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Introduction: Amino acid metabolism plays a critical role in tumorigenesis in
hepatocellular carcinoma (HCC). Thus, we explore the amino acid metabolic
profile in HCC to construct effective prognosis model and identify novel potential
therapeutic target for HCC.

Methods: The transcriptomic data and clinical information of HCC patients were
directly obtained from The Cancer Genome Atlas (TCGA). Then we classified
them into two subtypes based on selected amino acid metabolism-related genes
(SARGs) and explored the differences between them. Besides, risk models were
constructed based on SARGs through LASSO regression, and we further validated
and evaluated the predictive effect of the model. Subsequently, we validated the
key gene of LARS1 in the model. We analyzed the discrepancy of LARS1 in tumor
and adjacent non-tumor tissues in both TCGA and the Gene Expression Omnibus
(GEO) database and the results were verified in HCC patients undergoing
hepatectomy from our hospital via PCR and Immunohistochemistry (IHC).
Finally, we explored the biological function of LARSL in vitro.

Results: We classified HCC patients into Cluster A and B subtypes based on 81
SARGs. And patients in Cluster B exhibited significantly poorer prognosis, higher
tumor malignancy levels, higher TIDE scores and T cell exhaustion or
dysfunction. Then 15 genes were included to construct the risk model. The risk
score was positively associated with poor prognosis. We further extracted LARS1
as the key gene of the model and found that high LARS1 tended to have poorer
prognosis with higher expression in tumor tissues than in adjacent non-tumor
ones in both TCGA and GEO. PCR and IHC were conducted for verification.
Suppression of LARS1 markedly inhibited the growth of HCC cells. Additionally,
LARS1 knockdown significantly impeded cellular migration and invasion in vitro,
with increased autophagy flux.
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Conclusion: We have successfully developed a prognostic model based on 15
genes associated with amino acid metabolism. We also verified that knockdown
of LARS1 significantly inhibited the proliferation, invasion and migration of HCC in
vitro, with increased autophagy flux, indicating that LARS1 could be a potential
therapeutic target for HCC.

LARS1, HCC, amino acid metabolism, prognosis model, autophagy

Introduction

Hepatocellular carcinoma (HCC) is reported to be one of the most
prevalent cancers worldwide and ranks as the third leading cause of
cancer-related death. Globally, there is an estimated of 840,000 new
cases and over 780,000 deaths each year (1). HCC is a highly
heterogeneous disease with various etiological factors, including
chronic hepatitis virus infection, excessive alcohol consumption,
autoimmune hepatitis and metabolic disorders. Due to its insidious
onset and lack of symptoms in the early stage, HCC is usually diagnosed
at an advanced stage when treatment options are limited, albeit with
high morbidity and mortality (2). Current therapeutic strategies of HCC
include liver transplantation, surgical resection, radiotherapy,
chemotherapy, targeted therapies and immunotherapy (3). However,
the survival time of HCC patients is only extended by a few months and
the overall prognosis remains unsatisfactory. Consequently, there is an
urgent need to investigate the intrinsic molecular features of HCC,
identifying novel and effective therapeutic targets.

Metabolic reprogramming, a hallmark of cancer, is a key process
by which tumor cells support their rapid proliferation and evade
immune surveillance (4), including enhanced glycolysis, increased
fatty acid synthesis, amino acid metabolism and nucleotide
biosynthesis (5). Amino acids are not only the building blocks of
proteins but also serve as intermediates in various biosynthetic
pathways to produce energy. Multiple studies have highlighted the
critical role of amino acid metabolism reprogramming in tumors (6).
For instance, glutamine was proved to serve as a vital nutrient for
many cancers, supplying both carbon and nitrogen to support various
cellular functions, including HCC, which lead to liver cancer cells
being resistant to sorafenib (7). In addition, urea cycle dysregulation
characterized by alteration from arginine synthesis toward pyrimidine
biosynthesis triggers a General Control Nonderepressible 2 (GCN2)
kinase-mediated stress response under arginine deprivation, leading to
inhibition of HCC cell proliferation (8). And methionine metabolites
of S-adenosylmethionine (SAM) and 5-methylthioadenosin (MTA)
may promote T cell exhaustion in HCC (9). In human HCC cells and
animal models, suppression of branched-chain amino acid (BCAA)
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catabolic enzyme expression strongly correlated with tumor
aggressiveness, and was an independent predictor of clinical
outcome (10). Thus, there is an urgent need to explore the amino
acid metabolic profile in HCC to improve prognosis and treatment
sensitivity for HCC patients.

Leucyl-tRNA synthetase 1 (LARS1) gene encodes a cystosolic
leucine-tRNA synthetase, a member of aminoacyl-tRNA synthetases
(ARSs). The ARS family are evolutionary conserved enzymes and
catalyze the ligation of tRNAs with their cognate amino acids for
translation in protein synthesis, playing a pivotal roles in translation
of RNA into proteins (11). Expect for aminoacylation of tRNA, ARSs
also exhibit important function in various physiological and
pathological process, such as angiogenesis, cysteine polysulfidation,
immune response and tumorigenesis (12). The non-classical
function of LARSI was reported in many studies. LARS1 was
found to bind to Rag GTPase by sensing intracellular leucine
concentration, and function as GTPase-activating protein (GAP)
for Rag GTPase leading to the mechanistic target of rapamycin
complex 1 (mTORCI1) activation. The oncogenic effect of LARS1 by
the activation of mTORCI was demonstrated in lung cancer cells
(13, 14). Besides, as a leucine sensor, LARS1 has been revealed to
regulate leucine metabolism in a glucose-dependent manner. Under
conditions where both glucose and leucine are abundant, LARSI
catalyzes the binding of leucine to tRNA, thereby participating in the
translation process. However, under glucose-deprived conditions,
UNC51-like autophagy-activating kinase (ULK1) phosphorylates
LARS], reducing its ability to bind leucine to save energy (15). As
to HCC, it is demonstrated that higher LARS1 expression level was
observed in tumor tissues with poor prognosis and correlated with
AFP, histologic grade, pathologic stage and so on (16). However, the
effect of LARSI associated with amino acid metabolism on HCC is
still elusive.

