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Gliomas are primary central nervous system tumors characterized by a high

recurrence rate and poor prognosis, especially in high-grade forms such as

glioblastoma (GBM). Radiotherapy remains a cornerstone in glioma

management, particularly following surgical resection. Recent advancements in

technology—including intensity-modulated radiotherapy (IMRT), proton therapy,

carbon-ion radiotherapy, intraoperative radiotherapy, and ultra-high dose rate

FLASH radiotherapy—have improved treatment precision and tumor control.

However, clinical challenges persist due to tumor heterogeneity, imaging

limitations, and planning variability. In the era of artificial intelligence (AI), novel

tools such as radiomics, deep learning, and predictive modeling are increasingly

being integrated into glioma radiotherapy workflows. These AI-driven

approaches have shown potential to enhance imaging interpretation, automate

contouring, optimize treatment planning, and predict clinical outcomes. This

review highlights the evolution of glioma radiotherapy, explores the emerging

role of AI across various stages of radiotherapy, and discusses future directions

for implementing personalized, adaptive, and data-driven strategies in

clinical practice.
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1 Introduction

Gliomas are solid tumors originating from glial cells of the central nervous system, with

an annual incidence of approximately 5–8 per 100,000 individuals (1), and they represent

the most frequently diagnosed intracranial neoplasms in pediatric populations (2).

According to the fifth edition of the World Health Organization (WHO) classification of

central nervous system tumors released in 2021, gliomas are categorized into grades I to IV

(3). Grade IV glioblastoma (GBM) is the most aggressive form, and despite comprehensive

multimodal therapies—including surgery, concurrent chemoradiotherapy, and adjuvant

chemotherapy—the median overall survival remains less than two years, with a 5-year

survival rate of approximately 10% (4). Radiotherapy is a critical component in the
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therapeutic management of glioma, particularly for controlling

residual disease post-surgery (5, 6). Nonetheless, challenges such

as imprecise target delineation and suboptimal dose distribution

continue to hinder treatment outcomes. The rapid advancement of

artificial intelligence (AI) has enabled its application across several

stages of radiotherapy—including image processing, contour

automation, treatment planning, and outcome prediction—

creating new opportunities for enhancing precision and

personalization (7, 8). This review provides an overview of

current AI applications in glioma radiotherapy, examines key

technical challenges, and outlines future prospects for

clinical integration.
2 Role and limitations of radiotherapy
in glioma treatment

Figure 1 illustrates the integration of conventional radiotherapy

techniques with emerging AI applications in glioma management.

The synergy between advanced physical delivery modalities (e.g.,

Intensity-Modulated Radiotherapy [IMRT], proton and carbon-ion

therapy, and FLASH radiotherapy) and AI-driven technologies

(e.g., auto-segmentation, treatment planning optimization,

radiomics, and prognostic modeling) aims to enhance tumor

control and enable truly personalized treatment strategies.

With the development of radiotherapy techniques, modalities

such as IMRT, volumetric-modulated arc therapy (VMAT), proton
Frontiers in Oncology 02
therapy, carbon-ion therapy, and FLASH radiotherapy are

increasingly being used in clinical practice (9–14). Enhancing

local tumor control while minimizing damage to surrounding

healthy tissue remains a central challenge in the radiotherapeutic

management of gliomas.

Currently, the standard adjuvant radiotherapy protocol for

high-grade gliomas (HGG) is the Stupp regimen (15, 16). This

involves initiating fractionated radiotherapy approximately four

weeks after surgery, delivering a total dose of 60 Gy in daily

fractions of 1.8–2 Gy, concurrently with temozolomide (TMZ)

chemotherapy at a dose of 75 mg/m². Approximately one month

after completing concurrent chemoradiotherapy, patients proceed

with six cycles of adjuvant TMZ chemotherapy.

For elderly patients or those with poor performance status,

hypofractionated radiotherapy (e.g., 40 Gy in 15 fractions or 34

Gy in 10 fractions) can provide comparable efficacy to

conventional fractionation.

