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Introduction: Amino acid metabolism plays a critical role in tumorigenesis in

hepatocellular carcinoma (HCC). Thus, we explore the amino acid metabolic

profile in HCC to construct effective prognosis model and identify novel potential

therapeutic target for HCC.

Methods: The transcriptomic data and clinical information of HCC patients were

directly obtained from The Cancer Genome Atlas (TCGA). Then we classified

them into two subtypes based on selected amino acid metabolism-related genes

(SARGs) and explored the differences between them. Besides, risk models were

constructed based on SARGs through LASSO regression, and we further validated

and evaluated the predictive effect of the model. Subsequently, we validated the

key gene of LARS1 in the model. We analyzed the discrepancy of LARS1 in tumor

and adjacent non-tumor tissues in both TCGA and the Gene Expression Omnibus

(GEO) database and the results were verified in HCC patients undergoing

hepatectomy from our hospital via PCR and Immunohistochemistry (IHC).

Finally, we explored the biological function of LARS1 in vitro.

Results: We classified HCC patients into Cluster A and B subtypes based on 81

SARGs. And patients in Cluster B exhibited significantly poorer prognosis, higher

tumor malignancy levels, higher TIDE scores and T cell exhaustion or

dysfunction. Then 15 genes were included to construct the risk model. The risk

score was positively associated with poor prognosis. We further extracted LARS1

as the key gene of the model and found that high LARS1 tended to have poorer

prognosis with higher expression in tumor tissues than in adjacent non-tumor

ones in both TCGA and GEO. PCR and IHC were conducted for verification.

Suppression of LARS1 markedly inhibited the growth of HCC cells. Additionally,

LARS1 knockdown significantly impeded cellular migration and invasion in vitro,

with increased autophagy flux.
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Conclusion: We have successfully developed a prognostic model based on 15

genes associated with amino acid metabolism. We also verified that knockdown

of LARS1 significantly inhibited the proliferation, invasion andmigration of HCC in

vitro, with increased autophagy flux, indicating that LARS1 could be a potential

therapeutic target for HCC.
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Introduction

Hepatocellular carcinoma (HCC) is reported to be one of the most

prevalent cancers worldwide and ranks as the third leading cause of

cancer-related death. Globally, there is an estimated of 840,000 new

cases and over 780,000 deaths each year (1). HCC is a highly

heterogeneous disease with various etiological factors, including

chronic hepatitis virus infection, excessive alcohol consumption,

autoimmune hepatitis and metabolic disorders. Due to its insidious

onset and lack of symptoms in the early stage, HCC is usually diagnosed

at an advanced stage when treatment options are limited, albeit with

highmorbidity andmortality (2). Current therapeutic strategies of HCC

include liver transplantation, surgical resection, radiotherapy,

chemotherapy, targeted therapies and immunotherapy (3). However,

the survival time of HCC patients is only extended by a fewmonths and

the overall prognosis remains unsatisfactory. Consequently, there is an

urgent need to investigate the intrinsic molecular features of HCC,

identifying novel and effective therapeutic targets.

Metabolic reprogramming, a hallmark of cancer, is a key process

by which tumor cells support their rapid proliferation and evade

immune surveillance (4), including enhanced glycolysis, increased

fatty acid synthesis, amino acid metabolism and nucleotide

biosynthesis (5). Amino acids are not only the building blocks of

proteins but also serve as intermediates in various biosynthetic

pathways to produce energy. Multiple studies have highlighted the

critical role of amino acid metabolism reprogramming in tumors (6).

For instance, glutamine was proved to serve as a vital nutrient for

many cancers, supplying both carbon and nitrogen to support various

cellular functions, including HCC, which lead to liver cancer cells

being resistant to sorafenib (7). In addition, urea cycle dysregulation

characterized by alteration from arginine synthesis toward pyrimidine

biosynthesis triggers a General Control Nonderepressible 2 (GCN2)

kinase-mediated stress response under arginine deprivation, leading to

inhibition of HCC cell proliferation (8). And methionine metabolites

of S-adenosylmethionine (SAM) and 5-methylthioadenosin (MTA)

may promote T cell exhaustion in HCC (9). In human HCC cells and

animal models, suppression of branched-chain amino acid (BCAA)
02
catabolic enzyme expression strongly correlated with tumor

aggressiveness, and was an independent predictor of clinical

outcome (10). Thus, there is an urgent need to explore the amino

acid metabolic profile in HCC to improve prognosis and treatment

sensitivity for HCC patients.

Leucyl-tRNA synthetase 1 (LARS1) gene encodes a cystosolic

leucine-tRNA synthetase, a member of aminoacyl-tRNA synthetases

(ARSs). The ARS family are evolutionary conserved enzymes and

catalyze the ligation of tRNAs with their cognate amino acids for

translation in protein synthesis, playing a pivotal roles in translation

of RNA into proteins (11). Expect for aminoacylation of tRNA, ARSs

also exhibit important function in various physiological and

pathological process, such as angiogenesis, cysteine polysulfidation,

immune response and tumorigenesis (12). The non-classical

function of LARS1 was reported in many studies. LARS1 was

found to bind to Rag GTPase by sensing intracellular leucine

concentration, and function as GTPase-activating protein (GAP)

for Rag GTPase leading to the mechanistic target of rapamycin

complex 1 (mTORC1) activation. The oncogenic effect of LARS1 by

the activation of mTORC1 was demonstrated in lung cancer cells

(13, 14). Besides, as a leucine sensor, LARS1 has been revealed to

regulate leucine metabolism in a glucose-dependent manner. Under

conditions where both glucose and leucine are abundant, LARS1

catalyzes the binding of leucine to tRNA, thereby participating in the

translation process. However, under glucose-deprived conditions,

UNC51-like autophagy-activating kinase (ULK1) phosphorylates

LARS1, reducing its ability to bind leucine to save energy (15). As

to HCC, it is demonstrated that higher LARS1 expression level was

observed in tumor tissues with poor prognosis and correlated with

AFP, histologic grade, pathologic stage and so on (16). However, the

effect of LARS1 associated with amino acid metabolism on HCC is

still elusive.

