET detection Enhances MET detection; decreases dependence on THC/tissue samples
Digital Pathology DL advancing whole-slide image analysis Enables precise feature extraction

median follow-up of 20.2 months in c-MET high patients. In stage I,  endpoint, objective response rate (ORR) was 28.6% overall, with
patients with ¢-MET overexpressing NSCLC were identified, 34.6% for ¢-MET high and 22.9% for ¢c-MET intermediate.
whereas in stage II the efficacy was evaluated by administering ~ Meanwhile, the secondary endpoints included progression-free
Teliso-V at 1.9 mg/kg once every 2 weeks (q2w). The primary  survival (PFS) of 5.7 months overall, with 5.5 and 6.0 months for

TABLE 2 Summary of key clinical trials of Telisotuzumab Vedotin in NSCLC.

Trial name  Phase Patient type ORR (%) PFS (months) OS (months)  References
¢-MET, non-squamous 28.6 (overall); 34.6 (c-MET 5.7 (overall); 5.5 (c-MET
- > -SqUE U . .
5 22.9 (c- ;6.0 (c- . 4
LUMINOSITY 1I EGFR-wildtype NSCLC hlg.h) 229 (.C MET hlg'h) 6.0 (c' MET 14.5 (40)
intermediate) intermediate)
First-in-Human
Dose Escalation 1 Advanced NSCLC - - - (13)
Study
Study of 2 or 3- 1 ¢-MET+ NSCLC 2 52 - (16)
week Dosing
Teliso-V + c-MET+, EGFR mutant
Osimertinib b advanced NSCLC 50 74 N “2)
Teliso-V + b EGFR mutant, c-MET+ 30.6 (Total); 32.1 (EGFR+); 59 @1
Erlotinib NSCLC 62.5 (MET-advanced) :
Teliso-V
cliso-v T Ib Advanced NSCLC 74 72 - (3)
Nivolumab
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¢-MET high and intermediate, respectively. The median overall
survival (OS) of 14.5 months and the duration of response (DOR) of
8.3 months (40).

Prior to that, a phase I First-in-Human Dose-Escalation trial
assessed the dosage and scheduling. Teliso-V was given as
monotherapy intravenously at 3.0 mg/kg and 3.3 mg/kg once
every 3 weeks (q3w) to 9 and 3 patients, respectively, with one in
each category experiencing dose-limiting toxicity. However, it was
well-tolerated at 2.7 mg/kg q3w and hence it was the recommended
phase II dose (RP2D) (13). Another phase I trial evaluated Teliso-V
monotherapy given either q2w (1.6-2.2 mg/kg) or q3w (0.15-3.3
mg/kg), in 28 and 24 patients, respectively, out of a total of 52
NSCLC patients. Of these, 40 were c-MET+ and included in the
efficacy-evaluable population. On the basis of safety and antitumor
activity in c-MET+ NSCLC shown, RP2D was established at 1.9 mg/
kg q2w and 2.7 mg/kg q3w. The median PFS was 5.2 months and
ORR in ¢-MET H-score > 150 patients was 22%, underscoring the
importance for MET stratification (16).

Combination strategies were established and evaluated as part of
the phase Ib trials. When given in combination with osimertinib
(80 mg OD), Teliso-V (1.6 mg/kg or 1.9 mg/kg), resulted in an ORR
of 50% and median PFS of 7.4 months, in 38 patients, even showing
effectiveness in osimertinib-refractory cases (42). Another study with
erlotinib (150 mg OD) in 42 EFGR-mutation NSCLC patients
demonstrated an ORR of 30.6% overall; 32.1% in EGFR+ and 62.5%
in MET-advanced subgroup, along with a median PFS of 5.9 months
and disease-control rates (DCR) of 86.1% in EGFR+ and 100% in
MET-advanced subgroup (41). However, phase Ib trial combining
Teliso-V (1.6, 1.9 or 2.2 mg/kg q2w) with nivolumab (3 mg/kg,
240 mg), an ICI, did not show a promising result with an ORR of
7.4% and median PFS of 7.2 months in 27 patients. This shows the
combined strategy did not improve outcomes as the pharmacokinetic
profile was similar to Teliso-V monotherapy, despite the theory that
Teliso-V-induced tumor death should improve antigen release and
work well with PD-1 inhibition. The lack of PD-L1-based patient
selection and low baseline T-cell infiltration in MET+ malignancies
may be the cause of the limited effect. The overall benefits were less
and the side effects remained (43). When assessing potential
immunotherapy combinations, our results highlight the necessity of
biomarker-driven methodologies and logical trial design, such as
integrating immune-infiltration profiling or dynamic biomarkers.