Despite technological advances, therapeutic gains remain

modest. Primary obstacles include: (1) intra- and inter-patient

tumor heterogeneity, with diverse genetic drivers affecting

radiosensitivity and recurrence patterns; (2) limitations in target

delineation, as conventional MRI often fails to fully characterize

infiltrative tumor margins, leading to under- or over-treatment; (3)

static treatment planning, which cannot adapt to anatomical or

pathological changes during therapy, such as edema or tumor

shrinkage; and (4) variability in contouring and plan quality

among clinicians and treatment centers.
FIGURE 1

Overview of radiotherapy strategies and artificial intelligence applications in glioma treatment.
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These challenges collectively hinder the realization of precision

radiotherapy and underscore the need for personalized and

adaptive approaches.
2.1 AI in real-time adaptive planning

While radiotherapy has been a cornerstone in glioma treatment,

traditional methods face significant limitations due to tumor

heterogeneity, anatomical shifts, and edema changes during

treatment (17). Real-time adaptive planning—the ability to

dynamically adjust the treatment plan based on tumor changes

during radiotherapy—has emerged as a promising avenue, and AI

plays a critical role in facilitating this process (18).

AI can assist in real-time adaptive planning in several key ways:

Real-Time Imaging and Analysis: AI algorithms, particularly

deep learning models, can process imaging data in real time,

providing up-to-date tumor delineation and identifying changes

in tumor volume or location (19). This ensures that the treatment

plan is dynamically adjusted to account for tumor motion, edema,

or anatomical shifts during radiotherapy sessions.

Treatment Adaptation: AI models can guide adjustments to the

radiation dose distribution during radiotherapy, continuously

optimizing the treatment plan based on updated tumor and

organ-at-risk (OAR) positions (20). Reinforcement learning

algorithms, for instance, can be used to learn from each

radiotherapy session and make adjustments for future treatments.

Clinical Decision Support: Integrating AI with treatment

delivery systems allows clinicians to receive real-time feedback on

tumor changes (21). This feedback facilitates timely decisions on

radiation dose adaptation, improving treatment precision and

enhancing the effectiveness of radiotherapy, particularly for

gliomas, where accurate tumor tracking and adaptability are crucial.
2.2 IMRT

IMRT has become a widely accepted standard for glioma

treatment due to its ability to deliver highly conformal radiation

doses to complex target volumes while sparing adjacent OARs such

as the optic nerves, brainstem, and hippocampus. Through inverse

planning algorithms and multileaf collimator (MLC) modulation,

IMRT enhances dose conformity in irregularly shaped lesions

typical of HGGs, especially those located near eloquent brain

regions (22).

For WHO grade II high-risk low-grade glioma, Wang et al. (23)

reported that both IMRT alone and in combination with TMZ

significantly improved median progression-free survival (mPFS)

and overall survival (mOS) compared with observation alone.

Specifically, the mPFS was 59 months in the observation group,

82 months in the radiotherapy group, and not reached in the

STUPP group; for OS, the median was 96 months in the

observation group, while both RT and STUPP groups did not

reach a median OS.
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VMAT, a time-efficient evolution of IMRT, delivers intensity-

modulated beams during continuous gantry rotation. By

simultaneously varying gantry speed, dose rate, and MLC

positions, VMAT significantly reduces treatment time while

maintaining or exceeding the dosimetric quality of fixed-field

IMRT (24). Navarria et al. (25) studied 341 patients with newly

diagnosed high-grade glioma and demonstrated that VMAT

achieved better dosimetric conformity and significantly improved

mPFS (1.29 vs. 0.99 years, P = 0.02) and mOS (1.56 vs. 1.21 years,

P < 0.01) compared to 3D-conformal radiotherapy (3DCRT).
2.3 Proton beam therapy

Proton therapy leverages the Bragg peak phenomenon to

deposit most of the radiation dose at a defined depth with

minimal exit dose. This feature allows superior sparing of healthy

brain tissue, making PBT particularly advantageous in pediatric

gliomas or recurrent HGGs located near critical structures (26).

Several dosimetric and prospective trials suggest reduced

neurocognitive decline and lower integral doses with proton

therapy, although access remains limited due to high costs and

restricted facility availability (27–29).

While clinical evidence for PBT in gliomas is currently limited, its

potential appears promising (30). In GBM, due to its aggressive

nature and rapid progression, the potential long-term neuroprotective

advantages of PBTmay be diminished. Future studies should focus on

identifying subgroups of patients most likely to benefit from PBT.