As a result, this study focuses on exploring the amino acid
metabolic profile and elucidating the oncogenic roles of LARSI in
amino acid metabolism of HCC. The ultimate goal is to identify novel
prognostic biomarkers and uncover potential therapeutic targets to
improve patient prognosis and treatment responsiveness in HCC.
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Materials and methods
Data acquisition and procession

The transcriptomic data and clinical information for TCGA-
LIHC were directly obtained from the GDC portal (https://
gdc.cancer.gov/). The raw count data were normalized to TPM
(transcripts per million) to represent gene expression, and low-
quality genes were filtered out to ensure the quality of the analysis.
366 amino acid metabolism-related genes (ARGs) were extracted
from the MSigDB database (https://www.gsea-msigdb.org/)
(Supplementary Table SI). We further identified 81 selected
amino acid metabolism-related genes (SARGs), which have
significant impact on prognosis and exhibit discrepancy
expression levels between tumor and adjacent non-tumor tissues
in HCC (Supplementary Table S2).

Consensus clustering

Initially, we performed consensus clustering analysis using
ConsensusClusterPlus R package to cluster HCC patients into
distinct molecular subtypes based on the expression of SARGs. We
calculated the cumulative distribution function (CDF) for each cluster
number K using the consensus matrix to determine the optimal
number of clusters. Heterogeneity between different molecular
groups was described by principal components analysis (PCA). And
Kaplan-Meier (K-M) curves were used to assess the survival between
different subtypes based on survival and survminer R package.

Differential enrichment analysis of SARG
subtypes

We identified differential expression genes (DEGs) between
the molecular subtypes by edgeR package, with the criteria of
| log2FC|>1 and FDR<0.05. To explore the differences in
biological functions between different cluster groups, Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment analyses were conducted using the
clusterProfler R package. To further explore the possible critical
pathways in tumor progression across subtypes, gene set variation
analysis (GSVA) of Hallmark pathways was performed. Besides,the
difference in tumor mutation burden (TMB) level was visualized via
maftools R package between different SARG subtypes.

Tumor microenvironment and drug
sensitivity analysis of SARG subtypes

The single gene set enrichment analysis (ssGSEA) was employed
to investigate immune cell infiltration within the tumor
microenvironment (TME) in HCC patients of SARGs-related
subtypes (17). To evaluate the response to immunotherapy in
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different molecular subtype, the TIDE database (http://
tide.dfci.harvard.edu/) was utilized. Then Chi-square tests were
conducted to confirm the differences of immunotherapy response
between distinct molecular subtypes. Furthermore, we examined T-
cell state score (TCSS) through TCellSI package to assess eight
distinct T cell states including Quiescence, Regulating, Proliferation,
Helper, Cytotoxicity, Progenitor exhaustion, Terminal exhaustion,
and Senescence (18). In addition, we obtained drug sensitivity-
related data from the Genomics of Drug Sensitivity in Cancer
(GDSC2, https://www.cancerrxgene.org/), including 969 cell lines
and 297 drugs, and calculated the half maximal inhibitory
concentration (IC50) values of the patients between different
SARG subgroups using oncoPredict R package.

Construction of the prognostic model
based on SARGs

We established the prognostic risk model for HCC patients
based on SARGs by LASSO regression. The risk score formula
were established as follows: Risk score=Y(expi*coefi), where
expi represents gene expressions and coefi represents regression
coefficients. Then patients were categorized into high- and low-risk
group according to the median risk score. And we drew heatmap to
visualize the expression levels of model genes in high- and low-
risk group.

Validation and evaluation of prognostic risk
model

Receiver-operator characteristic (ROC) curves were conducted
to verify the accuracy of the risk model. Overall survival (OS) were
evaluated by K-M survival analysis based on ‘survminer’ and
‘survival’ R package to evaluate the ability to discriminate
between patients of different risk levels. And Wilcoxon tests were
conducted to evaluate the differences of risk score between alive and
dead HCC cohorts. To further confirm the model’s independent
prognostic ability, both univariate and multivariate Cox regression
were performed after evaluation of proportional hazards
assumption by Schoenfeld residuals test. A nomogram combining
the model with clinicopathological features was used to calculate the
predicted survival time of HCC patients, and the accuracy was
measured via the calibration plot. We also drew Sankey diagram to
evalute the relationship among molecular subtypes, risk groups and
survival status. Then DEGs between high-risk and low-risk groups
were identified based on edgeR package using [log2FC|>1 and
FDR<0.05 as criteria. And GO and KEGG were utilized to
explore the biological functions of DEGs between high- and
low-risk group. Additionally, drug sensitivity was assessed based
on GDSC database using oncoPredict R package between the two
risk groups. To further extracted the key gene of the risk model, we
evaluated the expression levels between tumor and adjacent
non-tumor tissues and gene-related prognosis of all model genes.
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Functional analysis related to LARS1 levels

The discrepancy of LARSI in tumor and adjacent non-tumor
tissues were verified in datasets of GSE112790, GSE39791,
GSE45267, GSE69715, GSE76427 from the Gene Expression
Omnibus (GEO). We classified HCC patients into high- and low-
LARSI groups based on the median LARSI level. The ‘survminer’
and ‘survival’ R package were used to evaluate prognosis between
different LARS1 subgroups. GO, KEGG and GSEA enrichment
analyses were also conducted based on DEGs between patients with
high- and low-LARS]I levels.

Single-cell RNA sequencing analysis

Single-cell RNA sequencing data of HCC were obtained in
dataset of GSE149614 from GEO. Data processing and downstream
analysis were conducted using the Seurat (v4.1.1) R package. The
filtering threshold was set as follows:

Excluding cells with fewer than 500 or more than 30,000 of total
Unique Molecular Identifier (UMI) counts.