Across multiple trials, the most common adverse events (AE)
include peripheral sensory neuropathy, nausea, decreased appetite,
vomiting, peripheral edema and fatigue (13, 16, 40). Grade > 3 AEs
were less frequent but included peripheral neuropathy (7% in
LUMINOSITY), anemia, fatigue, hypoalbuminemia and fatigue,
(4% each in phase I) and pulmonary embolism (8% in
combination with osimertinib and 14% with erlotinib) (13, 40-
42). In comparison of dosing schedules, 2w dosing regimens had
higher rates of AEs including neuropathy and resulted in dose-
reduction in 25% and interruption in 54% patients as compared to
q3w regimen which resulted in dose-reduction in 13% and
interruption in 38%, respectively (16).

Treatment discontinuations were not uncommon with 21.5% in
LUMINOSITY trial due to AEs like peripheral sensory neuropathy
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(7%) and pneumonitis (7.6%) (40). Moreover, discontinuations were
also reported in nivolumab combinations due to dose-limiting toxicity
and in combination with erlotinib due to neuropathy (26%) (41, 43).
This outlines the need for optimum dosing regimens to minimize the
toxic findings.

While most of the trials gave evidence for Teliso-V’s clinical
benefit, LUNG-MAP S1400K study, which enrolled patients with c-
MET+ squamous NSCLC, reported that DCR was 52% and the PFS
and OS were 2.4 and 5.6 months respectively, showing limited
efficacy in the squamous subtype. Thus, the study supports the
effectiveness of Teliso-V in the non-squamous subtype but not the
squamous (61).

Artificial Intelligence (AI) is a newly emerging tool in treatment
of NSCLGC; from therapy selection to prediction of responses, AI has
multidimensional benefits. DL models have shown potential in
predicting response to ICI in advanced NSCLC patients using
H&E stained slides. Area under curve (AUC) for ORR prediction
were 0.75 in internal test and 0.66 in validation cohort. Moreover,
DL models have proven to be beneficial over TMB, tumor-
infiltrating lymphocytes (TILs) and PD-L1, and when combining
with PD-L1, the AUC upgraded to 0.70 and the response rate to
51%, supporting multi model approach (62).

Circulating tumor DNA (ctDNA) assessed via mPCR-based assay
has shown a strong association between detection and relapse risk in
early-stage NSCLC, and hence shows a potential for early risk
stratification and real-time monitoring (63). Another trial integrated
blood-based TMB (bTMB) with DL model and ctDNA clearance
showing improved AUC of 0.820 as compared to 0.703 (DL model
alone) in predicting response to neoadjuvant immunotherapy (64).

TMB radiomic biomarkers (TMBRB) have shown potential in
predicting TMB and response to immunotherapy, with AUC of 0.85
(training) and 0.81 (validation). Moreover, combining with Eastern
Cooperative Oncology Group (ECOG) improves performance
status and shows a better prediction of OS (p=0.007) and PFS
(p=0.003) (65). Additionally, combination of radiomics (Rad), DL
and Clinical with an AUC of 0.88 is an emerging non-invasive
approach for presurgical decision-making in NSCLC (66).

AT models have also demonstrated capability in defining dosing
schedules and predicting toxicity in NSCLC patients using machine
learning (ML) (67). Another model derived from ML, mass-
spectrometry based proteomic signatures, demonstrated improved
PFS and OS in NSCLC patients treated via immunotherapy, proving
it has the potential for better survival outcome (68).