Younger, functionally independent individuals with high- or low-

grade gliomas (HGG or LGG) and favorable molecular profiles may

derive more benefit from the reduced normal tissue toxicity associated

with PBT. Notably, preliminary small-scale studies in LGG have

shown milder acute toxicities with PBT (31).
2.4 Carbon-ion radiotherapy

Carbon-ion therapy exhibits a higher relative biological

effectiveness (RBE) than photon and proton therapy. RBE, which

quantifies biological damage relative to 250 keV X-rays, ranges from

1.1 to 3.74 for carbon ions in vitro, depending on cell type (32, 33).

Carbon ions induce more complex and lethal DNA damage than

photons, with decreased repair efficiency in tumor cells (33–36).

One study observed that carbon ion exposure caused pronounced

G2/M cell cycle arrest in approximately 79.9% of cells, persisting for

at least 48 hours (37, 38). In contrast to photon radiotherapy, where

cytotoxicity is dose-dependent, carbon ions appear to exert lethal

effects independent of dose duration (39).

In a phase I trial, Qiu et al. (40) enrolled 18 HGG patients to

assess the feasibility and safety of carbon ion radiotherapy before

proton therapy. Results showed that a pre-proton carbon ion dose

of 15 Gy in 3 fractions was well tolerated and potentially beneficial,

with a median OS of 17.9 months. No grade ≥3 acute or late

toxicities were reported.
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2.5 FLASH Radiotherapy

FLASH radiotherapy is an emerging technique delivering ultra-

high dose rates (>40 Gy/s) and has shown preclinical evidence of

reduced normal tissue toxicity while maintaining tumoricidal effects

(41). Unlike conventional radiotherapy, which delivers radiation at

lower doses over several minutes, FLASH radiotherapy irradiates

the tumor in milliseconds. Preclinical studies have shown that

FLASH radiotherapy can significantly reduce damage to normal

tissues while preserving its tumoricidal effects, making it a

promising technique for improving the therapeutic ratio (42).

This has potential clinical implications for glioma treatment, as it

could reduce neurocognitive side effects typically associated with

radiation, while maintaining or improving treatment efficacy. Its

application in gliomas remains experimental, but initial murine

models demonstrate preserved neurocognitive function compared

to conventional dose-rate irradiation (43). Iturri et al. (44)

compared proton FLASH radiotherapy (257 ± 2 Gy/s) with

conventional-dose-rate proton therapy (4 ± 0.02 Gy/s) in glioma-

bearing rats using a single 25 Gy dose. FLASH notably preserved

cognitive function and triggered a robust lymphoid immune

response in tumors.
2.6 Intraoperative radiotherapy

The peritumoral area is a high-risk zone for glioma recurrence.

Studies indicate that residual tumor volume significantly increases

within the first two weeks post-surgery (45). IORT delivers a single

high dose of radiation directly to the tumor bed during surgical

resection. This approach minimizes treatment delays and reduces

the risk of tumor repopulation between surgery and postoperative

radiotherapy (46). Although still investigational in gliomas, early

results suggest potential for reducing local recurrence when

combined with external-beam RT (47, 48).
3 Artificial intelligence in glioma
radiotherapy: a transformative role across
the treatment spectrum

AI is revolutionizing glioma radiotherapy by enhancing

precision, efficiency, and personalization throughout the

treatment continuum. From target delineation and treatment

planning to imaging biomarker development and prognostic

modeling, AI-driven tools are increasingly integrated into clinical

workflows (49). These technologies reduce inter-observer

variability, automate complex tasks, and offer data-driven insights

for individualized treatment strategies. The adoption of radiomics,

machine learning, and explainable AI frameworks bridges the gap

between imaging data and actionable clinical decisions, ultimately

aiming to improve patient outcomes and standardize care.
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3.1 AI-assisted target delineation

Manual delineation of gross tumor volume (GTV) and clinical

target volume (CTV) is time-consuming and prone to inter-

observer variability, especially in gliomas with diffuse or

infiltrative borders. AI algorithms trained on large imaging

datasets have shown high accuracy in auto-segmentation of

tumor regions on MRI, reducing variability and standardizing

contouring practices. Pehrson et al. (50) reviewed 48 studies and

found that AI algorithms showed good concordance with clinicians

in GTV delineation across various tumors, with Dice similarity

coefficients ranging from 0.62 to 0.92, particularly in encoder–

decoder architecture models.
3.2 AI in treatment planning

AI is increasingly employed to optimize radiotherapy planning,

generating high-quality plans while reducing clinician workload.