Excluding cells fewer than 200 or more than 8,000
detected genes.

Excluding cells with >10% mitochondrial gene expression.

Gene expression data were normalized according to the Log
Normalization algorithm. Batch effect correction among different
HCC samples was performed using Harmony. PCA was performed
to determine significant and influential dimensions. And the top 10
principal components were clustered via the FindNeighbors and
FindClusters functions with a resolution of 0.3. Uniform Manifold
Approximation and Projection (UMAP) was used for visualization.

Cell type annotation was performed based on the expression of
well-established marker genes. Specifically, hepatoma cells were
identified by AFP, EPCAM, ALB and GPC3; T cells by CD3D,
CD3E and TRAC; NK cells by NKG7, GNLY and KLRDI;
neutrophils by S100A8, S100A9 and FCGR3B; macrophages by
CD68, CD14 and CD163; fibroblasts by COL1A1, FAP and THY1;
B cells by CD19, CD79A and MS4Al; and endothelial cells
by PECAM1, VWF and CDHS5. These marker genes were curated
from CellMarker (19). Differential expression analysis was
performed using the FindAllMarkers function in Seurat to
identify cluster-specific marker genes, with the following
parameters: logfc.threshold= 0.25, min.pct= 0.1, and only.pos=
TRUE. Genes with |log2FC|>1 and FDR< 0.05 were considered
statistically significant.

RNA isolation and quantitative real-time
PCR

Total RNA was isolated from fresh cancer and adjacent non-
tumor tissues of 3 HCC patients who underwent hepatectomy
in Cangzhou People’s Hospital, using an RNA extraction kit
(Sparkjade, China). The Ethics Committee of Cangzhou People’s
Hospital approved the acquisition of tissue samples and clinical data
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(Approval No: AF/SC-08/02.0). cDNA was synthesized from the
isolated RNA by reverse transcription according to the instructions
of the qRT-PCR kit (Takara, Japan). The amplification reactions
were carried out using designed primers according to the
manufacturer’s protocol (Vazyme). The primer sequences were as
follows: LARS1 (5 TTTGCTGTAGGGTACCAGCG3’, 5CGAC
GCCAGTCTACCTTCAA3’),B actin (5’TCATCACCATT
GGCAATGAG3’, 5CACTGTGTTGGCGTACAGGT3).

Immunohistochemistry

The paraffin-embedded tissue sections were obtained from
HCC patients undergoing hepatectomy in Cangzhou People’s
Hospital from 2023-2024. The specimens were subjected to high-
temperature (70°C) baking for 2 hours, followed by dewaxing with
xylene and graded ethanol. Antigen retrieval was performed using
citrate buffer solution, and endogenous peroxidase was blocked with
3% hydrogen peroxide. The tissue sections were incubated with a
1:200 dilution of anti-LARS1 antibody (Proteintech, 21146-1-AP,
China) to detect the expression of LARS1. The assessment of LARS1
expression levels was performed by two pathologists in a blinded
manner. Tumor samples were divided into high and low LARSI
expression groups based on the median expression levels.

Cell culture and lentiviral transfection

Hep3B, MHCC97H, PLC/PRF/5 (PLC), SK-hep-1, and Hep G2
liver cancer cell lines were obtained from the American Type
Culture Collection (ATCC). These cell lines were cultured in
Dulbecco’s Modified Eagle Medium (DMEM) supplemented with
10% fetal bovine serum (FBS) and 1% streptomycin-penicillin, and
maintained in an incubator at 37°C with 5% CO,. The SK-hep-1 cell
line was used to construct LARSI knockdown cell lines. The cells
were seeded in 6-well plates at a density of 1 x 10° cells per well.
After adherence, shRNA lentivirus was mixed with HiTransG A
(GENE, China) and added to the cells. The cells were then treated
with 2 pg/mL puromycin (Invitrogen, USA) for at least one week to
establish stable cell lines. The shRNA sequences were as follows: sh-
LARS1: 5-CCTCACTTTGACCCAAGCTAT-3" (sense) and 5’-
ATAGCTTGGGTCAAAGTGAGG-3’ (antisense).

Western blot

The cells were lysed using 1x SDS lysis buffer (62.5 mM Tris-
HC, pH 6.8, 2% SDS, 10% glycerol) supplemented with 1 mM
sodium fluoride, 1 mM sodium vanadate, and a 1xprotease and
phosphatase inhibitor cocktail (Roche, Switzerland) at 4°C for 30
minutes. The collected proteins were denatured in a 95°C water
bath for 10 minutes, followed by centrifugation at 13,000xg for 15
minutes at 4°C. Equal amounts of the protein supernatant were
loaded onto an SDS-polyacrylamide gel for separation via SDS-
PAGE. The proteins were then transferred to a PVDF membrane
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(Merck, Germany) and blocked with 3% bovine serum albumin
(BSA). The membrane was subsequently incubated with primary
and secondary antibodies. The following antibodies were used: anti-
LARS1 (1:1000) from Proteintech, anti-ATG5 (1:1000) from Cell
Signaling Technology, anti-Beclinl (1:1000) from Cell Signaling
Technology, anti-SQSTM1/p62 (1:1000) from Cell Signaling
Technology and anti-B-actin (1:1000) from Abcam.

CCKS8 assay

Cells were cultured in a 96-well plate at a density of 1000 cells
per well, with 100 pl of cell culture medium and 10 ul CCK8 reagent
(Biosharp, China) added to each well. The cells were incubated at
37°C for 3 hours. The absorbance was measured at 450 nm using a
microplate reader (Biotek, USA). Six parallel wells were set up for
each group, and the average value was calculated. The cell
proliferation curve was drawn by continuous detection for3-4 days.