There are certain drawbacks that affect the implementation of
Teliso-V and AI despite their numerous benefits. Most Teliso-V
trials have a limited sample size, exploratory nature, and exclude the
comparator arms (13, 40). Moreover, c-MET+ had a predefined H-
score of > 150, limiting the patient number (16). Additionally,
achieving AUC score of above 0.8 was difficult in all DL models,
indicating the need of refinements to enhance accuracy. A major
challenge faced by AI models in oncology is validation when the
performance declines in external cohorts as compared to internal
training sets (62). In addition, many models are trained on narrowly
defined or single-institution datasets, limiting dataset diversity and
reducing applicability across different patient populations (64). This
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highlights the concerns regarding generalizability and widespread
adoption of these models. Furthermore, TMBRB was assessed in
patients with early-stage NSCLC; further studies are needed
to identify TMB levels among patients with advanced NSCLC and
to explore the clinical utilization of ctDNA to advise
management (65).

Combining Teliso-V and Al for
improved outcomes

Artificial intelligence (AI) brings an innovative approach in patient
selection for Teliso-V, especially effective in NSCLC patients with MET
overexpression or MET exon 14 skipping mutations. In a Phase I study,
Teliso-V illustrated an ORR of 23% in MET-positive NSCLC patients,
with a median DOR of 8.7 months, highlighting the need for accurate
patient classification (16). Conventional diagnostics like IHC and PCR
are usually limited due to tumor heterogeneity and observer bias (69).
In this regard, Al, particularly ML and DL, enhances selection by
integrating multi-omics data, i.e., genomics, transcriptomics,
proteomics, imaging, and clinical records into predictive models (70).
Most of these investigations have been retrospective in design, usually
using datasets such as The Cancer Genome Atlas Program (TCGA)
(71). Besides that, Convolutional Neural Networks (CNNs) have
been used in pathology slides for mutation prediction, while
ensemble methods like random forest (RF) and gradient tree
boosting (XGB) are commonly used in radiomics for response
classification (26, 72). Additionally, reinforcement learning methods,
particularly deep Q-learning, have been investigated in silico for
adaptive therapy sequencing. For instance, in NSCLC, a quantum
deep reinforcement learning framework that uses deep Q-networks in a

10.3389/fonc.2025.1673586

virtual radiotherapy setting has been shown to improve dose
adaptation decisions, improving local control and reducing treatment
toxicity (73).

Studies reveal that DL models help in predicting MET RNA
overexpression directly from H&E-stained pathology slides with
high accuracy, providing non-destructive, scalable screening tools
(56). Furthermore, modern DL frameworks such as the SIR-
3DCNN model, which applies 3D convolutional neural networks
to multivariate time-series imaging data, show the potential for
dynamic Al-based classification in the detection of lung cancer (48).
Similarly, ML-driven radiomics improves selection by identifying
subtle imaging and clinical features associated with treatment
response (74). Combination of multi-omics data often depends
on fusion strategies like autoencoders or late-fusion neural
networks, to harmonize genomic, transcriptomic, and proteomic
inputs into joint embeddings (75). Moreover, radiomic features
including tumor heterogeneity, edge sharpness, and entropy are
extracted from CT or PET scans and classified using algorithms
such as SVMs or XGBoost (76). Additionally, many of these
approaches have been validated externally on independent
NSCLC cohorts, including TCGA and international radiogenomic
repositories, revealing that the results are consistent and applicable
in different contexts (77). These Al-enabled approaches reduce
empirical treatment decisions, maximizing therapeutic benefit and
advancing the paradigm of precision oncology.

Additionally, the combined use of AI and Teliso-V in NSCLC
treatment has been demonstrated below in Figure 2.

In NSCLC, the conventional Response Evaluation Criteria in
Solid Tumors (RECIST) is usually unable to detect early or atypical
responses to ADCs like Teliso-V, especially in case of necrosis or
delayed tumor shrinkage (78). Combining ctDNA analysis with AI-
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FIGURE 2
The synergistic integration of Al and Teliso-V in NSCLC treatment.
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supported imaging provides a strong, non-invasive approach.
Studies suggest that serial ctDNA profiling using next-generation
sequencing (NGS) in MET-positive NSCLC patients who are being
treated with Teliso-V reveals real-time mutational changes and
aligns with treatment response, promoting its use in tracking tumor
evolution (79) Besides this, a meta-analysis evaluating over 3,000
advanced NSCLC patients confirmed that ctDNA clearance during
therapy strongly predicted improved PFS and OS (80).
Additionally, radiomics enables the extraction of quantitative
features, such as tumor texture and heterogeneity, from CT or
PET-CT scans, and AT algorithms can detect early imaging changes
before anatomical size reductions occur. Moreover, a study of
NSCLC patients undergoing chemoradiotherapy further revealed
that when combined, ctDNA and radiomics improve the accuracy
of prediction (81).