As a result, this study focuses on exploring the amino acid

metabolic profile and elucidating the oncogenic roles of LARS1 in

amino acid metabolism of HCC. The ultimate goal is to identify novel

prognostic biomarkers and uncover potential therapeutic targets to

improve patient prognosis and treatment responsiveness in HCC.
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Materials and methods

Data acquisition and procession

The transcriptomic data and clinical information for TCGA-

LIHC were directly obtained from the GDC portal (https://

gdc.cancer.gov/). The raw count data were normalized to TPM

(transcripts per million) to represent gene expression, and low-

quality genes were filtered out to ensure the quality of the analysis.

366 amino acid metabolism-related genes (ARGs) were extracted

from the MSigDB database (https://www.gsea-msigdb.org/)

(Supplementary Table S1). We further identified 81 selected

amino acid metabolism-related genes (SARGs), which have

significant impact on prognosis and exhibit discrepancy

expression levels between tumor and adjacent non-tumor tissues

in HCC (Supplementary Table S2).
Consensus clustering

Initially, we performed consensus clustering analysis using

ConsensusClusterPlus R package to cluster HCC patients into

distinct molecular subtypes based on the expression of SARGs. We

calculated the cumulative distribution function (CDF) for each cluster

number K using the consensus matrix to determine the optimal

number of clusters. Heterogeneity between different molecular

groups was described by principal components analysis (PCA). And

Kaplan-Meier (K-M) curves were used to assess the survival between

different subtypes based on survival and survminer R package.
Differential enrichment analysis of SARG
subtypes

We identified differential expression genes (DEGs) between

the molecular subtypes by edgeR package, with the criteria of

| log2FC|≥1 and FDR<0.05. To explore the differences in

biological functions between different cluster groups, Gene

Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway enrichment analyses were conducted using the

clusterProfler R package. To further explore the possible critical

pathways in tumor progression across subtypes, gene set variation

analysis (GSVA) of Hallmark pathways was performed. Besides,the

difference in tumor mutation burden (TMB) level was visualized via

maftools R package between different SARG subtypes.
Tumor microenvironment and drug
sensitivity analysis of SARG subtypes

The single gene set enrichment analysis (ssGSEA) was employed

to investigate immune cell infiltration within the tumor

microenvironment (TME) in HCC patients of SARGs-related

subtypes (17). To evaluate the response to immunotherapy in
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different molecular subtype, the TIDE database (http://

tide.dfci.harvard.edu/) was utilized. Then Chi-square tests were

conducted to confirm the differences of immunotherapy response

between distinct molecular subtypes. Furthermore, we examined T-

cell state score (TCSS) through TCellSI package to assess eight

distinct T cell states including Quiescence, Regulating, Proliferation,

Helper, Cytotoxicity, Progenitor exhaustion, Terminal exhaustion,

and Senescence (18). In addition, we obtained drug sensitivity-

related data from the Genomics of Drug Sensitivity in Cancer

(GDSC2, https://www.cancerrxgene.org/), including 969 cell lines

and 297 drugs, and calculated the half maximal inhibitory

concentration (IC50) values of the patients between different

SARG subgroups using oncoPredict R package.
Construction of the prognostic model
based on SARGs

We established the prognostic risk model for HCC patients

based on SARGs by LASSO regression. The risk score formula

were established as follows: Risk score=∑(expi*coefi), where

expi represents gene expressions and coefi represents regression

coefficients. Then patients were categorized into high- and low-risk

group according to the median risk score. And we drew heatmap to

visualize the expression levels of model genes in high- and low-

risk group.
Validation and evaluation of prognostic risk
model

Receiver-operator characteristic (ROC) curves were conducted

to verify the accuracy of the risk model. Overall survival (OS) were

evaluated by K-M survival analysis based on ‘survminer’ and

‘survival’ R package to evaluate the ability to discriminate

between patients of different risk levels. And Wilcoxon tests were

conducted to evaluate the differences of risk score between alive and

dead HCC cohorts. To further confirm the model’s independent

prognostic ability, both univariate and multivariate Cox regression

were performed after evaluation of proportional hazards

assumption by Schoenfeld residuals test. A nomogram combining

the model with clinicopathological features was used to calculate the

predicted survival time of HCC patients, and the accuracy was

measured via the calibration plot. We also drew Sankey diagram to

evalute the relationship among molecular subtypes, risk groups and

survival status. Then DEGs between high-risk and low-risk groups

were identified based on edgeR package using |log2FC|>1 and

FDR<0.05 as criteria. And GO and KEGG were utilized to

explore the biological functions of DEGs between high- and

low-risk group. Additionally, drug sensitivity was assessed based

on GDSC database using oncoPredict R package between the two

risk groups. To further extracted the key gene of the risk model, we

evaluated the expression levels between tumor and adjacent

non-tumor tissues and gene-related prognosis of all model genes.
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Functional analysis related to LARS1 levels

The discrepancy of LARS1 in tumor and adjacent non-tumor

tissues were verified in datasets of GSE112790, GSE39791,

GSE45267, GSE69715, GSE76427 from the Gene Expression

Omnibus (GEO). We classified HCC patients into high- and low-

LARS1 groups based on the median LARS1 level. The ‘survminer’

and ‘survival’ R package were used to evaluate prognosis between

different LARS1 subgroups. GO, KEGG and GSEA enrichment

analyses were also conducted based on DEGs between patients with

high- and low-LARS1 levels.
Single-cell RNA sequencing analysis

Single-cell RNA sequencing data of HCC were obtained in

dataset of GSE149614 from GEO. Data processing and downstream

analysis were conducted using the Seurat (v4.1.1) R package. The

filtering threshold was set as follows:

Excluding cells with fewer than 500 or more than 30,000 of total

Unique Molecular Identifier (UMI) counts.

