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Machine learning-based
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calculator for postoperative
LDVT in colorectal cancer
Zhihui Zhang1,2†, ShiCong Xu3†, MeiXuan Song2*,
WeiRong Huang1,2, ManLin Yan1,2 and XianRong Li2*

1School of Nursing, Southwest Medical University, Luzhou, Sichuan, China, 2Department of
Gastrointestinal Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou,
Sichuan, China, 3Nursing Department, Ya’an People’s Hospital, Ya’an, Sichuan, China
Background: Lower limb deep vein thrombosis (LDVT) is a common but often

underdiagnosed complication after colorectal cancer (CRC) surgery. Its early

symptoms are subtle, and delayed detection can lead to post-thrombotic

syndrome or even life-threatening events. However, effective tools for early

risk assessment are lacking.

Objective: To identify risk factors for postoperative LDVT in CRC patients and

develop a machine learning (ML)-based risk prediction model with an accessible

web calculator.

Methods: This retrospective study included 1,200 CRC patients undergoing

radical surgery. A modeling cohort of 1,000 patients (January 2021–December

2022) was randomly split 8:2 into training and testing sets, and 200 patients

(March–August 2024) formed an external validation cohort. Risk factors were

screened using univariate analysis and least absolute shrinkage and selection

operator (LASSO) regression. Eight ML models were constructed and compared

based on area under the curve (AUC), accuracy, sensitivity, and F1-score. The

best-performing model was interpreted using SHapley Additive exPlanations

(SHAP), and a web-based calculator was developed.

Results: Among 1,200 patients, 369 (30.75%) developed LDVT (31.5% in the

modeling cohort, 27% in the validation cohort). Seventeen variables were

associated with LDVT in univariate and LASSO analyses, and the top 10 were

used to build models. The random forest (RF) model showed the best

performance, with AUCs of 0.942, 0.897, and 0.891 in the training, testing, and

validation sets, respectively, demonstrating high accuracy and generalizability.

SHAP analysis identified D-dimer, preoperative intestinal obstruction, Caprini

score, age, intraoperative blood loss, and diabetes as major predictors, with D-

dimer having the strongest impact. A web-based calculator (https://crc-

ldvt.shinyapps.io/RF-model/) was constructed to provide individualized

risk estimation.
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Conclusion: This study developed and validated a robust ML-based model for

predicting postoperative LDVT in CRC patients. The RF model, incorporating key

clinical predictors, demonstrated high predictive performance and clinical

relevance. The online calculator enables rapid, individualized risk assessment

and may help guide early prevention strategies, reducing postoperative

complications and improving patient outcomes.
KEYWORDS

machine learning, predictive model, colorectal cancer, lower limb deep vein
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1 Introduction

According to the Global Cancer Statistics (GLOBOCAN 2022),

there were 1.926 million new cases of colorectal cancer (CRC) and

904,000 deaths worldwide in 2022 (1).The incidence and mortality

rates of CRC ranked third and second, respectively, among all

malignancies (2, 3). By 2030, the global burden of colorectal cancer

is projected to increase by approximately 60%, posing a severe threat to

human health (4, 5). The imaging and clinical diagnostic incidence of

venous thromboembolism (VTE) after colorectal cancer surgery can be

as high as 40%, with pulmonary embolism (PE) accounting for

approximately 5% (6). Lower limb deep vein thrombosis (DVT),

particularly in the mid-to-distal veins, is more common and typically

manifests as localized pain and gait disturbances (7). The consequences

of VTE are profound, including prolonged hospitalization, delayed

cancer treatment, the development of post-thrombotic syndrome, and

even death, significantly increasing medical expenses (8). Moreover,

studies indicate that thrombus formation may also promote tumor

growth and metastasis, raising the mortality rate of cancer patients to

9.2%, second only to cancer progression itself (9, 10). However, only

50% of patients clinically present with obvious symptoms such as lower

limb swelling and localized deep tenderness (11). This indicates that

most cases of venous thromboembolism (VTE) are asymptomatic in

the early stages due to partial obstruction of the venous lumen by

thrombi or compensatory function of superficial veins, making early

detection challenging. As a result, in patients with a low risk of lower

limb deep vein thrombosis (LDVT), the potential harms of

thromboprophylaxis may outweigh its benefits. Therefore, an ideal

LDVT prevention strategy should be based on risk stratification,

accurately identifying high-risk individuals and implementing

targeted preventive measures. The National Comprehensive Cancer

Network (NCCN) guidelines recommend using high-quality risk

assessment tools to screen high-risk patients and develop effective

stratified prevention strategies accordingly to reduce the incidence of

LDVT (12).

However, existing predictive models for postoperative lower limb

deep vein thrombosis (LDVT) in colorectal cancer patients

predominantly rely on traditional logistic regression methods (13).

These models emphasize testing causal hypotheses and selecting
02
models based on goodness-of-fit within the data. However, the strict

linear assumptions inherent in both approaches make it challenging to

capture nonlinear relationships in large, complex datasets (14, 15).

Additionally, these models primarily depend on static variables for

evaluation, lacking the capability for dynamic prediction and thus

struggling to adapt to the complexity of postoperative changes in

patient conditions (16). Machine learning algorithms, as a branch of

artificial intelligence, operate at the intersection of computer science

and statistical methodologies (17). They can integrate diverse data

sources and provide accurate predictions. The application of machine

learning techniques in the medical field has brought significant

advancements in disease diagnosis and prevention. In recent years,

machine learning has been widely utilized for risk prediction in various

clinical conditions, such as postpartum stress urinary incontinence

(18), disability in the elderly (19), and obesity in children (20).