Knowledge-based planning (KBP) systems use historical treatment

data to predict optimal dose distributions, while reinforcement

learning models iteratively improve plan quality. These tools

enhance conformity indices and spare organs at risk, particularly

valuable for gliomas near critical structures such as the optic

pathway and brainstem (51).
3.3 Radiomics and imaging-based
biomarkers

Radiomics transforms standard imaging into high-dimensional,

mineable data, enabling extraction of quantitative features that may

reflect tumor heterogeneity, infiltration, and treatment response

(52). In glioma, radiomics signatures correlate with IDH mutation

status, MGMT promoter methylation, and progression patterns.

Integrating radiomics with clinical and molecular data enhances

risk stratification and supports personalized radiotherapy planning.
3.4 Prognostic modeling with machine
learning

Machine learning models, including random forests (RF),

support vector machines (SVM), XGBoost, and neural networks,

have been utilized to predict survival, recurrence, and treatment

response in glioma patients (53). Compared to traditional models,

these machine learning approaches offer enhanced performance

and adaptability in complex clinical scenarios.

3.4.1 RF
Robust and Reliable: RF is an ensemble learning method that

combines multiple decision trees to produce highly reliable

predictions, reducing the risk of overfitting.
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Feature Importance Ranking: RF can identify the most relevant

features, providing valuable insights for clinicians to understand the

factors influencing prognosis.

Handles High-Dimensional Data: It works effectively with

complex datasets like radiomics and genomics, handling large

numbers of variables without requiring extensive data preprocessing.

Resistant to Missing Data: RF can handle missing data well,

making it robust for clinical datasets with incomplete records (54).

3.4.2 SVM
Effective in High-Dimensional Spaces: SVM excels at handling

high-dimensional data, especially when the number of features

exceeds the number of samples, making it ideal for radiomics and

genomic data.

Strong Generalization: SVM is less prone to overfitting,

especially when the data is complex or noisy, and is effective in

binary classification tasks.

Clear Margin of Separation: SVM works well when there is a

clear boundary between different classes, such as distinguishing

between high-grade and low-grade gliomas (55).

3.4.3 XGBoost
High Accuracy: XGBoost is known for its excellent performance,

often providing state-of-the-art results in classification and

regression tasks.

Handles Missing Data Efficiently: XGBoost can automatically

manage missing values, making it ideal for clinical data where

missing records are common.

Feature Importance: Like RF, XGBoost provides insights into

the importance of different features, which is useful for

understanding the key drivers behind predictions.

Scalable and Fast: XGBoost is highly efficient, handling large

datasets and providing quick training times, making it scalable for

big data applications (56).

3.4.4 Neural networks
Powerful for Complex Data: Neural networks, especially deep

learning models, excel at extracting complex patterns from large,

high-dimensional datasets like images and multi-omics data.

Adaptable to Various Data Types: They can process a wide

range of data types, from structured clinical data to unstructured

imaging data, making them versatile in clinical applications.

High Accuracy: When trained on large datasets, neural

networks can achieve exceptional accuracy, often outperforming

traditional machine learning models (57).

3.4.5 Machine learning applications
Samara et al. (58) developed a classification model using

integrated feature selection (Boruta, LASSO, SHAP), identifying

13 key predictors such as IDH1, TP53, and ATRX. XGBoost

achieved the highest AUC (0.93), while logistic regression showed

the highest testing accuracy (88.09%), with strong model calibration

and clinical utility.
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Li et al. (59) created an MRI-based radiomics model for high-

grade glioma classification using various machine learning

algorithms; the Stacking fusion model showed the best

performance (AUC = 0.95, sensitivity = 0.84, accuracy = 0.85, F1

score = 0.85). By incorporating imaging, genomic, and clinical data,

these models surpass traditional prognostic methods and help

identify patients who may benefit from intensified or alternative

treatments. Additionally, explainable AI (XAI) frameworks are

being developed to enhance transparency and clinical trust in

model predictions (60, 61).

4 Model interpretability and
explainable ai in glioma radiotherapy

One of the major challenges limiting the clinical adoption of AI

models in glioma radiotherapy is the lack of interpretability. While

AI models, particularly deep learning models, have demonstrated

remarkable performance, their black-box nature makes it difficult

for clinicians to understand how these models arrive at their

predictions. This lack of transparency poses a significant barrier

to their acceptance in clinical decision-makingl.
4.1 SHAP

SHAP values offer a unified measure of feature importance by

quantifying the contribution of each feature to a model’s prediction.