Excluding cells fewer than 200 or more than 8,000

detected genes.

Excluding cells with >10% mitochondrial gene expression.

Gene expression data were normalized according to the Log

Normalization algorithm. Batch effect correction among different

HCC samples was performed using Harmony. PCA was performed

to determine significant and influential dimensions. And the top 10

principal components were clustered via the FindNeighbors and

FindClusters functions with a resolution of 0.3. Uniform Manifold

Approximation and Projection (UMAP) was used for visualization.

Cell type annotation was performed based on the expression of

well-established marker genes. Specifically, hepatoma cells were

identified by AFP, EPCAM, ALB and GPC3; T cells by CD3D,

CD3E and TRAC; NK cells by NKG7, GNLY and KLRD1;

neutrophils by S100A8, S100A9 and FCGR3B; macrophages by

CD68, CD14 and CD163; fibroblasts by COL1A1, FAP and THY1;

B cells by CD19, CD79A and MS4A1; and endothelial cells

by PECAM1, VWF and CDH5. These marker genes were curated

from CellMarker (19). Differential expression analysis was

performed using the FindAllMarkers function in Seurat to

identify cluster-specific marker genes, with the following

parameters: logfc.threshold= 0.25, min.pct= 0.1, and only.pos=

TRUE. Genes with |log2FC|>1 and FDR< 0.05 were considered

statistically significant.
RNA isolation and quantitative real-time
PCR

Total RNA was isolated from fresh cancer and adjacent non-

tumor tissues of 3 HCC patients who underwent hepatectomy

in Cangzhou People’s Hospital, using an RNA extraction kit

(Sparkjade, China). The Ethics Committee of Cangzhou People’s

Hospital approved the acquisition of tissue samples and clinical data
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(Approval No: AF/SC-08/02.0). cDNA was synthesized from the

isolated RNA by reverse transcription according to the instructions

of the qRT-PCR kit (Takara, Japan). The amplification reactions

were carried out using designed primers according to the

manufacturer’s protocol (Vazyme). The primer sequences were as

follows: LARS1 (5’TTTGCTGTAGGGTACCAGCG3’, 5’CGAC

GCCAGTCTACCTTCAA3 ’) ,b actin (5 ’TCATCACCATT

GGCAATGAG3’, 5’CACTGTGTTGGCGTACAGGT3’).
Immunohistochemistry

The paraffin-embedded tissue sections were obtained from

HCC patients undergoing hepatectomy in Cangzhou People’s

Hospital from 2023-2024. The specimens were subjected to high-

temperature (70°C) baking for 2 hours, followed by dewaxing with

xylene and graded ethanol. Antigen retrieval was performed using

citrate buffer solution, and endogenous peroxidase was blocked with

3% hydrogen peroxide. The tissue sections were incubated with a

1:200 dilution of anti-LARS1 antibody (Proteintech, 21146-1-AP,

China) to detect the expression of LARS1. The assessment of LARS1

expression levels was performed by two pathologists in a blinded

manner. Tumor samples were divided into high and low LARS1

expression groups based on the median expression levels.
Cell culture and lentiviral transfection

Hep3B, MHCC97H, PLC/PRF/5 (PLC), SK-hep-1, and Hep G2

liver cancer cell lines were obtained from the American Type

Culture Collection (ATCC). These cell lines were cultured in

Dulbecco’s Modified Eagle Medium (DMEM) supplemented with

10% fetal bovine serum (FBS) and 1% streptomycin-penicillin, and

maintained in an incubator at 37°C with 5% CO2. The SK-hep-1 cell

line was used to construct LARS1 knockdown cell lines. The cells

were seeded in 6-well plates at a density of 1 × 105 cells per well.

After adherence, shRNA lentivirus was mixed with HiTransG A

(GENE, China) and added to the cells. The cells were then treated

with 2 mg/mL puromycin (Invitrogen, USA) for at least one week to

establish stable cell lines. The shRNA sequences were as follows: sh-

LARS1: 5’-CCTCACTTTGACCCAAGCTAT-3’ (sense) and 5’-

ATAGCTTGGGTCAAAGTGAGG-3’ (antisense).
Western blot

The cells were lysed using 1× SDS lysis buffer (62.5 mM Tris-

HCl, pH 6.8, 2% SDS, 10% glycerol) supplemented with 1 mM

sodium fluoride, 1 mM sodium vanadate, and a 1×protease and

phosphatase inhibitor cocktail (Roche, Switzerland) at 4°C for 30

minutes. The collected proteins were denatured in a 95°C water

bath for 10 minutes, followed by centrifugation at 13,000×g for 15

minutes at 4°C. Equal amounts of the protein supernatant were

loaded onto an SDS-polyacrylamide gel for separation via SDS-

PAGE. The proteins were then transferred to a PVDF membrane
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(Merck, Germany) and blocked with 3% bovine serum albumin

(BSA). The membrane was subsequently incubated with primary

and secondary antibodies. The following antibodies were used: anti-

LARS1 (1:1000) from Proteintech, anti-ATG5 (1:1000) from Cell

Signaling Technology, anti-Beclin1 (1:1000) from Cell Signaling

Technology, anti-SQSTM1/p62 (1:1000) from Cell Signaling

Technology and anti-b-actin (1:1000) from Abcam.
CCK8 assay

Cells were cultured in a 96-well plate at a density of 1000 cells

per well, with 100 ml of cell culture medium and 10 ul CCK8 reagent

(Biosharp, China) added to each well. The cells were incubated at

37°C for 3 hours. The absorbance was measured at 450 nm using a

microplate reader (Biotek, USA). Six parallel wells were set up for

each group, and the average value was calculated. The cell

proliferation curve was drawn by continuous detection for3-4 days.
Edu assay

Cells were seeded in a 6-well plate at a density of 1×105 cells/

well and cultured to 70% confluence, then washed with PBS.