Moreover, machine learning has played a significant role in drug

development and personalized medicine (21, 22). With the increasing

richness of comprehensive patient information in electronic health

records, including examination and diagnostic data, coupled with the

rapid advancements in machine learning technology, new

opportunities have emerged for the development of high-

performance predictive models.

Therefore, this study aims to construct a predictive model for

lower limb deep vein thrombosis (LDVT) complications following

colorectal cancer surgery using machine learning algorithms. The

research will incorporate a wider range of more effective predictive

factors to analyze the patterns and relationships between various

features and LDVT, ultimately providing a personalized and precise

predictive model applicable in clinical settings. An overview of the

study design and findings is provided in the summary

diagram (Figure 1).
2 Methods

2.1 Study design and population selection

This study is a retrospective cohort study that collected data

from 1,000 patients who underwent radical colorectal cancer
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surgery between January 2021 and December 2022 for model

development, and data from 200 patients collected between

March and August 2024 for external validation (Supplementary

Figure S1). Inclusion criteria were (1): diagnosis of stage I–III

colorectal cancer according to the Chinese Guidelines for

Diagnosis and Treatment of Colorectal Cancer (2020 edition),

confirmed by imaging and pathology (2); receipt of radical

colorectal cancer surgery (3); no evidence of lower limb deep vein

thrombosis before surgery; and (4) bilateral lower limb color

Doppler ultrasound screening within two weeks postoperatively

to detect both symptomatic and asymptomatic deep vein

thrombosis. Exclusion criteria included (1): presence of severe

chronic diseases or major organ failure (2); Treat patients who

were discharged prematurely; and (3) missing key data ≥ 20%. This

study complied with the Declaration of Helsinki and was approved

by the hospital ethics committee (approval number: KY2023420).
2.2 Research variable

Based on clinical expertise and previous research evidence

(Supplementary Table S1), the variables included demographic

characteristics (age, sex, smoking, and alcohol consumption),

physical measurements (BMI), medical history (hypertension and

diabetes), surgical factors (intraoperative blood loss and anesthesia

duration), and the first postoperative laboratory test results (D-

dimer, white blood cell count, neutrophil count, and other

related biomarkers).
2.3 Definitions and results

According to the standard terminology definitions provided by

theWorld Health Organization (WHO) and the Centers for Disease

Control and Prevention (CDC), lower extremity deep vein

thrombosis (LDVT) refers to the abnormal formation of thrombi

within the deep venous system of the lower limbs—such as the

popliteal, femoral, or iliac veins—resulting in partial or complete

obstruction of the vessel lumen.

In this study, LDVT was defined as the occurrence of lower

extremity deep vein thrombosis within two weeks after colorectal

cancer surgery, including both symptomatic and asymptomatic

cases, all of which were confirmed by imaging examinations.
2.4 Data preprocessing

To improve modeling efficiency and data quality, data

preprocessing was performed prior to model development. Binary

variables were encoded as 0 and 1, unordered categorical variables

were one-hot encoded, and ordinal variables were labeled starting

from 0. Numerical variables were normalized to the [0,1] range to

minimize the impact of scale differences. Variables with minimal

missing data were imputed using various methods (e.g., Amelia in R

4.4.1, mice, or the mi package), while variables with ≥20% missing
Frontiers in Oncology 03
values were excluded. Remaining missing values were handled via

multiple imputation(MI). Outliers were identified using boxplots

and replaced with the mean or median according to the

data distribution.
2.5 Feature selection

During feature selection, univariate analysis was first performed

on the training set to identify variables potentially associated with

lower-limb deep vein thrombosis (LDVT) after colorectal cancer

surgery, thereby eliminating clearly irrelevant features.

Subsequently, the variables that passed this screening were further

refined using least absolute shrinkage and selection operator

(LASSO) regression in R software (version 4.4.1). By introducing

L1 regularization, LASSO effectively addresses multicollinearity

among variables, with the optimal regularization parameter

determined through 10-fold cross-validation, selecting the lambda

value within one standard error of the minimum (lambda.1se).

Finally, the top 10 variables ranked by feature importance across

different machine learning models were selected as the final input

features, aiming to balance model complexity and predictive

performance, reduce overfitting risk, and enhance the

generalizability and clinical utility of the model.
2.6 Model construction and validation

The modeling cohort was randomly divided into a training set

(80%) and an internal test set (20%), while an independent cohort

collected between March and August 2024 served as the external

validation set. The test set and external validation set were used

solely for model performance evaluation and did not participate in

any model training, feature selection, or hyperparameter

optimization, to avoid data leakage and ensure independent and

robust model evaluation. All model development steps were

conducted using the training set. Hyperparameters were

optimized through grid search combined with 10-fold cross-

validation to enhance generalizability and minimize overfitting

risk. Specifically, the training set was split into 10 subsets; in each

iteration, 9 subsets were used for training and 1 subset for

validation, repeating this process 10 times. The average validation

metrics were then used to evaluate model performance (23, 24).

Grid search systematically explored different hyperparameter

combinations within a predefined range, selecting the

configuration that achieved the best validation results

(Supplementary Table S2). A total of eight machine learning

prediction models were constructed: logistic regression (LR),

random forest (RF), support vector machine (SVM), decision tree

(DT), XGBoost, LightGBM, multilayer perceptron (MLP), and k-

nearest neighbors (KNN).

After model training, predictive performance was evaluated on

both the internal test set and the external validation set. Evaluation

metrics included the area under the ROC curve (AUC), accuracy,

sensitivity (recall), specificity, positive predictive value (PPV),
frontiersin.org
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negative predictive value (NPV), F1-score, Youden’s index

(J_index), Brier score, and balanced accuracy. A multidimensional

comparison was performed to comprehensively assess the strengths

and weaknesses of each model.
2.7 Model interpretation

Interpreting machine learning models, especially complex

“black box” models, can be challenging. The Shapley Additive

Explanation (SHAP) method, grounded in game theory, addresses

this challenge by ranking the importance of input features and

quantifying their contributions to the model’s predictions (25).