In glioma radiotherapy, SHAP can be used to explain which clinical,

radiomic, or genomic features have the most significant impact on

predicted outcomes, such as patient survival or recurrence. This

provides clinicians with valuable insights into the factors driving the

model’s predictions (62).
4.2 LIME

LIME is another powerful technique that generates interpretable

explanations for individual predictions by approximating the AI

model with a simpler, interpretable model in the local region

around the prediction. This method is particularly useful in

radiotherapy when explaining individual patient outcomes, such as

why a certain treatment plan is recommended over others (63).

In summary, artificial intelligence holds transformative

potential in glioma radiotherapy, providing tools to enhance

workflow efficiency and clinical precision. Future directions

include multi-omics integration, real-time adaptive planning, and

prospective validation of AI models in large-scale clinical trials.
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22. Vargas López AJ. Glioblastoma in adults: a Society for Neuro-Oncology (SNO)
and European Society of Neuro-Oncology (EANO) consensus review on current
management and future directions. Neuro Oncol. (2021) 23:502–3. doi: 10.1093/
neuonc/noaa287

23. Wang J, Yan L, Ai P, He Y, Guan H, Wei Z, et al. Observation versus
radiotherapy with or without temozolomide in postoperative WHO grade II high-
risk low-grade glioma: a retrospective cohort study. Neurosurg Rev. (2021) 44:1447–55.
doi: 10.1007/s10143-020-01326-y

24. Palma D, Vollans E, James K, Nakano S, Moiseenko V, Shaffer R, et al.
Volumetric modulated arc therapy for delivery of prostate radiotherapy: comparison
with intensity-modulated radiotherapy and three-dimensional conformal radiotherapy.
Int J Radiat Oncol Biol Phys. (2008) 72:996–1001. doi: 10.1016/j.ijrobp.2008.02.047

25. Navarria P, Pessina F, Cozzi L, Ascolese AM, Lobefalo F, Stravato A, et al. Can
advanced new radiation therapy technologies improve outcome of high grade glioma
(HGG) patients? analysis of 3D-conformal radiotherapy (3DCRT) versus volumetric-
modulated arc therapy (VMAT) in patients treated with surgery, concomitant and
frontiersin.org

https://doi.org/10.3322/caac.21871
https://doi.org/10.2174/0115680096365252250618115641
https://doi.org/10.2174/0115680096365252250618115641
https://doi.org/10.1016/S0140-6736(24)01821-X
https://doi.org/10.1016/S0140-6736(24)01821-X
https://doi.org/10.3390/brainsci15060637
https://doi.org/10.1007/s11060-025-05060-7
https://doi.org/10.1007/s11060-025-05034-9
https://doi.org/10.1007/s00330-025-11385-8
https://doi.org/10.1007/s11060-025-05094-x
https://doi.org/10.1007/s11060-025-05094-x
https://doi.org/10.1016/j.radonc.2024.110594
https://doi.org/10.21873/invivo.13906
https://doi.org/10.3390/tomography11060071
https://doi.org/10.3390/tomography11060071
https://doi.org/10.1016/j.ijrobp.2024.01.219
https://doi.org/10.1016/j.ijrobp.2024.01.219
https://doi.org/10.1093/noajnl/vdaf092
https://doi.org/10.1093/noajnl/vdaf092
https://doi.org/10.1016/j.adro.2022.101011
https://doi.org/10.21037/cco-24-103
https://doi.org/10.1007/s11060-024-04722-2
https://doi.org/10.1007/s11060-024-04722-2
https://doi.org/10.1016/S1470-2045(16)30313-8
https://doi.org/10.1016/j.radonc.2023.109663
https://doi.org/10.1007/s11060-023-04303-9
https://doi.org/10.1088/1361-6560/acf023
https://doi.org/10.1016/j.radonc.2022.05.016
https://doi.org/10.1093/neuonc/noaa287
https://doi.org/10.1093/neuonc/noaa287
https://doi.org/10.1007/s10143-020-01326-y
https://doi.org/10.1016/j.ijrobp.2008.02.047
https://doi.org/10.3389/fonc.2025.1673752
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wang et al. 10.3389/fonc.2025.1673752
adjuvant chemo-radiotherapy. BMC Cancer. (2016) 16:362. doi: 10.1186/s12885-016-
2399-6