According to the manufacturer’s instructions (Beyotime, China),

fresh DMEM containing 10 mM EdU was added, and the cells were

incubated at 37°C with 5% CO2 for 2 hours. After incubation, the

medium was removed by washing the cells with PBS. The cells were

then fixed and stained using the BeyoClick™ EdU-594 Cell

Proliferation Kit (Beyotime, China) according to the protocol. A

fluorescence microscope was used to capture random fields, and the

number of EdU-positive cells was counted.
Invasion and migration assays

Cell migration and invasion assays were evaluated using

Transwell chambers (Neuro Probe, USA). Cells were seeded in a

24-well plate and cultured to 70% confluence. The cell suspension

was prepared at a concentration of 1×106 cells/mL in serum-free

DMEM and added to the upper chambers of the Transwell system.

For the invasion assay, 10% FBS-containing DMEM was added to

the lower chambers as the chemoattractant. The upper chambers

were precoated with Matrigel (Invitrogen, USA). For the migration

assay, the lower chambers were filled with DMEM containing only

10% FBS. The chambers were incubated at 37°C in a 5% CO2

incubator.Distances were measured at time points of 36 and 24

hours for invasion and migration assays respectively.
Statistical analysis

All experimental measurements were were detected in triplicate.

Statistical analyses were performed using GraphPad Prism 9.5.0 and
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R (R-4.3.0). For two group comparison, the Student’s t-test was

conducted for normally distributed continuous data and Wilcoxon

rank-sum test for others. For multiple group comparisons, one-way

analysis of variance (ANOVA) was applied for normally distributed

continuous data and the Kruskal-Wallis test for others. Chi-square

test was used to compare the differences for categorical variables.

LSD post-hoc test was used for further pairwise comparisons

between group means. The Spearman rank correlation and

Pearson correlation coefficients were used to assess the

relationship between two variables. Statistical significance was

defined as P< 0.05, P< 0.01, P< 0.001, and P< 0.0001, with P≥

0.05 indicating no significant difference (ns).
Results

Identification of amino acid metabolism-
related genes and subtypes

A total of 366 ARGs were obtained from MsigDB website and

81 SARGs were selected after intersecting ARGs, DEGs between

HCC tumor and adjacent non-tumor tissues and prognostic

genes by Cox regression in 369 HCC patients from TCGA.

(Supplementary Tables S1, S2; Figure 1A). Then TCGA cohort

were classified into two HCC subtypes, Cluster A (n=234) and B

(n=135) based on the expression of 81 SARGs. (Figure 1B). The

CDF curve shows a smooth rise, indicating that the clustering

results are stable and the correlation between groups is the largest

whole be the smallest between groups (Supplementary Figure S1).

The PCA plot verified the clustering accuracy (Figure 1C).
Functional analysis of SARGs-related
molecular subtypes

Survival analysis revealed that Cluster A exhibited significantly

better OS, disease-specific survival (DSS), and progression-free

survival (PFS) compared with Cluster B (Figures 1D–F). To

detect the possible biological behavior, we screened a total of

3517 DEGs between SARGs-related molecular subtypes and

identified that genes such as TAT, ALDH6A1, SCP2, SLC25A15,

CAT, and PCK2 was highly expressed in Cluster A (Figure 1G).

Then GO enrichment analysis of these DEGs showed that biological

processes (BP) were primarily related to amino acid metabolism,

while cellular components (CC) were associated with nuclear

synaptic membranes, neuronal cell bodies, and apical plasma

membranes and molecular functions (MF) were enriched in

receptor-ligand activity, monoatomic ion channel activity and

channel activity (Figure 1H). KEGG pathway enrichment analysis

indicated that these genes were predominantly involved in amino

acid metabolism, drug metabolism and fatty acid metabolism

pathways (Figure 1I). We found that the pathways associated

with tumor malignancy, such as G2M_CHECKPOINT,

E2F_TARGETS, and MYC_TARGETS_V2, were upregulated in
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Cluster B by GSVA pathway analysis, potentially resulting in poorer

prognosis (Figure 1J). Additionally, mutation analysis revealed that

patients in Cluster B had a higher frequency of TP53 mutations

compared with Cluster A, suggesting aggressive proliferation and

invasion potential (Figure 1K).
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Immune infiltration and therapeutic
sensitivity predictions in SARGs subtypes