SHAP can calculate both positive and negative contributions of

each feature, providing local explanations (for individual samples)

as well as global explanations (for overall feature importance),

thereby enhanc ing model t ransparency and c l in ica l

interpretability. In this study, interpretability analysis was

conducted using the shap package in R.
2.8 Web calculator

To support clinical application, the final prediction model was

deployed on a Shiny-based web platform. This online application

allows clinicians to input relevant patient variables and obtain an

individualized probability of LDVT occurrence, assisting in

postoperative risk assessment and decision-making.
2.9 Statistic analysis

Descriptive statistics and group comparisons were performed

using R version 4.4.1. Categorical data were expressed as

frequencies and percentages (%) and compared using the chi-

square test. Continuous data with a normal distribution were

presented as mean ± standard deviation (Mean ± SD) and

compared using independent-samples t-tests or analysis of

variance (ANOVA). Non-normally distributed data were

expressed as median and interquartile range [Median (IQR)] and

analyzed with the Mann-Whitney U test. Multiple categorical

variables were compared using ANOVA. A significance level of

P < 0.05 was considered statistically significant, and all tests were

two-sided.
3 Results

3.1 Univariate analysis

This study included a total of 1,200 patients who underwent

colorectal cancer surgery. Based on the occurrence of lower limb

deep vein thrombosis (LDVT) after surgery, patients were divided

into a non-LDVT group (831 cases, mean age 61.96 years) and an

LDVT group (369 cases, mean age 68.48 years). The overall
Frontiers in Oncology 04
incidence of LDVT was 30.75%. The missing rates of variables

ranged from 0.00% to 5.25%, with the highest missing rate observed

in tumor staging (5.25%). The incidence of LDVT in the modeling

group (n = 1,000) and the external validation group (n = 200) was

31.5% and 27%, respectively. Univariate analysis in the training set

(n = 800) showed that 40 variables, including age, preoperative

intestinal obstruction, surgical approach, Caprini score, blood type,

and anesthesia time, were significantly associated with LDVT

occurrence (P < 0.05). In contrast, 23 variables, such as

pathological type, body mass index (BMI), total protein,

lipoproteins, and red blood cell count, showed no significant

association (P > 0.05) (Table 1).
3.2 LASSO regression

In this study, 40 variables initially screened by univariate

analysis from the modeling group were further selected using

LASSO regression in R, with 10-fold cross-validation applied via

the cv.glmnet function to identify the optimal penalty parameter l.
Variables with non-zero coefficients under l1se were retained,

yielding 17 final predictors (Figure 2, Table 2).
3.3 Baseline comparison of training set,
internal validation set, and external
validation set

Based on the 17 variables selected by the LASSO regression

method, the baseline characteristics of the training set (n=800), the

test set (n=200), and the external validation set (n=200) were

compared (Table 3). The results indicated that certain baseline

differences existed among the three groups, mainly between the

external validation set and the modeling datasets (training and test

sets). This was expected due to differences in the time periods and

populations from which the data were collected. Subsequent model

evaluations were performed on strictly separated test and external

validation sets to ensure the robustness and generalizability of

the results.
3.4 Model construction

In this study, we first performed univariate analysis on the

training set and identified 40 potentially influential variables out of

a total of 63 independent variables. To further refine and determine

the core variables for modeling, LASSO regression analysis was

applied to these 40 variables, with the optimal l at the 1-SE criterion

selected based on the training set, ultimately identifying 17 key

variables. Next, these 17 variables were evaluated for feature

importance using eight different algorithms, including logistic

regression, random forest, support vector machine, decision tree,

XGBoost, LightGBM, multilayer perceptron, and K-nearest

neighbors. Based on the characteristics of each model, we ranked

the variables by importance. We also tested models including more
frontiersin.org
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TABLE 1 Univariate analysis of relevant variables (Training Group, n=800).

Variable No occurrence (n=541) Occurrence (n=259) z/t/c2 P

Age, mean (SD),years 61.68 ± 11.44 68.89 ± 9.88 -9.162 <0.001

Gender, (n %) 0.465 0.495

Female 214(39.56) 109(42.08)

Male 421(61.46) 188(59.68)

BMI, mean(SD),kg/m2 22.36 ± 3.18 22.73 ± 3.47 -1.462 0.144

Smoking History, mean(SD),years 7.33 ± 13.75 10.67 ± 16.94 -2.768 <0.001

Alcohol Consumption History, mean(SD),years 4.22 ± 10.99 7.55 ± 15.07 -3.175 0.002

Blood type, (n %) 12.631 0.006

A 162(30.17) 100(38.76)

AB 45(8.38) 15(5.81)

B 125(23.28) 72(27.91)

O 205(38.18) 71(27.52)

History of abdominal surgery, (n %) 118(21.81) 76(29.34) 5.409 0.020

History of lower limb surgery, (n %) 28(5.18) 33(12.74) 14.234 <0.001

Lower limb varicosities, (n %) 8(1.48) 12(4.63) 7.150 0.007

Diabetes, (n %) 46(8.50) 56(21.62) 27.097 <0.001

Chronic pulmonary disease, (n %) 102(18.85) 96(37.07) 31.191 <0.001

Coronary heart disease, (n %) 18(3.33) 34(13.13) 27.679 <0.001

Arrhythmia, (n %) 51(9.43) 83(32.05) 64.264 <0.001

Hypertension, (n %) 16.293 0.001

Grade I 64(11.83) 35(13.51)

Grade II 44(8.13) 40(15.44)

Grade III 16(2.96) 15(5.79)