Furthermore, Teliso-V has shown potential in NSCLC
treatment when combined with other modalities such as immune
checkpoint inhibitors, ie., anti-PD-1, chemotherapy, or EGFR-
TKIs (43). Preclinical models and early-phase trials reveal that
Teliso-V may synergize with immune therapies by increasing tumor
immunogenicity through ADC-induced cell death and antigen
release, potentially priming tumors for immune activation (43).
Nevertheless, adverse events remain a concern. In Teliso-V
monotherapy, the most frequent grade >3 toxicities include
peripheral neuropathy, neutropenia, and pulmonary adverse
events such as interstitial lung disease (40). When combined with
checkpoint inhibitors such as nivolumab, Teliso-V has been
associated with overlapping toxicities, including pulmonary
embolism, colitis, hypertension, fatigue, and peripheral
neuropathy, highlighting the need for careful sequencing and
monitoring in combination regimens (43). Additionally, Al-based
Clinical Decision Support Systems CDSS platforms may help
mitigate these risks by integrating labs, imaging, and patient-
reported data to trigger early safety alerts (82). However, the
timing and order of drug administration are important;
inadequate sequencing may lead to resistance or increased
toxicity. As a solution, an in silico platform powered by DL and
quantitative systems pharmacology (QSP) can simulate thousands
of treatment combinations and dosing sequences using patient-level
data from clinical trials and electronic health records. These
simulations help in determining optimal regimens with minimal
toxicity and maximum efficacy (83, 84). Furthermore, ML models
using acute phosphoproteomic responses predicted NSCLC drug
sensitivity better than the traditional biomarkers, while predicted
drug combinations matched experimental Bliss synergy scores,
supporting the role of ML-guided proteomics in optimizing
therapies such as Teliso-V (85). Additionally, deep Q-learning
techniques enable adaptive treatment sequencing, dynamically
adjusting regimens in silico as resistance develops (86).

Effective use of Teliso-V in NSCLC demands adequate
sequencing with biomarkers such as MET overexpression, as
inappropriate administration in MET-negative tumors may result
in no therapeutic benefit but increase toxicity risk, especially
pulmonary adverse events (40). To support accurate prescribing,
Al-enhanced CDSS combined with Electronic Medical Records
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(EMRs) can standardize Teliso-V use at the point of care. These
systems automatically alert clinicians to order MET THC or NGS
testing when NSCLC is diagnosed, and flag eligibility for Teliso-V
based on biomarker status and treatment history. Advanced CDSS
modules can also screen for contraindications, such as prior lung
conditions, and monitor for emerging adverse events by integrating
real-time lab and clinical note data (87). In a broader oncology
context, CDSS tools have been shown to increase adherence to
biomarker-directed therapies and reduce prescription errors by
over 30% (87). From a regulatory standpoint, several Al-based
diagnostic tools have already been approved under the FDA’s
Software as a Medical Device (SaMD) framework, especially in
radiology and pathology (82). However, Al platforms designed for
Teliso-V eligibility or sequencing are still under investigation as
regulatory agencies like the FDA and EMA stress the importance of
transparency, external validation, and clinician oversight before
these tools can be used clinically (88). Therefore, AI-based
applications in oncology, including potential (CDSS) for Teliso-V,
should be seen as supportive tools rather than independent
decision-makers (89). As AI models evolve, these systems will
increasingly personalize dosing, sequence therapies, and suggest
trial options based on dynamic patient profiles. Thus, EMR-
integrated CDSS not only improve the safety and efficacy of
Teliso-V administration but also promote evidence-based
treatment delivery in NSCLC care.