We also assessed the potential roles of SARGs in the tumor

microenvironment of HCC. Through ssGSEA algorithm, we
FIGURE 1

(A) Venn diagram showing 81 SARGs after intersection. (B) Consensus matrix plot defining the two subtypes. (C) PCA showing the differences
between the two SARG subtypes. (D–F) K-M curves for the two SARG subtypes. (G) Volcano plot identifying DEGs between the two SARG subtypes.
(H, I) GO and KEGG enrichment of DEGs between two SARG subtypes. (J) Heatmap showing pathways associated with malignancy progression
based on GSVA analysis. (K) The distribution of somatic mutations in the two SARG subtypes.
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analyzed the infiltration levels of 28 immune cell types. We found

that CD56bright natural killer cells, CD56dim natural killer cells,

central memory CD8 T cells, gamma delta T cells, immature B cells,

memory B cells, natural killer cells, and neutrophils were

more abundant in Cluster A (Figure 2A). Besides, Cluster A

exhibited significantly lower TIDE scores, which were generally

associated with reduced immune escape and a favorable

immune microenvironment (Figures 2B, C) (20). We also

evaluated T cell functional status between the two subtypes

and found that patientsxin Cluster B exhibited higher

levels of Progenitor_exhaustion, Quiescence, Senescence and

Terminal_exhaustion status (Figures 2D–G), implying immune-

suppressive microenvironment. We further analyzed the levels of

immune-suppressive regulatory factors between subtypes and

found the elevation in Cluster B, validating above findings. These

factors may ultimately lead to a worse prognosis of Cluster B.
Construction of a prognostic model for
HCC based on SARGs

The 81 SARGs were used to construct the risk model. We

constructed the optimal prognostic signature by LASSO regression

and conducted 10-fold cross-validation to narrow down the gene

list (Figures 3A, B). Finally, 15 genes were included into the model,

and the signature was constructed as follows: Risk score=

(0.166×expression of LARS1)+(0.130×expression of TXNRD1)-

(0.107×expression of GOT2)+(0.101×expression of NAALAD2)-

(0.076×expression of CSAD)+(0.069×expression of SMOX)-

(0.061×expression of ACAT1)-(0.058×expression of FTCD)

+(0.039×expression of SRM)+(0.039×expression of IARS1)

+(0.034×expression of EEF1E1)-(0.031×expression of INMT)-

(0.022×expression of ASPA)-(0.016×expression of CBS)

+(0.005×expression of NQO1). The patients were further divided

into high- and low-risk group based on the median risk score

(Figure 3C). We plotted ROC curve and demonstrate that the areas

under the curve (AUROC) of the risk model to predict the

prognosis in all patients with HCC were 0.762, 0.733, and

0.708 at 1, 3, and 5 years, respectively (Figure 3D). And the

cohort with high-risk score was suggested to have worse

prognosis (Figures 3E, F). Risk score were independent prognostic

predictors according to univariate and multivariate COX regression

analyses (Figures 3G, H). Then, we established the nomogram

combining clinical feature to predict the 1-, 2-, and 3-year

survival for HCC patients. The calibration curve indicated that

the predicted probability of the nomogram was close to the actual

probability (Figures 3I, J).
Biological characteristics of HCC patients
in different risk groups

Sankey plots indicated a consistent relationship among the two

SARGs molecular subtypes, the two signature risk groups and the

prognosis of patients (Figure 4A). GO analysis revealed that the
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differences between the high- and low-risk group were mainly

enriched in the activation of membrane channels and

transmembrane transport of substances. KEGG enrichment analysis

found that the metabolic pathways and drug metabolism of

xenobiotics by cytochrome P450 pathways were highly enriched

(Figures 4B, C). Cytochrome P450, as a superfamily of iron-

ontaining heme proteins widely expressed in organisms, plays a

pivotal role in detoxification, drug metabolism and regulation of

endogenous substances (21). Meanwhile, its activity and genetic

polymorphisms have crucial impact on drug treatment and clinical

medication. Therefore, we conducted drug sensitivity analyses using

the GDSC database and found that patients in low-risk group showed

significant sensitivity to AZD2014 and JAK1 inhibitors (Figures 4D–

K). To further find new therapeutic targets, we analyzed the expression

andOS of 15model genes and found that LARS1 was highly expressed

in tumors and significantly associated with poor prognosis

(Figures 4L, M). In addition, LARS1 also made the greatest

contribution to the construction of the risk model with the highest

coefficient. Therefore, we extracted LARS1 for the subsequent analysis.
The high expression of LARS1 is associated
with poor prognosis in HCC

To further explore the role of LARS1 in HCC, we investigated the

prognosis of high- and low-LARS1, including OS, PFS and DSS based

on TCGA. Results indicated that high LARS1 expression was

associated with poorer prognosis of HCC patients (Figures 5A–C).

Furthermore, LARS1 expression was higher in tumor tissues than in

adjacent non-tumor tissues, which was verified in different datasets of

GEO (Figure 5D). Moreover, to verify above findings, we detected

LARS1 expression in 3 pairs of fresh and 50 pairs of paraffin-embedded

HCC samples undergoing hepatectomy. The mRNA and protein levels

of LARS1 were significantly higher in the cancer than those in adjacent

non-tumor tissues based on PCR and IHC. (Figures 5E, F). This

suggested that LARS1 might be a potential oncogene in HCC, which is

consistent with the previous findings (16). We conducted further

analysis to compare the clinical characteristics including age, gender,

stage, grade and other related clinical parameters between high- and

low-LARS1 groups based on TCGA.We found that patients with high-

LARS1 levels tended to have significantly higher tumor grades

(P<0.001), while patients also appeared to have more advanced

stages in high-LARS1 group, although without statistical significance

(P=0.1) (Figures 5G–J), suggesting the potential relationship between

LARS1 and the differentiation grade of HCC. GO analysis indicated

that DEGs between LARS1-related subgroups were mainly involved in

metabolic-related biological processes and the binding to RNA or

proteins based on TCGA cohort (Supplementary Figure S2A). In

addition, we carried out an enrichment analysis of the pathways

included in the Hallmark gene set through GSEA. We found that

high LARS1 mainly associated with Myc targets v1, G2M checkpoint,

E2F targets, Mitotic spindle, etc, related to the proliferation of tumor

cells, dysregulation of the cell cycle, genomic instability, and drug

resistance, indicating the occurrence and development of tumors

(Supplementary Figure S2B).
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FIGURE 2