Intestinal obstruction, (n %) 117(21.63) 158(61.00) 120.389 <0.001

Hemorrhagic/tarry stool, (n %) 308(57.04) 168(64.86) 4.454 0.035

Preoperative Length of Stay, mean (SD),days 8.80 ± 5.71 9.10 ± 7.23 -0.648 0.517

Number of Catheters on the First Postoperative Day, mean (SD),
count

2.84 ± 0.79 3.07 ± 0.85 -3.721 <0.001

Anesthesia Duration, median(IQR),min 230(187.5,270) 245 (200,300) -3.634 <0.001

Intraoperative blood loss, median(IQR),ml 20 (20,50) 30(20,50) -5.985 <0.001

Urinary Catheter Duration, mean(SD),days 4.45 ± 1.89 5.93 ± 3.06 -7.127 <0.001

Nasogastric Tube Duration, mean(SD),days 0.72 ± 2.06 1.77 ± 3.41 -4.557 <0.001

Duration in ICU, mean(SD),days 0.23 ± 1.61 1.00 ± 3.78 -3.148 0.002

Caprini, mean(SD) 4.76 ± 2.23 6.35 ± 2.61 -8.443 <0.001

Surgical Method, (n %) 30.880 <0.001

Laparoscopic 529(97.78) 229(88.42)

Open Surgery 12(2.22) 30(11.58)

Intraoperative Position, (n %) 23.471 <0.001

Modified Lithotomy Position 397(73.38) 193(74.52)

(Continued)
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TABLE 1 Continued

Variable No occurrence (n=541) Occurrence (n=259) z/t/c2 P

Scissors Position 130(24.03) 41(15.83)

Supine Position 14(2.59) 25(9.65)

Blood Transfusion 43(7.95) 43(16.60) 13.672 <0.001

Placement of Nasogastric Tube, (n %) 83(15.34) 82(31.66) 28.489 <0.001

Postoperative ICU Admission, (n %) 24(4.44) 53(20.46) 51.721 <0.001

Vascular invasion, (n %) 126(23.42) 70(27.24) 1.364 0.243

Electrolyte disorder, (n %) 47(8.69) 50(19.31) 18.531 <0.001

Clean enema, (n %) 519(95.93) 241(93.05) 3.065 0.080

Postoperative infection, (n %) 60(11.09) 90(34.75) 64.351 <0.001

Postoperative stoma, (n %) 147(27.17) 115(44.40) 23.608 <0.001

Central venous catheterization, (n %) 10(1.85) 13(5.02) 6.307 0.012

Anastomotic leak, (n %) 11(2.03) 11(4.25) 3.210 0.073

Chemotherapy, (n %) 162(29.94) 75(28.96) 0.082 0.775

Wound fat liquefaction, (n %) 11(2.03) 4(1.54) 0.228 0.633

WBC, mean(SD),109/L 9.47 ± 3.36 9.69 ± 3.20 -0.903 0.367

NEW, mean(SD),109/L 8.19 ± 3.92 8.47 ± 3.40 -0.983 0.326

LYM, mean(SD),109/L 1.66 ± 3.87 1.82 ± 3.63 -0.556 0.579

MCHC, mean(SD), g/L 319.80 ± 23.25 317.14 ± 31.15 1.350 0.177

PLT, median(IQR),109/L 202.50(159,247) 193(156,254) -1.228 0.219

FIB, mean(SD),g/L 3.84 ± 1.24 4.24 ± 1.38 -3.759 <0.001

PT, mean(SD), s 11.84 ± 1.14 12.60 ± 1.73 -6.383 <0.001

D-dimer, mean(SD),mg/L 0.82 ± 0.95 2.45 ± 2.43 -10.238 <0.001

APTT, mean(SD),s 27.68 ± 3.94 28.81 ± 4.90 -3.242 0.001

TP, median(IQR),g/L 54.70(51,57.9) 54.30(50,59) -0.763 0.445

ALB, mean(SD),g/L 32.72 ± 12.25 32.41 ± 16.80 0.300 0.764

PAB, mean(SD),g/L 138.06 ± 43.71 127.71 ± 45.75 3.087 0.002

TC, mean(SD),mmol/L 3.75 ± 1.01 3.46 ± 1.05 3.785 <0.001

TG, mean(SD),mmol/L 1.17 ± 1.11 1.36 ± 0.87 -2.350 0.019

HDL, mean(SD),mmol/L 1.24 ± 5.92 0.91 ± 0.31 0.901 0.368

LDL, mean(SD),mmol/L 2.24 ± 0.75 2.02 ± 0.79 3.829 <0.001

GLU, mean(SD),mmol/L 6.17 ± 1.90 6.80 ± 2.44 -3.658 <0.001

CEA, median(IQR),ng/mL 4.67(2.8,9.5) 6.16(3.3,16.1) -3.600 <0.001

RBC, mean(SD),10¹²/L 3.86 ± 0.63 3.83 ± 0.67 0.671 0.502

HGB, mean(SD),g/L 112.23 ± 27.83 109.69 ± 21.06 1.302 0.193

Pathological Type, (n %) 0.510 0.775

colon 226(41.77) 115(44.40)

Colorectal 6(1.11) 3(1.16)

Rectum 309(57.12) 141(54.44)

(Continued)
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variables (e.g., the top 8, 9, 11, and 13 variables) and found that

although the AUC in the training set slightly increased, the stability

in the validation set did not improve significantly. In some cases, the

Brier Score even increased slightly, suggesting that including

additional variables may introduce redundant information and

reduce generalizability. Therefore, we ultimately selected the top

10 variables from each model for model construction. (Figure 3,

Supplementary Tables S3, S4).
3.5 Model performance

3.5.1 Performance evaluation of eight models on
the training set

On the training set, the Random Forest (RF) model showed the

best overall performance, with an AUC of 0.942 (95% CI: 0.926–

0.958), accuracy of 0.894, and F1-score of 0.924. It achieved high

sensitivity (0.945) and balanced accuracy (0.864), with a low Brier
Frontiers in Oncology 07
Score (0.089). LightGBM and XGBoost also performed well (AUCs

0.902 and 0.891), while SVM and Logistic Regression showed solid

but slightly weaker results (AUCs 0.887 and 0.885). Decision Tree,

KNN, and MLP had lower overall performance. Overall, RF was the

most effective model on the training data. (Table 4, Figure 4).