Standard randomized controlled trials (RCTs) are often unable to
address real-time developments, i.e., developing resistance or shifting
biomarker profiles, a key limitation when assessing targeted therapies
like Teliso-V in NSCLC (90). In this context, Al-powered adaptive
trial designs promise a solution by allowing dynamic trial adjustments
based on early response data, toxicity predictions, and patient
classification. For example, ML algorithms can evaluate interim
ctDNA dynamics or imaging features to identify non-responders
early and reassign them to more effective treatments, reducing
exposure to ineffective therapies (91). Moreover, Al can also predict
adverse events using electronic health record (EHR) data and adjust
dosage beforehand, improving safety without delay (92). Additionally,
site selection algorithms that assess demographic, genomic, and
referral data can boost the recruitment of patients by identifying
regions having a greater number of MET-positive NSCLC cases,
lowering trial delays and improving enrollment diversity (93).

Despite all the above factors, many clinical as well as technical
challenges limit the implementation on a large scale. Clinically, many
oncologists and support staff are not trained enough to understand AI-
generated insights such as biomarker-driven treatment
recommendations or toxicity forecasts (94). Additionally, skepticism
persists due to concerns over data privacy, legal liability, and trust in
algorithmic decision-making, especially when these decisions impact the
treatment outcomes of patients (95). Technically, hospital EMRs,
imaging systems, and AI platforms usually lack interoperability,
making integration difficult (95). Moreover, data silos, fragmented,
incomplete, or non-standardized datasets, further disturb the accuracy
and reproducibility of algorithms, especially when real-time inputs like
ctDNA levels or radiomic metrics are needed (96). Moreover, as
mentioned above, regulatory and ethical frameworks have not fully
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caught up with the pace of Al limiting real-time use in clinical decision-
making due to concerns over accountability and patient consent (97).
Overcoming these challenges demands combined efforts across multiple
sectors, i.e., oncologists, data scientists, informatics experts, and
pharmaceutical developers need to work together to create
transparent, interoperable, and clinically validated Al tools according
to regulatory standards while maintaining clinician oversight.

Summary of trials and
multidisciplinary potential

With the recent approval of Teliso-V by the FDA for NSCLC, this
ADC has shown encouraging signs, being significantly more effective in
MET-high populations. 172 adults diagnosed with non-squamous
EGFR-wildtype NSCLC were given Teliso-V in stages I and II. The
median duration of response was 8.3 months while the median overall
survival was 14.5 months. Similarly, the median progression-free
survival was 5.7 months. The effectiveness is highlighted by the fact
that it shows a much higher ORR of 34.6% in MET-high and 22.9% in
MET-intermediate populations based on the phase II LUMINOSITY
trial, compared to other second line therapy drugs (40, 98, 99).
Although patients experienced treatment-related adverse effects
(TRAES) like peripheral sensory neuropathy, peripheral edema and
pneumonitis being the most common, the trial indicated that these side
effects were manageable and rarely led to any serious complication
(100). Furthermore, with the recent development of technology and
Al being integrated in the field of medicine, AI has shown promising
results in early diagnosis of not only the type but also the stage of
cancer (26, 101). With algorithms like ML and DL being able to analyze
multimodal data at incredibly high rates, AI can process radiomics and
not only help to evaluate the efficacy of an immunotherapic drug, but
also allow doctors to make a consistent and accurate decision for the
best treatment plan (102, 103).

Showing a durable response and tolerable side effects, Teliso-V
became the first approved therapy specifically targeting c-Met-
overexpressing NSCLC. Similarly, flexible dosages and time interval
of the drug not only help adjust the optimization, tolerability and
individual’s metabolic needs, but could also be used potentially in a
broader population (104). The effectiveness can be shown by the fact
that phase III LUMINOSITY trial is being conducted which in the
future could help us evaluate further the response as well as the safety
and tolerability profile factor to treat EGFR- non-squamous NSCLC.
Teliso-V, showing ADC’s mechanism has shown multidisciplinary
potential in fields other than oncology such as Pathology and
Molecular Diagnostics where immunohistochemistry SP44 assay was
used in c-MET population categorization (40). Similarly, pneumonitis
being presented as any-grade TRAE could involve pulmonology to
tackle its toxicities. Being able to observe tumors and the treatment
response via RECIST v1.1 as well as adjusting the dosages and time
intervals of the drug highlights the importance of Radiology and
Pharmacology respectively (40).
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Limitations