(A) Different contributions of immune cell infiltration in the two SARG subtypes based on ssGSEA algorithm. (B) Chi-square tests to confirm the
differences of immunotherapy response between the two SARG subtypes. (C) TIDE scores of the two SARG subtypes. (D–G) T-cell status between
the two SARG subtypes. (H) Expression levels of immune-suppressive regulatory factors in the two SARG subtypes (*p<0.05, **p<0.01, ***p<0.001,
****p<0.0001, ns: no significance).
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FIGURE 3

(A) Lasso coefficients of LASSO regression screening genes. (B) Identification of genes to model the prognostic risk score. (C) Ranked dot and
scatter plots showing the risk score distribution and patient survival status, and the heatmap showing differential expression genes of the model in
the high-risk and low-risk groups. (D) A time-dependent ROC curve to test the accuracy of the risk model. (E, F) The survival difference of patients
with different risk patterns. (G, H) Univariate and multivariate analysis to confirm the independent prognosis function of the model. (I) A calibration
curve to assess the accuracy of the model in predicting patients’ survival time. (J) The nomogram to obtain the predicting survival time of HCC
patients.
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Single-cell RNA sequencing analysis of
LARS1associated with amino acid
metabolism in HCC

To further elucidate the potential role of LARS1 in HCC and its

association with amino acid metabolism, we performed a
Frontiers in Oncology 10
comprehensive analysis based on single-cell RNA sequencing data.

Specifically, we analyzed scRNA-seq data from multiple HCC samples

in the GSE149614 dataset. After quality control and batch effect

correction, cells were annotated into distinct types using canonical

marker genes (Figures 6A, B). A bubble plot illustrated the expression

of representative markers across clusters to ensure annotation accuracy
FIGURE 4

(A) Association between SARG subtypes, signature risk groups, and survival status. (B, C) GO and KEGG enrichment of differentially expressed genes
between high- and low-risk subtypes. (D–K) Drug sensitivity based on GDSC database between the two risk groups. (L) Expression levels between
tumor and adjacent non-tumor tissues of 15 model genes. (M) Gene-related prognosis of 15 model genes.
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(Figure 6C). Six major cell types were identified: B cells, endothelial

cells, fibroblasts, macrophages, malignant cells, and T cells (Figure 6D).

Next, we visualized the distribution of LARS1 expression across cell

types using a UMAP plot and found that LARS1 was expressed in

multiple cell populations (Figure 6E). Interestingly, LARS1 was not

only highly expressed in malignant cells but also showed elevated

expression in endothelial and fibroblast cells, suggesting that these
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non-malignant cells might also exhibit tumor-promoting activity

(Figure 6F). To investigate the relationship between LARS1

expression and the tumor immune microenvironment, we divided

malignant cells into LARS1-high and LARS1-low groups and

evaluated differences in immune infiltration. The LARS1-low

group exhibited a higher proportion of infiltrating immune cells

(Figure 6G). We further conducted differential expression analysis
FIGURE 5

(A–C) OS, PFS and DSS plot between high- and low-LARS1 group based on TCGA. (D) The expression levels of LARS1 between tumor and adjacent
non-tumor tissues from GEO database. (E) The mRNA levels of LARS1 between cancerous and adjacent non-tumor tissues based on PCR.
(F) Representative pictures of IHC staining for LARS1 in cancerous and adjacent non-tumor tissues. (G–J) Chi-square test of clinical characteristics in
high- and low-LARS1 groups based on TCGA (*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001, ns: no significance).
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between the two groups and visualized the top DEGs in a

heatmap (Figure 6H).

Functional enrichment analysis of these DEGs revealed significant

enrichment in pathways such as biosynthesis of amino acids, carbon

metabolism, and cysteine and methionine metabolism, suggesting a

potential role of LARS1 in regulating amino acid metabolic

reprogramming in HCC (Figure 6I).
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Knockdown of LARS1 inhibits the
proliferation, invasion and migration of
hepatocellular carcinoma cells

Then, we explored the biological functions of LARS1 in the

proliferation and metastasis of HCC. We initially assessed LARS1

expression levels in different HCC cell lines, including Hep3B,
FIGURE 6

(A) Quality control metrics of the scRNA-seq data, including gene count, gene feature and mitochondrial gene percentage. (B) Batch effect
correction across different HCC samples using Harmony integration. (C) Bubble plot showing the expression levels and proportions of marker genes
across identified cell types. (D) Cell type annotation based on markers and clustering. (E) UMAP plot illustrating the expression pattern of LARS1 at
the single-cell level. (F) Average expression level of LARS1 across different cell types. (G) Comparison of immune cell infiltration between high- and
low-LARS1 groups. (H) Heatmap showing DEGs between high- and low-LARS1 malignant cells. (I) Pathway enrichment analysis of DEGs.
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MHCC97-H, PLC, SK-Hep-1 and HepG2, and found that LARS1

expression was higher in the SK-Hep-1 cell line. As a result, we used

SK-Hep-1 cells to establish stable LARS1 knockdown cell lines, and

the efficiency of LARS1 deletion was validated by WB.

(Figures 7A, B). We performed GSEA analysis based on TCGA

and found that LARS1 expression was positively associated with cell

cycle progression (Supplementary Figure S2C). CCK-8 and Edu

assays revealed that suppression of LARS1 markedly inhibited the

growth of HCC cells (Figures 7C–E). Additionally, our findings

indicated that LARS1 knockdown significantly impeded cellular

migration and invasion in vitro through Transwell chamber and

Matrigel invasion assays (Figures 7G, H). Collectively, these results

suggest that downregulation of LARS1 expression contributes to the

inhibition of HCC cells. We further investigated the role of LARS1

in amino acid metabolism. KEGG analysis were conducted based on

DEGs between high- and low-LARS1 groups and found the

enrichment in autophagy and related pathways (Supplementary

Figure S2D). Besides, the genesets of autophagy were also

significantly enriched in low-LARS1 group according to GSEA

analysis (Figures 7I, J). Previous studies have shown that amino

acid deprivation can trigger autophagy by inhibition of mTORC1 to

release free amino acids as part of a starvation adaptation (22).