Edu assay

Cells were seeded in a 6-well plate at a density of 1x10° cells/
well and cultured to 70% confluence, then washed with PBS.
According to the manufacturer’s instructions (Beyotime, China),
fresh DMEM containing 10 uM EdU was added, and the cells were
incubated at 37°C with 5% CO, for 2 hours. After incubation, the
medium was removed by washing the cells with PBS. The cells were
then fixed and stained using the BeyoClickTM EdU-594 Cell
Proliferation Kit (Beyotime, China) according to the protocol. A
fluorescence microscope was used to capture random fields, and the
number of EdU-positive cells was counted.

Invasion and migration assays

Cell migration and invasion assays were evaluated using
Transwell chambers (Neuro Probe, USA). Cells were seeded in a
24-well plate and cultured to 70% confluence. The cell suspension
was prepared at a concentration of 1x10° cells/mL in serum-free
DMEM and added to the upper chambers of the Transwell system.
For the invasion assay, 10% FBS-containing DMEM was added to
the lower chambers as the chemoattractant. The upper chambers
were precoated with Matrigel (Invitrogen, USA). For the migration
assay, the lower chambers were filled with DMEM containing only
10% FBS. The chambers were incubated at 37°C in a 5% CO,
incubator.Distances were measured at time points of 36 and 24
hours for invasion and migration assays respectively.

Statistical analysis

All experimental measurements were were detected in triplicate.
Statistical analyses were performed using GraphPad Prism 9.5.0 and
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R (R-4.3.0). For two group comparison, the Student’s t-test was
conducted for normally distributed continuous data and Wilcoxon
rank-sum test for others. For multiple group comparisons, one-way
analysis of variance (ANOVA) was applied for normally distributed
continuous data and the Kruskal-Wallis test for others. Chi-square
test was used to compare the differences for categorical variables.
LSD post-hoc test was used for further pairwise comparisons
between group means. The Spearman rank correlation and
Pearson correlation coefficients were used to assess the
relationship between two variables. Statistical significance was
defined as P< 0.05, P< 0.01, P< 0.001, and P< 0.0001, with P>
0.05 indicating no significant difference (ns).

Results

Identification of amino acid metabolism-
related genes and subtypes

A total of 366 ARGs were obtained from MsigDB website and
81 SARGs were selected after intersecting ARGs, DEGs between
HCC tumor and adjacent non-tumor tissues and prognostic
genes by Cox regression in 369 HCC patients from TCGA.
(Supplementary Tables S1, S2; Figure 1A). Then TCGA cohort
were classified into two HCC subtypes, Cluster A (n=234) and B
(n=135) based on the expression of 81 SARGs. (Figure 1B). The
CDF curve shows a smooth rise, indicating that the clustering
results are stable and the correlation between groups is the largest
whole be the smallest between groups (Supplementary Figure S1).
The PCA plot verified the clustering accuracy (Figure 1C).

Functional analysis of SARGs-related
molecular subtypes

Survival analysis revealed that Cluster A exhibited significantly
better OS, disease-specific survival (DSS), and progression-free
survival (PFS) compared with Cluster B (Figures 1D-F). To
detect the possible biological behavior, we screened a total of
3517 DEGs between SARGs-related molecular subtypes and
identified that genes such as TAT, ALDH6A1, SCP2, SLC25A15,
CAT, and PCK2 was highly expressed in Cluster A (Figure 1G).
Then GO enrichment analysis of these DEGs showed that biological
processes (BP) were primarily related to amino acid metabolism,
while cellular components (CC) were associated with nuclear
synaptic membranes, neuronal cell bodies, and apical plasma
membranes and molecular functions (MF) were enriched in
receptor-ligand activity, monoatomic ion channel activity and
channel activity (Figure 1H). KEGG pathway enrichment analysis
indicated that these genes were predominantly involved in amino
acid metabolism, drug metabolism and fatty acid metabolism
pathways (Figure 1I). We found that the pathways associated
with tumor malignancy, such as G2M_CHECKPOINT,
E2F_TARGETS, and MYC_TARGETS_V2, were upregulated in
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between the two SARG subtypes. (D—F) K-M curves for the two SARG subtypes. (G) Volcano plot identifying DEGs between the two SARG subtypes.
(H, 1) GO and KEGG enrichment of DEGs between two SARG subtypes. (J) Heatmap showing pathways associated with malignancy progression
based on GSVA analysis. (K) The distribution of somatic mutations in the two SARG subtypes.

Cluster B by GSVA pathway analysis, potentially resulting in poorer
prognosis (Figure 1]). Additionally, mutation analysis revealed that
patients in Cluster B had a higher frequency of TP53 mutations
compared with Cluster A, suggesting aggressive proliferation and

invasion potential (Figure 1K).
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Immune infiltration and therapeutic
sensitivity predictions in SARGs subtypes

We also assessed the potential roles of SARGs in the tumor
microenvironment of HCC. Through ssGSEA algorithm, we
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analyzed the infiltration levels of 28 immune cell types. We found
that CD56bright natural killer cells, CD56dim natural killer cells,
central memory CD8 T cells, gamma delta T cells, immature B cells,
memory B cells, natural killer cells, and neutrophils were
more abundant in Cluster A (Figure 2A). Besides, Cluster A
exhibited significantly lower TIDE scores, which were generally
associated with reduced immune escape and a favorable
immune microenvironment (Figures 2B, C) (20). We also
evaluated T cell functional status between the two subtypes
and found that patientsxin Cluster B exhibited higher
levels of Progenitor_exhaustion, Quiescence, Senescence and
Terminal_exhaustion status (Figures 2D-G), implying immune-
suppressive microenvironment. We further analyzed the levels of
immune-suppressive regulatory factors between subtypes and
found the elevation in Cluster B, validating above findings. These
factors may ultimately lead to a worse prognosis of Cluster B.