However, a few research gaps were seen in the results, one of
them being non-randomization and the need for prospective
randomized trial. The trial was unable to compare Teliso-V with
standard treatments, resulting in doctors facing a dilemma whether
the efficacy was validated. Furthermore, absence of a control arm,
testing predominantly white population and the drug being tested
on previously treated EGFR- non-squamous NSCLC has brought
selection bias, some of which are said to be addressed in the Phase
III LUMINOSITY trial (40). Additionally, the use of IHC-assay to
measure c-MET overexpression has led to another limitation as it
could only be stratified to just high and intermediate c-MET
population, which in turn shows a conundrum while evaluating
the ORR and OS. Improved and composite biomarkers in the future
could not only help to evaluate the functional activity of c-MET
protein accurately but also use alternative indicators such as MET
gene alterations and EGFR mutations to precisely determine the
type of NSCLC (105). Short follow-up duration and small group
analysis could make doctors unable to evaluate the long-term side
effects and generalize it to a broader population.

Conclusion and future perspectives

In conclusion, Al integrated with ADCs like Teliso-V can show
a promising efficacy in the coming years not only in terms of time
management, but also the reliability and accuracy. The next decade
holds the potential for ADCs such as Teliso-V to address the
shortcomings of conventional treatments and enhance outcomes
in treatment-resistant cancers. Furthermore, Al incorporated in
oncology could not only help in the development of personalized
medicines in the future, but could also optimize the affinity and
efficacy of ADCs for better treatment (106). AI would not just be
limited to screening cancers, but also be used to expand the
development of “Intelligent ADCs” which could be used in real-
time sensing and dynamic response (107).
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MMAE
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GRB2
PI3K
STAT3
VEGEF-C
ELISA
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PK

NLP

CT
PET-CT
ICIs
PD-1
PD-L1
THC
TMB
TME
FDA
qQ2w
ORR

PFS

Non-small Cell Lung Cancer

Lung Adenocarcinoma

Tyrosine Kinase Inhibitors

Epidermal Growth Factor Receptor

Kirsten rat sarcoma viral oncogene homolog
Mesenchymal-epithelial Transcription Factor
Artificial Intelligence

Telisotuzumab Vedotin

Antibody-drug Conjugate

Monomethyl Auristatin E

Valine-citrulline MMAE

Hepatocyte Growth Factor

Machine Learning

Deep Learning

Growth Factor Receptor-bound Protein 2

Phosphoinositide 3-kinase

Signal Transducer and Activator of Transcription 3

Vascular Endothelial Growth Factor C
Enzyme-linked Immunosorbent Essay
Fluorescence-activated Cell Sorting
Pharmacokinetics

Natural Language Processing
Computed Tomography
Positron-emission Tomography-CT
Immune Checkpoint Inhibitors
Programmed Cell Death Protein 1
Programmed Cell Death Ligand 1
Immunohistochemistry

Tumor Mutational Burden

Tumor Microenvironment

Food and Drug Administration

Once every 2 weeks

Objective Response Rate

Progression-free Survival
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DOR
Q3w
RP2D
oD
DCR
AEs
AUC
TILs
ctDNA
bTMB
TMBRB
ECOG
Rad
H-score
PCR
RNA
H&E
RECIST
NGS
QSP
CDSS
EMRs
RCTs
EHR
TCGA
CNNs
RF
XGB
SaMD
TRAEs
CD31
EMT

ERK
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Overall Survival

Duration of Response

Once every 3 weeks

Recommended Phase 2 Dose

Once Daily

Disease-control Rates

Adverse Events

Area Under Curve
Tumor-infiltrating Lymphocytes
Circulating Tumor DNA
Blood-based TMB

TMB Radiomic Biomarkers

Eastern Cooperative Oncology Group
Radiomics

Histochemical Scoring

Polymerase Chain Reaction
Ribonucleic Acid

Hematoxylin and Eosin Stain
Response Evaluation Criteria in Solid Tumors
Next-generation sequencing
Quantitative Systems Pharmacology
Clinical Decision Support Systems
Electronic Medical Records
Randomized Control Trials
Electronic Health Records

The Cancer Genome Atlas Program
Convolutional Neural Networks
Random Forest

Gradient Tree Boosting

Software as a Medical Device
Treatment-related Adverse Events
Cluster of Differentiation 31
Epithelial-Mesenchymal Transition

Extracellular signal-regulated Kinase;OP-18, Oncoprotein 18.
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