Additionally, glutamine- and autophagy-mediated restoration of

mTORC1 in turn induces autophagy termination (23). Based on

these findings with regard to autophagy in amino acid metabolism,

we assessed the level of autophagy flux in vitro. Western blot

revealed higher expression level of ATG5 and Beclin1 in LARS1

knockdown cells, along with reduced P62, indicating increased

autophagy after knockdown of LARS1 (Figure 7F).
Discussion

Cancer cells often encounter hypoxic and hypo-nutrient

conditions for the huge consumption of metabolites (24).

Therefore, metabolic alterations are recognized as hallmark of

cancer. Metabolic reprogramming is a crucial process to sustain a

favorable microenvironment to satisfy the requirements for energy,

biosynthetic precursors and survival signals for rapid cell

proliferation, invasion and metastasis of cancer (25). The

Warburg effect, an example of metabolic reprogramming, is the

phenomenon that cancer cells prefer to undergo glycolysis and

produce lactate even in the presence of oxygen. Warburg effect

provides many benefits to compete and share energy, which can

promote the growth rate of cancer cells, including HCC (26, 27).

As the largest gland in human body, liver plays a critical role in

metabolism. And the metabolism process of carbohydrates, lipids,

proteins, hormones, bile, and exogenous diet in liver influence the

development of various diseases vice versa. Expect for glucose

metabolism, the alterations also contain increased fatty acid

synthesis, amino acid metabolism, nucleotide production and so on

(28). Amino acid metabolism is critical in HCC, not only to synthesize

proteins but also to produce energy or to influence other biological

behaviors of tumor (6). For example, reprogramming of tyrosine

metabolism and poor prognosis in HCC was reported (29).
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Glutamine addiction was described to provide carbon source for the

TCA cycle and essential nitrogen for purine and pyrimidine

nucleotides in HCC, which are necessary for DNA and RNA

biosynthesis (30). Elevated expression of glutaminase (GLS1), a key

enzyme for glutaminolysis pathway, is correlated with poorer

differentiation, lymphatic metastasis, advanced TNM stage, and

worse prognosis in HCC (31). Besides, the correlation between

amino acid metabolism and the immune cell microenvironment in

HCC was demonstrated. Alterations in amino acid metabolism lead to

changes in responses of immune cells in the tumor microenvironment,

thereby promoting immune evasion in HCC (32). Consequently, it is

necessary to explore the amino acid metabolic profile in HCC to better

understand the pathogenic mechanisms of HCC.

In the present study, we analyzed the molecular patterns and

clinical significance of amino acid metabolism in HCC. Patients with

SARG cluster B showed poorer prognosis and higher activity of

pathways associated with malignancy progression, including

G2M_CHECKPOINT, E2F_TARGETS, MYC_TARGETS_V2.

Besides, the rate of mutation in TP53 in Cluster B was greatest and

significantly higher compared with Cluster A. As we know, TP53

mutation contributes to carcinogenesis and tumor development,

suggesting enhanced proliferative and invasive potential of Cluster B.

In addition, immune cell infiltration also differed significantly between

the two subtypes. Higher levels of infiltration of anti-tumor effector

cells and lower TIDE scores were found in the Cluster A, indicating

that patients in the Cluster A might be more sensitive to immune

checkpoint inhibitors. Cluster B exhibited higher levels of Progenitor

Exhaustion, Quiescence, Senescence, and Terminal Exhaustion

according to the evaluation of functional status of T cells, indicating

immunosuppressive subtype in Cluster B, which was corroborated by

subsequent analysis of immunosuppressive regulators. Consequently,

the classification based on amino acid metabolism revealed

heterogeneity and immune microenvironment of HCC, which were

anticipated to provide potential evidence for precision treatment.

Additionally, we screened 15 genes for the construction of the

risk models by LASSO regression based on metabolism-related genes.

There were significant differences in prognosis between the high- and

low-risk groups. And ROC curves confirmed robust predictive

performance of the risk model in distinguishing high- and low-risk

HCC patients. The model genes were involved in multiple biological

processes pertaining to HCC development. For instance, TXNRD1

and NQO1, as redox stress-related enzymes, have been reported to be

upregulated in various cancers and promote malignant progression

(33–35). GOT2 and FTCD are both key enzymes in amino acid

metabolism, playing a critical role in maintaining hepatic amino acid

balance. It is also demonstrated that silencing GOT2 reprograms

glutamine metabolism, which increased the sensitivity to glutaminase

inhibitors of HCC cells (36). We also established a nomogram for

better clinical applicability by combining the risk score with clinical

characteristics to further improve the performance of the risk

signature. And the risk score was found to be independent risk

factors for HCC patients by multivariate analyses after adjusting

other variables, highlighting its potential clinical utility. It is worth

noting that the risk model was only validated internally using TCGA

and lacks validation from an external independent cohort. As a result,
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future studies are needed to validate the risk model for its prognostic

prediction ability.