26. Mizumoto M, Oshiro Y, Yamamoto T, Kohzuki H, Sakurai H. Proton beam
therapy for pediatric brain tumor. Neurol Med Chir (Tokyo). (2017) 57:343–55.
doi: 10.2176/nmc.ra.2017-0003

27. Grosshans DR, Mohan R, Gondi V, Shih HA, Mahajan A, Brown PD. The role of
image-guided intensity modulated proton therapy in glioma. Neuro Oncol. (2017) 19:
ii30–7. doi: 10.1093/neuonc/nox002

28. Badiyan SN, Ulmer S, Ahlhelm FJ, Fredh ASM, Kliebsch U, Calaminus G, et al.
Clinical and radiologic outcomes in adults and children treated with pencil-beam
scanning proton therapy for low-grade glioma. Int J Part Ther. (2017) 3:450–60.
doi: 10.14338/IJPT-16-00031.1

29. Adeberg S, Harrabi SB, Verma V, Bernhardt D, Grau N, Debus J, et al. Treatment
of meningioma and glioma with protons and carbon ions. Radiat Oncol. (2017) 12:193.
doi: 10.1186/s13014-017-0924-7

30. Qiu X, Gao J, Hu J, Yang J, Hu W, Huang Q, et al. Proton radiotherapy in the
treatment of IDH-mutant diffuse gliomas: an early experience from shanghai proton
and heavy ion center. J Neurooncol. (2023) 162:503–14. doi: 10.1007/s11060-022-
04202-5

31. Wilkinson B, Morgan H, Gondi V, Larson GL, Hartsell WF, Laramore GE, et al.
Low levels of acute toxicity associated with proton therapy for low-grade glioma: A
proton collaborative group study. Int J Radiat Oncol Biol Phys. (2016) 96:E135.
doi: 10.1016/j.ijrobp.2016.06.930

32. Combs SE, Kessel K, Habermehl D, Haberer T, Jäkel O, Debus J. Proton and
carbon ion radiotherapy for primary brain tumors and tumors of the skull base. Acta
Oncol. (2013) 52:1504–9. doi: 10.3109/0284186X.2013.818255

33. Zhang G, Cai X, Cao H, Yu Z, Wang W, Xing Y, et al. Prospective phase II
clinical trial of carbon ion radiotherapy combined with chemotherapy for locally
advanced pancreatic carcinoma. Int J Radiat Oncol Biol Phys. (2025) S0360-3016(25)
04522-5\\. doi: 10.1016/j.ijrobp.2025.06.3881

34. Shiba S, Tsuchida K, Mizoguchi N, Kawashiro S, Shima S, Kano K, et al. Carbon-
ion radiotherapy as a local treatment option for hepatocellular carcinoma with child-
pugh class B cirrhosis. Adv Radiat Oncol. (2025) 10:101812. doi: 10.1016/
j.adro.2025.101812

35. Takakura R, Ota Y, Yamazaki Y, Iwamoto S, Kurouchi K, Moriyoshi K, et al.
First report of metabolic complete response in hepatic sarcomatoid carcinoma achieved
with carbon-ion radiotherapy. Clin J Gastroenterol. (2025) 55(4):353–64. doi: 10.1007/
s12328-025-02172-5

36. Adachi A, Oike T, Kambe R, Yoshida Y, Takahashi A, Hirota Y, et al. Enhanced
DNA double-strand break induction by carbon ions under intratumoral hypoxia.
Anticancer Res. (2025) 45:2329–37. doi: 10.21873/anticanres.17606

37. Du TQ, Liu R, Zhang Q, Luo H, Chen Y, Tan M, et al. Does particle radiation
have superior radiobiological advantages for prostate cancer cells? A systematic review
of in vitro studies. Eur J Med Res. (2022) 27:306. doi: 10.1186/s40001-022-00942-2

38. Choi C, Lee GH, Son A, Yoo GS, Yu JI, Park HC. Downregulation of mcl-1 by
panobinostat potentiates proton beam therapy in hepatocellular carcinoma cells. Cells.
(2021) 10:554. doi: 10.3390/cells10030554
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