Construction of a prognostic model for
HCC based on SARGs

The 81 SARGs were used to construct the risk model. We
constructed the optimal prognostic signature by LASSO regression
and conducted 10-fold cross-validation to narrow down the gene
list (Figures 3A, B). Finally, 15 genes were included into the model,
and the signature was constructed as follows: Risk score=
(0.166xexpression of LARS1)+(0.130xexpression of TXNRD1)-
(0.107xexpression of GOT2)+(0.101xexpression of NAALAD2)-
(0.076xexpression of CSAD)+(0.069xexpression of SMOX)-
(0.061xexpression of ACAT1)-(0.058xexpression of FTCD)
+(0.039xexpression of SRM)+(0.039xexpression of TARS1)
+(0.034xexpression of EEF1E1)-(0.031xexpression of INMT)-
(0.022xexpression of ASPA)-(0.016xexpression of CBS)
+(0.005xexpression of NQOL1). The patients were further divided
into high- and low-risk group based on the median risk score
(Figure 3C). We plotted ROC curve and demonstrate that the areas
under the curve (AUROC) of the risk model to predict the
prognosis in all patients with HCC were 0.762, 0.733, and
0.708 at 1, 3, and 5 years, respectively (Figure 3D). And the
cohort with high-risk score was suggested to have worse
prognosis (Figures 3E, F). Risk score were independent prognostic
predictors according to univariate and multivariate COX regression
analyses (Figures 3G, H). Then, we established the nomogram
combining clinical feature to predict the 1-, 2-, and 3-year
survival for HCC patients. The calibration curve indicated that
the predicted probability of the nomogram was close to the actual
probability (Figures 31, J).

Biological characteristics of HCC patients
in different risk groups

Sankey plots indicated a consistent relationship among the two

SARGs molecular subtypes, the two signature risk groups and the
prognosis of patients (Figure 4A). GO analysis revealed that the
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differences between the high- and low-risk group were mainly
enriched in the activation of membrane channels and
transmembrane transport of substances. KEGG enrichment analysis
found that the metabolic pathways and drug metabolism of
xenobiotics by cytochrome P450 pathways were highly enriched
(Figures 4B, C). Cytochrome P450, as a superfamily of iron-
ontaining heme proteins widely expressed in organisms, plays a
pivotal role in detoxification, drug metabolism and regulation of
endogenous substances (21). Meanwhile, its activity and genetic
polymorphisms have crucial impact on drug treatment and clinical
medication. Therefore, we conducted drug sensitivity analyses using
the GDSC database and found that patients in low-risk group showed
significant sensitivity to AZD2014 and JAK1 inhibitors (Figures 4D-
K). To further find new therapeutic targets, we analyzed the expression
and OS of 15 model genes and found that LARS1 was highly expressed
in tumors and significantly associated with poor prognosis
(Figures 4L, M). In addition, LARS1 also made the greatest
contribution to the construction of the risk model with the highest
coefficient. Therefore, we extracted LARS1 for the subsequent analysis.

The high expression of LARS1 is associated
with poor prognosis in HCC

To further explore the role of LARSI in HCC, we investigated the
prognosis of high- and low-LARS], including OS, PFS and DSS based
on TCGA. Results indicated that high LARSI expression was
associated with poorer prognosis of HCC patients (Figures 5A-C).
Furthermore, LARSI expression was higher in tumor tissues than in
adjacent non-tumor tissues, which was verified in different datasets of
GEO (Figure 5D). Moreover, to verify above findings, we detected
LARSI expression in 3 pairs of fresh and 50 pairs of paraffin-embedded
HCC samples undergoing hepatectomy. The mRNA and protein levels
of LARS1 were significantly higher in the cancer than those in adjacent
non-tumor tissues based on PCR and IHC. (Figures 5E, F). This
suggested that LARS1 might be a potential oncogene in HCC, which is
consistent with the previous findings (16). We conducted further
analysis to compare the clinical characteristics including age, gender,
stage, grade and other related clinical parameters between high- and
low-LARS]I groups based on TCGA. We found that patients with high-
LARS1 levels tended to have significantly higher tumor grades
(P<0.001), while patients also appeared to have more advanced
stages in high-LARSI group, although without statistical significance
(P=0.1) (Figures 5G-J), suggesting the potential relationship between
LARSI and the differentiation grade of HCC. GO analysis indicated
that DEGs between LARS1-related subgroups were mainly involved in
metabolic-related biological processes and the binding to RNA or
proteins based on TCGA cohort (Supplementary Figure S2A). In
addition, we carried out an enrichment analysis of the pathways
included in the Hallmark gene set through GSEA. We found that
high LARSI mainly associated with Myc targets v1, G2M checkpoint,
E2F targets, Mitotic spindle, etc, related to the proliferation of tumor
cells, dysregulation of the cell cycle, genomic instability, and drug
resistance, indicating the occurrence and development of tumors
(Supplementary Figure S2B).
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FIGURE 2

(A) Different contributions of immune cell infiltration in the two SARG subtypes based on ssGSEA algorithm. (B) Chi-square tests to confirm the
differences of immunotherapy response between the two SARG subtypes. (C) TIDE scores of the two SARG subtypes. (D—G) T-cell status between
the two SARG subtypes. (H) Expression levels of immune-suppressive regulatory factors in the two SARG subtypes (*p<0.05, **p<0.01, ***p<0.001,
***%p<0.0001, ns: no significance).
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FIGURE 3

(A) Lasso coefficients of LASSO regression screening genes. (B) Identification of genes to model the prognostic risk score. (C) Ranked dot and
scatter plots showing the risk score distribution and patient survival status, and the heatmap showing differential expression genes of the model in
the high-risk and low-risk groups. (D) A time-dependent ROC curve to test the accuracy of the risk model. (E, F) The survival difference of patients
with different risk patterns. (G, H) Univariate and multivariate analysis to confirm the independent prognosis function of the model. (I) A calibration
curve to assess the accuracy of the model in predicting patients’ survival time. (J) The nomogram to obtain the predicting survival time of HCC

patients.
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Single-cell RNA sequencing analysis of
LARS1lassociated with amino acid
metabolism in HCC