In addition, we also found that patients in the low-risk group were

more sensitive to drugs such as AZD2014. AZD2014 is a dual inhibitor

of mTORC1 and C2. It is demonstrated that AZD2014 resulted in more

profound proliferation suppression, apoptosis, cell cycle arrest, and

autophagy in HCC cells compared with rapamycin (37). Our study

suggests that AZD2014 may influence amino acid metabolism via

mTORC1. However, further investigation is required to confirm this

in future studies. It is worth noting that targeting a single gene or

metabolic enzyme is often insufficient to achieve an effective and safe
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anti-cancer effect in clinical trials, due to the high degree of heterogeneity

of HCC (38). Consequently, the development ofmulti-target therapeutic

strategies may represent a more promising alternative. For example,

plant-derived products and extracts, composed by a blend of biologically

active secondary metabolites, were demonstrated to modulate key

metabolic processes through multi-target effect in HCC (39).

To deeply understand the mechanisms behind amino acid

metabolism in HCC, further investigation of key genes in the

model is needed. Among the 15-gene risk models, LARS1 has the

highest risk coefficient and is most likely the key gene in the model.

Previous study has suggested that LARS1 was an important
FIGURE 7

(A) Expression levels of LARS1 in different HCC cell lines by Western blotting. (B) Downregulation efficiency of LARS1 in SK-Hep1 validated by
Western blotting. (C) Cell viability of SCR and KD groups. (D, E) Representative images and quantitative bar chart of EdU staining showing the effect
of knockdown of LARS1 on the proliferation of SK-Hep1. (F) Western blot analysis was performed to detect autophagy-related protein levels.
(G, H) Alteration in invasion and migration by knockdown of LARS1. (I, J) GSEA analysis of the correlation between LARS1 expression and autophagy
related genes in TCGA cohort (**p<0.01, ***p<0.001).
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oncogene in HCC and was associated with immune infiltration,

consistent with our findings (16). We further knocked down the

expression of LARS1 gene by shRNA in HCC cell lines, and

demonstrated that knockdown of LARS1 inhibits the proliferation

and migration of human HCC cells. However, only 3 pairs of tissues

were included in our study, which might limit the statistical power

of the results. Consequently, larger sample sizes are needed to

confirm our findings in the future studies. Furthermore, we

performed single-cell RNA sequencing analysis, and found that

DEGs between high- and low-LARS1 group enriched in pathways

including biosynthesis of amino acids, carbon metabolism, and

cysteine and methionine metabolism, suggesting a potential role of

LARS1 in regulating amino acid metabolic reprogramming in HCC.

Single-cell transcriptomic analysis manifested the heterogeneity of

LARS1 in HCC and suggested that it may contribute to tumor

progression through modulation of amino acid metabolism.

Amino acid imbalance is observed in chronic liver disease

including cirrhosis and related disease states, characterized by a

reduction in BCAAs (including valine, leucine and isoleucine) and

an elevation in aromatic amino acids (AAAs) in serum (40). It is

demonstrated that reducing or removing BCAAs significantly

suppressed the proliferation rates of the HCC cell line in vitro and

high dietary BCAA intake enhances tumor development and growth in

vivo of mousemodels (10). Noteworthily, the underlyingmechanism of

BCAA promoting tumor development and growth was demonstrated

to be the activation of mTORC1 signaling pathway by accumulation of

BCAA, especially leucine, in HCC tumors. Leucine, as the major

component of BCAA, induce the lysosomal localization of mTORC1

and its subsequent activation. And LARS1 was elaborated to be a key

mediator for amino acid signaling to mTORC1. Lysosomal localization

of mTORC1 was not observed and amino acid induced S6K

phosphorylationin was inhibited in LARS1 knockdown cells. It is

reported that LARS1, function as a leucine sensor and GTPase-

activating protein (GAP), interacts with RagD GTPase for mTORC1

signaling by sensing intracellular leucine concentration (41, 42).

mTORC1 regulates multiple biological process including autophagy

(43). Autophagy is an evolutionarily conserved program that is

responsible for degradation of dysfunctional or damaged organelles

in all living cells, playing a crucial role in liver homeostasis (44). In

cancer cells, autophagy is considered a double-edged sword, with

tumor-suppressing features during tumorigenesis stage and then

tumor-promoting properties after tumorigenesis. Autophagy was

investigated to be activated in LARS1-downregulated cells (42).

Besides, it is reported that branched-chain amino acid transaminase

1 (BCAT1) decreases cisplatin sensitivity of HCC by inducing mTOR-

mediated autophagy via leucine metabolism in vivo and vitro (45). To

further explore the molecular mechanism of LARS1 on amino acid

metabolism in HCC, we conducted theWestern blot of autophagy flux

and found the increased autophagy in LARS1 knockdown cells.

Consequently, we hypothesized that LARS1 might impede autophagy

via regulating amino acid metabolism to activate the mTORC1

pathway, thereby impacting HCC progression, which provided novel

insights compared with previous studies. As a result, LARS1 might be a
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potential valuable biomarker and molecular therapeutic target for

HCC therapy.

This study has several limitations. Firstly, the risk model based on

15 genes was validated solely using an TCGA datasets via retrospective

analyses. Thus, external validation in future studies are needed to

further validate the risk model. Secondly, the role of LARS1 in amino

acidmetabolism of HCCwarrants systematic experimental verification.

Additionally, direct experimental evidence for LARS1 regulating

mTORC1 downstream proteins, such as p-S6K/p-4EBP1, is currently

lacking in our study, the molecular mechanism of LARS1 in regulating

mTORC1 and autophagy needs to be further studied both in vivo and

in vitro in the future studies.

In conclusion, we have successfully developed a prognostic model

based on 15 genes associated with amino acid metabolism and

identified LARS1 as the key gene. Moreover, we revealed the

heterogeneous expression of LARS1 in HCC and its potential tumor-

promoting mechanisms by single-cell transcriptomic analysis. Finally,

we verified that knockdown of LARS1 significantly inhibited the

proliferation, invasion and migration of HCC in vitro, with increased

autophagy flux, indicating that LARS1 could be a potential therapeutic

target for HCC.
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