3.5.2 Internal validation performance evaluation
of eight models

In internal validation, the random forest (RF) model performed

excellently, achieving an AUC of 0.862, sensitivity of 0.905,

accuracy of 0.820, and an F1 score of 0.873. XGBoost showed a

comparable AUC of 0.863, but overall had a slightly lower recall

than RF. LightGBM, support vector machine (SVM), and logistic

regression also performed well but did not surpass RF. Decision

tree, k-nearest neighbors (KNN), and multilayer perceptron (MLP)

models had lower AUC values and generally weaker overall metrics.

RF was the most effective model on the internal validation data

(Table 5, Figure 5).
TABLE 1 Continued

Variable No occurrence (n=541) Occurrence (n=259) z/t/c2 P

T(n %) 4.403 0.354

T0 5(0.95) 2(0.80)

T1 31(5.86) 16(6.37)

T2 93(17.58) 41(16.33)

T3 334(63.14) 147(58.57)

T4 66(12.48) 45(17.93)

N(n %) 2.969 0.397

N0 303(57.50) 136(54.40)

N1 139(26.38) 77(30.80)

N2 82(15.56) 37(14.80)

N3 3(0.57) 0(0.00)

M(n %) 8.859 0.031

M0 480(91.78) 214(86.29)

M1 41(7.84) 33(13.31)

M3 0(0.00) 1(0.40)

M4 2(0.38) 0(0.00)

Tumor Stage, (n %) 7.889 0.162

0 25(4.89) 12(5.00)

I 102(19.96) 53(22.08)

II 182(35.62) 74(30.83)

III 163(31.90) 71(29.58)

IV 38(7.44) 27(11.25)
fr
BMI, Body Mass Index; WBC, White Blood Cell Count; LYM, Lymphocyte Count; MCHC, Mean Corpuscular Hemoglobin Concentration; PLT, Platelet Count; FIB, Fibrinogen; PT,
Prothrombin Time; D-dimer, D-dimer; APTT, Activated Partial Thromboplastin Time; TP, Total Protein; ALB, Albumin; PAB, Prealbumin; TC, Total Cholesterol; TG, Triglycerides; HDL,
High-Density Lipoprotein Cholesterol; LDL, Low-Density Lipoprotein Cholesterol; GLU, Fasting Blood Glucose; CEA, Carcinoembryonic Antigen; RBC, Red Blood Cell Count; HGB,
Hemoglobin; T, Primary Tumor; N, Lymph Node Metastasis; M, Distant Metastasis; A, Blood Type A; B, Blood Type B; O, Blood Type O; AB, Blood Type AB; Number of Catheters on the First
Postoperative Day (urinary catheters, abdominal drains, nasogastric tubes, and rectal tubes).
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3.5.3 Performance evaluation of eight models on
external validation set

In external validation, Random Forest (RF) performed best with

an AUC of 0.897, accuracy of 0.805, balanced sensitivity (0.815) and

specificity (0.778), and low error (Brier Score 0.115). XGBoost and

SVM also showed good results but slightly less balanced.

LightGBM, Logistic Regression, and MLP had moderate
Frontiers in Oncology 08
performance. Decision Tree and KNN performed poorly. Overall,

RF was the top model. (Table 6, Figure 6).

3.5.4 Decision curve analysis
This study compared eight machine learning models for

predicting postoperative DVT using decision curve analysis. The

RF model demonstrated favorable net benefits across different risk
FIGURE 1

Summary diagram.
FIGURE 2

Combined visualization of LASSO regression: variable selection process and coefficient path plot.
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thresholds, particularly within the range of 0.2–0.5, where the net

benefit remained relatively stable and was clearly superior to other

strategies. XGBoost and LightGBM performed well at lower risk

levels. Logistic Regression was stable but less accurate. SVM and

MLP had limited use, especially at high risk. KNN and Decision

Tree performed worst. RF is recommended as the best

model (Figure 7).
3.6 Model interpretation

The feature importance plot (Figure 8A) highlights D-dimer as

the most influential predictor in the RF model, aligning with its

established role in thrombosis. Other key features, including

preoperative intestinal obstruction, Caprini score, and age, also

showed considerable importance for clinical reference. The SHAP

summary plot (Figure 8B) further revealed that elevated D-dimer,

along with varicose veins, intraoperative bleeding, infection,

diabetes, and intestinal obstruction, substantially increased LDVT

risk. The individual explanation plot (Figure 8C) demonstrated how

these features contributed to a specific patient’s risk, with high D-

dimer, diabetes, and infection raising risk, while younger age,

absence of varicose veins, and lower blood loss were protective.

Across the top 50 patients, SHAP values (Figure 8D) illustrated the

impact of age, arrhythmia, postoperative bleeding, and Caprini

score on predictions, with positive SHAP values indicating higher
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risk and negative values suggesting lower risk. Overall, these results

emphasize how SHAP enhances individualized risk assessment and

supports clinical decision-making for postoperative LDVT.
3.7 Usage process of the online tool

Based on the random forest (RF) algorithm, we developed an

online risk prediction tool for postoperative lower extremity deep

vein thrombosis (LDVT) in patients with colorectal cancer (https://

crc-ldvt.shinyapps.io/RF-model/) to identify high-risk individuals.