To further elucidate the potential role of LARS1 in HCC

and its

comprehensive analysis based on single-cell RNA sequencing data.
Specifically, we analyzed scRNA-seq data from multiple HCC samples
in the GSE149614 dataset. After quality control and batch effect
correction, cells were annotated into distinct types using canonical
marker genes (Figures 6A, B). A bubble plot illustrated the expression

association with amino acid metabolism, we performed a  of representative markers across clusters to ensure annotation accuracy
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(A—C) OS, PFS and DSS plot between high- and low-LARS1 group based on TCGA. (D) The expression levels of LARS1 between tumor and adjacent
non-tumor tissues from GEO database. (E) The mRNA levels of LARS1 between cancerous and adjacent non-tumor tissues based on PCR.
(F) Representative pictures of IHC staining for LARS1 in cancerous and adjacent non-tumor tissues. (G—=J) Chi-square test of clinical characteristics in
high- and low-LARS1 groups based on TCGA (*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001, ns: no significance).

(Figure 6C). Six major cell types were identified: B cells, endothelial
cells, fibroblasts, macrophages, malignant cells, and T cells (Figure 6D).
Next, we visualized the distribution of LARS1 expression across cell
types using a UMAP plot and found that LARS1 was expressed in
multiple cell populations (Figure 6E). Interestingly, LARS1 was not
only highly expressed in malignant cells but also showed elevated
expression in endothelial and fibroblast cells, suggesting that these
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non-malignant cells might also exhibit tumor-promoting activity
(Figure 6F). To investigate the relationship between LARS1
expression and the tumor immune microenvironment, we divided
malignant cells into LARSI-high and LARS1-low groups and
evaluated differences in immune infiltration. The LARSI-low
group exhibited a higher proportion of infiltrating immune cells
(Figure 6G). We further conducted differential expression analysis

frontiersin.org


https://doi.org/10.3389/fonc.2025.1675018
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Shi et al. 10.3389/fonc.2025.1675018
A B Batch Correction After
nFeature_RNA nCount_RNA percent.mt
6000 . ;
40001 :
2000 -
& ) S o
o e/ ;
% Nl
‘ S
N o NV e ch D 0 A DO O UMAP 1
SR OA A O OGO O OO OO N
QS: Q\O Q‘O Qp QS: QSJ QG ‘?S) QO QS; Q‘GQ‘O Q“OQS'
D
Malignant cells Tcells NK cells Neutr Bcells cells
51 -« [ 3N . . .
0 L : N Percent Expression
1 : . . . 1 * B cells
8o o o0 . : o5 « Endothelial cells
10 ° - . . oo o o 50 Fibroblasts
2 ° . i PP e75 :mai;roph?ge?l
3 . . . ‘ ® ® o o Average Expression 5 Tf__e'ﬂga“ cells
7 °® . 8 i » ° - 2
6 . - “ o o - o : «
4 P 5 w @ . . ® o o o o
9 °® e o o . . . - g \ /
1 ® o o . . Bl
5 Q& O AL % N O D o UMAP 1
O7 05 () KR\? Q;\ AN ¥ ) \@ &
X PSF FISP G
< < 100% !
‘ =
& 75%
2
902
g £
- ® [ Bcells
o] 4 H Endothelial cells
< & 50% Fibroblasts
3 = B Macrophages
=041 8 M Malignant cells
=0. W Tcells
7]
4
< 25%
0.0
-10 -5 5 10 G
UMAP 1 0%
Low High
Pathway Enrichment
| Valine,leucine and isoleucine degradation- °
i o
Propanoate metabolism/{ « )
I -log10(p.adjust)
Phenylalaninemetabolism -
I10
One carbonpool byfolate: ° g
Lipoic acid metabolism; s
Glycine, serine and th boli:
4
Cysteine and 5 [
Carbonmetabolism/ Count
Biosynthesis ofamino acids. ® ° 4
£ . @6
beta-Alaninemetabolism; « P
Arginine biosynthesis @ 10
Arginine and proline metabolism/
Alanine,; tate and ®
2-Oxocarboxylic acid metabolism| 3
010 015 020
GeneRation
FIGURE 6

(A) Quality control metrics of the scRNA-seq data, including gene count, gene feature and mitochondrial gene percentage. (B) Batch effect
correction across different HCC samples using Harmony integration. (C) Bubble plot showing the expression levels and proportions of marker genes
across identified cell types. (D) Cell type annotation based on markers and clustering. (E) UMAP plot illustrating the expression pattern of LARS1 at
the single-cell level. (F) Average expression level of LARSI across different cell types. (G) Comparison of immune cell infiltration between high- and
low-LARS1 groups. (H) Heatmap showing DEGs between high- and low-LARS1 malignant cells. (I) Pathway enrichment analysis of DEGs.

between the two groups and visualized the top DEGs in a

heatmap (Figure 6H).

Functional enrichment analysis of these DEGs revealed significant
enrichment in pathways such as biosynthesis of amino acids, carbon
metabolism, and cysteine and methionine metabolism, suggesting a
potential role of LARS1 in regulating amino acid metabolic

reprogramming in HCC (Figure 6I).
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Knockdown of LARS1 inhibits the
proliferation, invasion and migration of
hepatocellular carcinoma cells

Then, we explored the biological functions of LARSI in the
proliferation and metastasis of HCC. We initially assessed LARS1
expression levels in different HCC cell lines, including Hep3B,
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MHCC97-H, PLC, SK-Hep-1 and HepG2, and found that LARSI
expression was higher in the SK-Hep-1 cell line. As a result, we used
SK-Hep-1 cells to establish stable LARS1 knockdown cell lines, and
the efficiency of LARS1 deletion was validated by WB.
(Figures 7A, B). We performed GSEA analysis based on TCGA
and found that LARSI expression was positively associated with cell
cycle progression (Supplementary Figure S2C). CCK-8 and Edu
assays revealed that suppression of LARS1 markedly inhibited the
growth of HCC cells (Figures 7C-E). Additionally, our findings
indicated that LARS1 knockdown significantly impeded cellular
migration and invasion in vitro through Transwell chamber and
Matrigel invasion assays (Figures 7G, H). Collectively, these results
suggest that downregulation of LARSI expression contributes to the
inhibition of HCC cells. We further investigated the role of LARSI
in amino acid metabolism. KEGG analysis were conducted based on
DEGs between high- and low-LARS1 groups and found the
enrichment in autophagy and related pathways (Supplementary
Figure S2D). Besides, the genesets of autophagy were also
significantly enriched in low-LARSI group according to GSEA
analysis (Figures 71, J). Previous studies have shown that amino
acid deprivation can trigger autophagy by inhibition of mTORCI to
release free amino acids as part of a starvation adaptation (22).
Additionally, glutamine- and autophagy-mediated restoration of
mTORCI in turn induces autophagy termination (23). Based on
these findings with regard to autophagy in amino acid metabolism,
we assessed the level of autophagy flux in vitro. Western blot
revealed higher expression level of ATG5 and Beclinl in LARSI
knockdown cells, along with reduced P62, indicating increased
autophagy after knockdown of LARS1 (Figure 7F).

Discussion

Cancer cells often encounter hypoxic and hypo-nutrient
conditions for the huge consumption of metabolites (24).
Therefore, metabolic alterations are recognized as hallmark of
cancer. Metabolic reprogramming is a crucial process to sustain a
favorable microenvironment to satisfy the requirements for energy,
biosynthetic precursors and survival signals for rapid cell
proliferation, invasion and metastasis of cancer (25). The
Warburg effect, an example of metabolic reprogramming, is the
phenomenon that cancer cells prefer to undergo glycolysis and
produce lactate even in the presence of oxygen. Warburg effect
provides many benefits to compete and share energy, which can
promote the growth rate of cancer cells, including HCC (26, 27).

As the largest gland in human body, liver plays a critical role in
metabolism. And the metabolism process of carbohydrates, lipids,
proteins, hormones, bile, and exogenous diet in liver influence the
development of various diseases vice versa. Expect for glucose
metabolism, the alterations also contain increased fatty acid
synthesis, amino acid metabolism, nucleotide production and so on
(28). Amino acid metabolism is critical in HCC, not only to synthesize
proteins but also to produce energy or to influence other biological
behaviors of tumor (6). For example, reprogramming of tyrosine
metabolism and poor prognosis in HCC was reported (29).
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Glutamine addiction was described to provide carbon source for the
TCA cycle and essential nitrogen for purine and pyrimidine
nucleotides in HCC, which are necessary for DNA and RNA
biosynthesis (30). Elevated expression of glutaminase (GLS1), a key
enzyme for glutaminolysis pathway, is correlated with poorer
differentiation, lymphatic metastasis, advanced TNM stage, and
worse prognosis in HCC (31). Besides, the correlation between
amino acid metabolism and the immune cell microenvironment in
HCC was demonstrated. Alterations in amino acid metabolism lead to
changes in responses of immune cells in the tumor microenvironment,
thereby promoting immune evasion in HCC (32). Consequently, it is
necessary to explore the amino acid metabolic profile in HCC to better
understand the pathogenic mechanisms of HCC.

In the present study, we analyzed the molecular patterns and
clinical significance of amino acid metabolism in HCC. Patients with
SARG cluster B showed poorer prognosis and higher activity of
pathways associated with malignancy progression, including
G2M_CHECKPOINT, E2F_TARGETS, MYC_TARGETS_V2.
Besides, the rate of mutation in TP53 in Cluster B was greatest and
significantly higher compared with Cluster A. As we know, TP53
mutation contributes to carcinogenesis and tumor development,
suggesting enhanced proliferative and invasive potential of Cluster B.
In addition, immune cell infiltration also differed significantly between
the two subtypes. Higher levels of infiltration of anti-tumor effector
cells and lower TIDE scores were found in the Cluster A, indicating
that patients in the Cluster A might be more sensitive to immune
checkpoint inhibitors. Cluster B exhibited higher levels of Progenitor
Exhaustion, Quiescence, Senescence, and Terminal Exhaustion
according to the evaluation of functional status of T cells, indicating
immunosuppressive subtype in Cluster B, which was corroborated by
subsequent analysis of immunosuppressive regulators. Consequently,
the classification based on amino acid metabolism revealed
heterogeneity and immune microenvironment of HCC, which were
anticipated to provide potential evidence for precision treatment.

Additionally, we screened 15 genes for the construction of the
risk models by LASSO regression based on metabolism-related genes.
There were significant differences in prognosis between the high- and
low-risk groups. And ROC curves confirmed robust predictive
performance of the risk model in distinguishing high- and low-risk
HCC patients. The model genes were involved in multiple biological
processes pertaining to HCC development. For instance, TXNRD1
and NQOJI, as redox stress-related enzymes, have been reported to be
upregulated in various cancers and promote malignant progression
(33-35). GOT2 and FTCD are both key enzymes in amino acid
metabolism, playing a critical role in maintaining hepatic amino acid
balance. It is also demonstrated that silencing GOT2 reprograms
glutamine metabolism, which increased the sensitivity to glutaminase
inhibitors of HCC cells (36). We also established a nomogram for
better clinical applicability by combining the risk score with clinical
characteristics to further improve the performance of the risk
signature. And the risk score was found to be independent risk
factors for HCC patients by multivariate analyses after adjusting
other variables, highlighting its potential clinical utility. It is worth
noting that the risk model was only validated internally using TCGA
and lacks validation from an external independent cohort. As a result,
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(A) Expression levels of LARS1 in different HCC cell lines by Western blotting. (B) Downregulation efficiency of LARS1 in SK-Hepl1 validated by
Western blotting. (C) Cell viability of SCR and KD groups. (D, E) Representative images and quantitative bar chart of EdU staining showing the effect
of knockdown of LARS1 on the proliferation of SK-Hepl. (F) Western blot analysis was performed to detect autophagy-related protein levels.
(G, H) Alteration in invasion and migration by knockdown of LARSL. (I, 3) GSEA analysis of the correlation between LARS1 expression and autophagy

related genes in TCGA cohort (**p<0.01, ***p<0.001).

future studies are needed to validate the risk model for its prognostic
prediction ability.