Medical staff can use this tool to predict LDVT risk, with the

workflow illustrated in Figure 9. By entering key clinical variables,

such as age, Caprini score, D-dimer levels, and bleeding time, users

can quickly obtain individualized risk probabilities. The interface

also visually displays the contribution of each variable to the

model’s prediction, using Mean Decrease Accuracy and Mean

Decrease Gini to reflect the relative importance of each predictor.

A table at the bottom presents detailed data for multiple observed

cases, including the input variables and corresponding predicted

outcomes, facilitating comparison and analysis.This tool not only

provides precise, individualized risk assessment to support clinical

decision-making but also clearly illustrates variable importance.

When the predicted LDVT risk is low, patients may receive

standard postoperative management; when the predicted risk is

high, medical staff can provide increased attention and implement

comprehensive interventions tailored for high-risk patients. These

interventions include mechanical prophylaxis (e.g., early

mobilization, compression stockings, intermittent pneumatic

compression), pharmacological interventions (e.g., low-molecular-

weight heparin or direct oral anticoagulants), nutritional support,

and patient education. Moreover, by dynamically monitoring

patient status and balancing thromboprophylaxis with bleeding

risk during anticoagulant therapy, the tool can help reduce the

incidence of thrombosis and related complications, promote

postoperative recovery, and improve patients’ quality of life.
4 Discussion

Lower limb deep vein thrombosis (LDVT) often develops

insidiously during the early postoperative period in patients

undergoing colorectal cancer surgery. Therefore, timely risk

stratification and targeted prevention within the first two weeks after

surgery are essential to reduce complications and improve recovery. In

this study, we initially identified 40 candidate variables through

univariate analysis and further optimized them using LASSO

regression, ultimately selecting 17 core predictors. Based on feature

importance rankings, eight machine learning (ML) models were

developed using the top 10 features from each algorithm. Among

these, the random forest (RF) model demonstrated the best predictive

performance. Feature importance analysis consistently highlighted D-

dimer, preoperative bowel obstruction, age, Caprini score,

intraoperative blood loss, and varicose veins as the most influential

predictors for LDVT. SHAP-based interpretability further revealed
TABLE 2 Supplement LASSO results of 34 variables after univariate
analysis.

Variable
Regression
coefficient

Caprini 0.51542535

age 1.71653609

Number of catheters on the first postoperative
day

0.80158728

Intraoperative blood loss 1.25979734

Time of catheter placement 1.64598754

D-dimer 8.89615263

Alcohol consumption history 0.09183638

Nasogastric Tube Duration 0.11293929

Hematochezia/tarry stools 0.14269731

Intestinal obstruction 0.67667691

Postoperative stoma 0.01772579

History of lower limb surgery 0.09732719

Diabetes 0.30682158

infection 0.47752239

Lower limb varicosity 0.73267884

Coronary heart disease 0.05514663

Arrhythmia 0.74030500
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how these clinical variables impact LDVT risk at the individual level,

breaking the so-called “black box” of ML models and enhancing their

clinical applicability in early postoperative settings.

This study employed machine learning methods to develop a

predictive model for lower limb deep vein thrombosis (LDVT)

within two weeks following colorectal cancer surgery. Among the

evaluated variables, D-dimer consistently ranked as the most
Frontiers in Oncology 10
important feature across all algorithms, highlighting its stable and

prominent role in thrombosis risk prediction. These findings not

only reinforce the clinical value of D-dimer from a data-driven

perspective but also provide indirect evidence supporting its central

role in the underlying pathophysiology of LDVT.

Mechanistically, D-dimer is a specific degradation product of

cross-linked fibrin generated during fibrinolysis. Its elevation
TABLE 3 Comparison of clinical features of the training set, test set and external validation set.

Variable
Training set
(n=800)

Internal validation set
(n = 200)

External validation set
(n = 200)

F/H P

age 63.89 ± 11.59 63.88 ± 11.20 64.31 ± 10.36 0.117 0.889

Coronary heart disease 49(6.13) 17(8.50) 13(6.50) 1.470 0.479

Arrhythmia 125(15.63) 30(15.00) 49(24.50) 9.612 0.008

History of lower limb surgery 52(6.50) 15(7.50) 8(4.00) 2.347 0.309

Diabetes 113(14.12) 21(10.50) 22(11.00) 139.035 <0.001

Lower limb varicosity 27(3.38) 8(4.00) 3(1.50) 2.378 0.305

Alcohol consumption history 5.32 ± 12.67 5.76 ± 12.36 2.04 ± 2.92 7.177 0.001

Inserting a gastric tube 155(19.38) 49(24.50) 30(15.00) 5.773 0.078

Hematochezia/tarry stools 463(57.88) 122(61.00) 105(52.50) 3.095 0.213

Intestinal obstruction 286(35.75) 61(30.50) 67(33.50) 2.058 0.357

Postoperative stoma 277(34.63) 58(29.00) 57(28.50) 4.196 0.123

postoperative infection 138(17.25) 34(17.00) 28(14.00) 1.236 0.539

Number of catheters on the first
postoperative day

2.91 ± 0.80 3.04 ± 0.79 2.67 ± 0.87 10.685 <0.001

Intraoperative blood loss 30(20,50) 30(20,50) 30(20,40) 0.979 0.613

Ureteral catheter duration 4.98 ± 2.57 4.88 ± 2.24 4.59 ± 2.31 1.955 0.142

D-dimer 1.35 ± 1.80 1.35 ± 1.45 1.53 ± 1.34 1.008 0.365

Caprini score 5.29 ± 2.57 4.88 ± 2.66 6.89 ± 2.06 39.861 <0.001
FIGURE 3

Important features of eight models.
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reflects simultaneous activation of coagulation and fibrinolytic

pathways, typically indicating an ongoing process of thrombus

formation and breakdown (26, 27). In the postoperative setting,

surgical trauma, tissue injury, inflammation, venous stasis, and a

hypercoagulable state collectively contribute to this process, thereby

increasing circulating D-dimer levels (28). Unlike traditional

scoring systems such as the Caprini score, D-dimer offers the

advantage of temporal sensitivity, capturing an individual’s

thrombotic risk status at a specific point in time. This dynamic

nature may explain its superior predictive performance in our

models compared to static variables. It not only aids in

identifying the presence of thrombosis but also assists in assessing

the rate of progression, therapeutic response, and recurrence risk.

Moreover, D-dimer is a routinely available, cost-effective

laboratory test with excellent clinical applicability. In the context

of postoperative management, a key challenge lies in balancing

the prevention of LDVT with the risk of excessive bleeding caused

by anticoagulation. D-dimer serves as a pivotal tool in this risk-

benefit trade-off by enabling real-time risk stratification and

treatment adjustment. Dynamic monitoring of D-dimer levels can

thus inform individualized anticoagulation strategies, facilitating
Frontiers in Oncology 11
optimal outcomes through precise thromboprophylaxis and

timely intervention.

This study identified preoperative bowel obstruction as a high-

importance predictor for LDVT across all machine learning models,

suggesting it may be an underrecognized yet clinically significant

risk factor. Mechanistically, bowel obstruction may contribute to

thrombosis through increased intra-abdominal pressure, venous

stasis, dehydration, and systemic inflammation—all of which create

a hypercoagulable state and impair venous return.

As a severe gastrointestinal complication, bowel obstruction not

only increases surgical risk but also promotes thrombogenesis via

multiple pathways. Intestinal distension can compress the iliac and

femoral veins, reducing blood flow velocity (29). Concurrently,

vomiting, reduced oral intake, and fluid shifts may lead to

hemoconcentration and increased blood viscosity (7, 30).

Inflammatory responses further exacerbate the prothrombotic

state by releasing cytokines (e.g., IL-6, TNF-a), which damage the

endothelium, activate coagulation, and enhance platelet aggregation

(31). Future studies are needed to clarify whether the severity or

duration of obstruction correlates with thrombosis risk in a dose-

dependent manner.
TABLE 4 Supplement performance evaluation of eight models on training set.

Model
AUC
(95%CI)

Accuracy Sensitivity Specificity PPV NPV F1_score J_index
Brier
score

Balanced
accuracy

Logistic 0.885(0.859-0.910) 0.828 0.838 0.806 0.904 0.695 0.869 0.643 0.119 0.822

SVM 0.887(0.861-0.912) 0.826 0.832 0.813 0.907 0.690 0.868 0.646 0.118 0.823

RF 0.942(0.926-0.958) 0.894 0.945 0.782 0.904 0.868 0.924 0.727 0.089 0.864

XGBoost 0.891(0.866-0.912) 0.839 0.865 0.782 0.896 0.727 0.880 0.647 0.114 0.823

LightGBM 0.902(0.879-0.925) 0.850 0.885 0.774 0.895 0.756 0.890 0.659 0.111 0.829

MLP 0.861(0.833-0.889) 0.796 0.796 0.798 0.895 0.642 0.843 0.593 0.173 0.797

KNN 0.902(0.881-0.924) 0.794 0.757 0.873 0.928 0.623 0.834 0.630 0.115 0.815

DT 0.840(0.809-0.872) 0.836 0.889 0.722 0.874 0.749 0.881 0.611 0.125 0.805
FIGURE 4

(A) Receiver operating characteristic (ROC) curves for models, (B) Calibration curves for the same models. The Brier score is presented for models.
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Age, intraoperative blood loss, and the Caprini score showed

consistent importance in this study and are supported by well-

established pathophysiological mechanisms. Advancing age is

associated with vascular aging, endothelial dysfunction, and

venous valve insufficiency—all of which contribute to impaired

venous return and increased stasis (32). Moreover, elderly

individuals often have higher blood viscosity and reduced

mobility, further elevating thrombosis risk (33–35). Excessive

intraoperative blood loss may lead to hypoperfusion,

hemodynamic instability, and activation of intrinsic coagulation

pathways, thereby promoting thrombus formation (36). Although

the Caprini score is widely used for perioperative thrombosis risk

stratification, it relies heavily on static clinical features and lacks

intraoperative variables such as bowel obstruction and blood loss,

which were identified as strong predictors in our model. Integrating

such surgery-specific factors may enhance its predictive accuracy in

real-world settings.

Other variables, including infection, prolonged urinary

catheterization, arrhythmia, diabetes, and varicose veins,
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demonstrated moderate yet biologically plausible predictive value

in selected models. These factors may exert greater influence in

specific subgroups. For instance, prolonged catheter use is linked to

immobility and venous stasis (37); infection induces systemic

inflammation and hypercoagulability (38); arrhythmia alters

hemodynamic stability (39); and diabetes contributes to

endothelial dysfunction (40, 41). Although these features may not

rank among the top predictors overall, they could enhance model

performance when combined with primary risk factors. Future

work should explore their weighted contributions in stratified

analyses or their utility as interaction terms in subgroup-

specific models.

Currently, there is a lack of dedicated predictive tools

specifically targeting lower limb deep vein thrombosis (LDVT)

following colorectal cancer surgery. Traditional models such as

the Caprini score and the CRC-VTE model (AUC = 0.786) (42) are

based on conventional logistic regression approaches. These models

rely on predefined variables and linear assumptions, which limit

their ability to fully capture potential nonlinear relationships and
TABLE 5 Supplement performance evaluation of eight models on internal validation test set.