In addition, we also found that patients in the low-risk group were
more sensitive to drugs such as AZD2014. AZD2014 is a dual inhibitor
of mMTORCI and C2. It is demonstrated that AZD2014 resulted in more
profound proliferation suppression, apoptosis, cell cycle arrest, and
autophagy in HCC cells compared with rapamycin (37). Our study
suggests that AZD2014 may influence amino acid metabolism via
mTORCI. However, further investigation is required to confirm this
in future studies. It is worth noting that targeting a single gene or
metabolic enzyme is often insufficient to achieve an effective and safe
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anti-cancer effect in clinical trials, due to the high degree of heterogeneity
of HCC (38). Consequently, the development of multi-target therapeutic
strategies may represent a more promising alternative. For example,
plant-derived products and extracts, composed by a blend of biologically
active secondary metabolites, were demonstrated to modulate key
metabolic processes through multi-target effect in HCC (39).

To deeply understand the mechanisms behind amino acid
metabolism in HCC, further investigation of key genes in the
model is needed. Among the 15-gene risk models, LARS1 has the
highest risk coefficient and is most likely the key gene in the model.
Previous study has suggested that LARS1 was an important

frontiersin.org


https://doi.org/10.3389/fonc.2025.1675018
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Shi et al.

oncogene in HCC and was associated with immune infiltration,
consistent with our findings (16). We further knocked down the
expression of LARS1 gene by shRNA in HCC cell lines, and
demonstrated that knockdown of LARSI1 inhibits the proliferation
and migration of human HCC cells. However, only 3 pairs of tissues
were included in our study, which might limit the statistical power
of the results. Consequently, larger sample sizes are needed to
confirm our findings in the future studies. Furthermore, we
performed single-cell RNA sequencing analysis, and found that
DEGs between high- and low-LARS1 group enriched in pathways
including biosynthesis of amino acids, carbon metabolism, and
cysteine and methionine metabolism, suggesting a potential role of
LARSI in regulating amino acid metabolic reprogramming in HCC.
Single-cell transcriptomic analysis manifested the heterogeneity of
LARS] in HCC and suggested that it may contribute to tumor
progression through modulation of amino acid metabolism.
Amino acid imbalance is observed in chronic liver disease
including cirrhosis and related disease states, characterized by a
reduction in BCAAs (including valine, leucine and isoleucine) and
an elevation in aromatic amino acids (AAAs) in serum (40). It is
demonstrated that reducing or removing BCAAs significantly
suppressed the proliferation rates of the HCC cell line in vitro and
high dietary BCAA intake enhances tumor development and growth in
vivo of mouse models (10). Noteworthily, the underlying mechanism of
BCAA promoting tumor development and growth was demonstrated
to be the activation of mTORCI signaling pathway by accumulation of
BCAA, especially leucine, in HCC tumors. Leucine, as the major
component of BCAA, induce the lysosomal localization of mTORCI1
and its subsequent activation. And LARSI was elaborated to be a key
mediator for amino acid signaling to mTORCI. Lysosomal localization
of mTORCI was not observed and amino acid induced S6K
phosphorylationin was inhibited in LARS1 knockdown cells. It is
reported that LARSI, function as a leucine sensor and GTPase-
activating protein (GAP), interacts with RagD GTPase for mTORCI1
signaling by sensing intracellular leucine concentration (41, 42).
mTORCI regulates multiple biological process including autophagy
(43). Autophagy is an evolutionarily conserved program that is
responsible for degradation of dysfunctional or damaged organelles
in all living cells, playing a crucial role in liver homeostasis (44). In
cancer cells, autophagy is considered a double-edged sword, with
tumor-suppressing features during tumorigenesis stage and then
tumor-promoting properties after tumorigenesis. Autophagy was
investigated to be activated in LARS1-downregulated cells (42).
Besides, it is reported that branched-chain amino acid transaminase
1 (BCAT1) decreases cisplatin sensitivity of HCC by inducing mTOR-
mediated autophagy via leucine metabolism in vivo and vitro (45). To
further explore the molecular mechanism of LARS1 on amino acid
metabolism in HCC, we conducted the Western blot of autophagy flux
and found the increased autophagy in LARS1 knockdown cells.
Consequently, we hypothesized that LARS] might impede autophagy
via regulating amino acid metabolism to activate the mTORCI
pathway, thereby impacting HCC progression, which provided novel
insights compared with previous studies. As a result, LARSI might be a
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potential valuable biomarker and molecular therapeutic target for
HCC therapy.

This study has several limitations. Firstly, the risk model based on
15 genes was validated solely using an TCGA datasets via retrospective
analyses. Thus, external validation in future studies are needed to
further validate the risk model. Secondly, the role of LARSI in amino
acid metabolism of HCC warrants systematic experimental verification.
Additionally, direct experimental evidence for LARSI1 regulating
mTORCI downstream proteins, such as p-S6K/p-4EBP1, is currently
lacking in our study, the molecular mechanism of LARSI in regulating
mTORCI and autophagy needs to be further studied both in vivo and
in vitro in the future studies.

In conclusion, we have successfully developed a prognostic model
based on 15 genes associated with amino acid metabolism and
identified LARS1 as the key gene. Moreover, we revealed the
heterogeneous expression of LARS1 in HCC and its potential tumor-
promoting mechanisms by single-cell transcriptomic analysis. Finally,
we verified that knockdown of LARS1 significantly inhibited the
proliferation, invasion and migration of HCC in vitro, with increased
autophagy flux, indicating that LARSI could be a potential therapeutic
target for HCC.
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