Model/
indicator

AUC(95%CI) Accuracy Sensitivity Specificity PPV NPV F1_score J_index
Brier
score

Balanced
accuracy

Logistic 0.858(0.801-0.916) 0.825 0.847 0.778 0.892 0.700 0.869 0.624 0.141 0.812

SVM 0.858(0.799-0.915) 0.815 0.832 0.778 0.891 0.681 0.860 0.610 0.140 0.805

RF 0.862(0.800-0.924) 0.820 0.905 0.635 0.844 0.755 0.873 0.540 0.130 0.770

XGBoost 0.863(0.801-0.923) 0.825 0.847 0.778 0.829 0.700 0.869 0.624 0.128 0.812

LightGBM 0.855(0.793-0.917) 0.820 0.861 0.730 0.874 0.708 0.868 0.591 0.132 0.796

MLP 0.830(0.767-0.893) 0.760 0.788 0.698 0.850 0.603 0.818 0.487 0.178 0.743

KNN 0.805(0.736-0.873) 0.79 0.803 0.762 0.88 0.64 0.84 0.565 0.159 0.782

DT 0.815(0.747-0.883) 0.825 0.891 0.683 0.859 0.741 0.875 0.573 0.131 0.787
FIGURE 5

Area under the ROC curve and Brier score curve for the internal validation set. (A) Receiver operating characteristic (ROC) curves for models, (B)
Calibration curves for the same models. The Brier score is presented for models.
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interactions among variables, thereby reducing their adaptability to

complex clinical scenarios.

In contrast, machine learning (ML) techniques are well-suited

for handling high-dimensional data and identifying complex

nonlinear relationships and interactions among variables. In this

study, we developed a CRC-LDVT prediction model using the

Random Forest (RF) algorithm and applied SHAP analysis to

interpret the model’s predictions. SHAP allowed us to quantify

the contribution of each predictor clearly, highlighting key features

such as D-dimer, preoperative bowel obstruction, and age.

Importantly, the dynamic nature of D-dimer enables the model to

capture real-time changes in thrombotic risk during the critical

early postoperative period. Meanwhile, preoperative bowel

obstruction—a factor specific to colorectal cancer patients—

adds disease-specific information that substantially improves the

model’s precision. This combination not only enhances the

model’s predictive accuracy but also increases its transparency
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and clinical interpretability, effectively overcoming the common

“black box” concerns associated with ML and promoting its

practical application.

The primary limitation of this study lies in the single-source

nature of the data, which was derived from patients at a tertiary

hospital in China. This may restrict the generalizability of the model

to other regions or populations. Additionally, although temporal

validation was employed to assess the model’s stability over time,

the lack of geographical validation could affect its applicability in

different settings. Despite these limitations, the study successfully

identified key risk factors for lower-extremity deep vein thrombosis

(LDVT) following colorectal cancer surgery and developed

the CRC-LDVT risk prediction model. These findings provide a

solid foundation for future research and clinical applications.

Future studies should aim to validate this model in multicenter

cohorts, and explore real-time integration into clinical decision

support systems.”
TABLE 6 Supplement performance evaluation of eight models on external validation set.

Model/
indicator

AUC(95%CI) Accuracy Sensitivity Specificity PPV NPV
F1_s
core

J_index
Brier
score

Balanced
accuracy

Logistic 0.872(0.818-0.927) 0.790 0.808 0.741 0.894 0.588 0.849 0.549 0.118 0.774

SVM 0.876(0.822-0.929) 0.790 0.801 0.759 0.900 0.586 0.848 0.561 0.119 0.780

RF 0.897(0.848-0.946) 0.805 0.815 0.778 0.908 0.609 0.859 0.593 0.115 0.796

XGBoost 0.891(0.840-0.942) 0.790 0.781 0.815 0.919 0.579 0.844 0.596 0.116 0.798

LightGBM 0.884(0.829-0.939) 0.790 0.815 0.722 0.888 0.591 0.850 0.537 0.116 0.769

MLP 0.837(0.768-0.905) 0.800 0.842 0.685 0.879 0.617 0.860 0.528 0.161 0.764

KNN 0.838(0.773-0.903) 0.670 0.623 0.796 0.892 0.439 0.734 0.420 0.132 0.710

DT 0.802(0.731-0.873) 0.800 0.836 0.704 0.884 0.613 0.859 0.539 0.163 0.770
FIGURE 6

Area under the ROC curve and Brier score curve for the external validation set. (A) Receiver operating characteristic (ROC) curves for models, (B)
Calibration curves for the same models. The Brier score is presented for models.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1673705
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhang et al. 10.3389/fonc.2025.1673705
5 Conclusion

This study successfully developed the CRC-LDVT model for

predicting lower-extremity deep vein thrombosis (LDVT) in

patients following colorectal cancer surgery. Compared to
Frontiers in Oncology 14
traditional models, this model achieved an AUC of 0.942 (95%

CI: 0.926-0.958), an accuracy of 0.894, an F1-Score of 0.924, a

sensitivity of 0.945, and a Brier Score of 0.089. Additionally, we

utilized SHAP values to interpret the model and developed an

online web calculator(https://crc-ldvt.shinyapps.io/RF-model/).
FIGURE 7

Decision curve analysis plot.
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FIGURE 8

SHAP explanation plot. (A) Feature importance plot. (B) SHAP summary plot. (C) Individual explanation plot. (D) The top 50 patients, SHAP values.
FIGURE 9

Workflow of the web-based LDVT risk prediction tool for patients with colorectal cancer after surgery. The model integrates patients’ basic, surgical,
and laboratory information to estimate LDVT risk through an online calculator (https://crcldvt.shinyapps.io/RF-model). Based on the predicted risk,
patients are stratified into low- and high-risk groups, receiving routine or intensified preventive interventions accordingly.
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