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Infantile hemangioma (IH), the most prevalent benign vascular tumor in

neonates, typically appears several weeks after birth, undergoes rapid

proliferation, and subsequently enters a prolonged phase of spontaneous

involution. Recent advancements in molecular and cellular biology have

revealed increasing evidence that the etiology and progression of IH arise from

complex, multi-level interactions involving various factors. In this review, we

examine the categorization of IH cells, analyze the pivotal roles of key molecular

signaling pathways (e.g., VEGF, HIF, Notch), and elucidate the contributions of

immune cells, hypoxia, the extracellular matrix, and exosome-mediated signaling

within the tumor microenvironment to the angiogenic processes and regression

of IH. These insights will enhance our understanding of IH pathogenesis, thereby

laying the groundwork for the development of targeted therapeutic strategies.
KEYWORDS
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1 Introduction

Infantile hemangioma (IH) is a common benign vascular tumor composed mainly of

proliferating endothelial cells. It typically appears as red, sometimes raised, lesions on the

skin or subcutaneous tissues. Although IH most often affects the head, neck, and limbs, it

can also occur in the viscera or airways (1, 2). IH is not present at birth; it usually emerges

within a few weeks after birth, undergoes rapid proliferation during infancy, stabilizes, and

then gradually involutes (Figure 1). The etiology of IH remains unclear but may involve

abnormal fetal blood vessel formation, hypoxia, genetic factors, and environmental

influences, with a prevalence of approximately 2%–10% (3–5). IH is more common in
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premature and low-birth-weight infants, has a female-to-male ratio

of about 3:1 (6), and is more prevalent in Caucasians than in Asian

or African-American populations (7–9). Although most IH lesions

regress naturally, some require aggressive treatment due to

ulceration, infection, or impairment of vital organ functions (8).

Effective management of IH depends on a thorough understanding

of its pathophysiology to develop individualized treatment plans.

IH is typically diagnosed based on its clinical appearance;

however, imaging (e.g., ultrasound, MRI) or biopsy may be

necessary to exclude other conditions such as lymphangiomas,

vascular malformations, or malignant tumors (10–16).

Observation is an option for small, non-functional IH, while

rapidly growing, ulcerated, or functionally impairing lesions may

require early intervention using oral propranolol, topical agents

(glucocorticoids or interferon), laser therapy, or surgery (8, 15, 17).

Patient-specific, timely decisions are critical to minimize

complications and improve outcomes.

A thorough understanding of the cellular, molecular, and

microenvironmental mechanisms underlying IH is essential for

the development of effective therapeutic strategies. Despite

significant advances, the pathogenesis of IH remains incompletely

understood. This review integrates current findings to elucidate

these interactions from a multidimensional perspective, providing a

theoretical foundation for precision treatments, the development of

novel therapies, and further research on IH.
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2 Cell components of IH

The development of IH involves dynamic interactions among

various cell types (Figure 2). Recent research has highlighted the

roles of several cellular components in tumorigenesis, angiogenesis,

and spontaneous involution (18–20).
2.1 Hemangioma stem cells

Hemangioma stem cells (HemSCs) account for approximately

1% of the total cell population (21) and were isolated from IH

tissues by Khan et al. Considered the seed cells of IH, they possess

multidirectional differentiation potential, enabling them to become

hemangioma endothelial cells (HemECs), hemangioma pericytes

(HemPCs), or adipocytes in response to microenvironmental cues.

This capability underlies rapid neovascularization during the

proliferative phase and the formation of residual fibro-adipose

tissue during regression (22–25). Isolated from proliferative IH

specimens, HemSCs display a mesenchymal morphology in vitro,

express stem cell markers, e.g., CD133 and CD90, and exhibit high

clonogenicity and self-renewal (26, 27). In vivo, HemSCs

implantation in immunodeficient mice reproduces human IH

features, including the formation of Glucose Transporter 1

(GLUT1)-positive vessels and subsequent adipose tissue
FIGURE 1

Disease stages of IH: First, a rapid proliferative phase during the first year of life, characterized by abundant endothelial cells forming syncytial
masses without a defined vascular architecture. This is followed by a plateau phase of approximately six months, during which growth stabilizes.
Next, a gradual involution phase that can last up to ten years, marked by apoptosis of HemECs and differentiation of HemSCs into adipocytes.
(Created with BioRender.com).
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development (26, 28). As IH regresses, HemSC differentiation

toward adipocytes increases, reducing vascular density and

generating fibro-fatty tissue—a cellular basis for IH self-limitation

(18, 29).
2.2 HemECs and HemPCs

HemECs, the most visually apparent component, exhibit typical

endothelial morphology, are densely packed, and display irregular
Frontiers in Oncology 03
arrangements (22). They express markers such as CD31, VE-

cadherin, and E-selectin, which aid in diagnosis and indicate

similarities to normal endothelial cells. However, HemECs show

abnormal proliferation and migration, likely due to low vascular

endothelial growth factor 1(VEGFR1) and high VEGFR2

expression (30–33). HemECs can be classified intoGLUT1-

positive and GLUT1-negative subtypes. GLUT1-positive HemECs

possess stem cell properties and can revert to a mesenchymal

phenotype in culture, potentially contributing to IH recurrence

(34). In contrast, GLUT1-negative HemECs require supportive cells
FIGURE 2

Cellular composition of IH. Proliferative phase: HemSCs differentiate into HemECs, which display enhanced proliferation and migration, reduced
apoptosis, and—via Notch–Jagged-1 signaling—further differentiate into HemPCs. M2-polarized macrophages secrete IL-10, TGF-b, pro-angiogenic
factors and exosomes that modulate HemSCs and HemECs behavior. Mast cells release VEGF, FGF2, AGGF1 and matrix-degrading enzymes
(chymotrypsin, trypsin, MMPs) to remodel the extracellular matrix and drive neovascularization. Involuting phase: HemSCs predominantly become
adipocytes. M1 macrophages increase and release TNF-a, IL-1b and IFN-g to induce HemECs apoptosis or endothelial–mesenchymal transition
(EMT), promoting regression. Mast cells produce anti-angiogenic factors (interferon, TGF-b) and apolipoprotein J to trigger early endothelial
apoptosis. Telocytes envelop pericytes to support vessel stability and maturation. (Created with BioRender.com).
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to establish perfused vessels in vivo (35), suggesting that their

function depends on both intrinsic gene expression and the

surrounding microenvironment.

HemPCs support vascular stability by surrounding endothelial

cells (17), and express markers such as Neuron-Glial Antigen 2 (NG-

2), Alpha-Smooth Muscle Actin (aSMA), Platelet-Derived Growth

Factor Subunit Beta (PDGFRb), calponin, and Neurogenic locus

notch homolog protein 3 (NOTCH3). Notch signaling is

upregulated in proliferative IH, promoting HemSC differentiation

into pericytes via Notch/Jagged-1 interactions (20, 36, 37). Compared

to normal pericytes, HemPCs exhibit enhanced pro-angiogenic

properties and reduced contractility, which may contribute to

incomplete vessel coverage and increased permeability, thereby

facilitating abnormal vessel formation (38). During involution,

pericytes mature and stabilize the vasculature while supporting

endothelial transformation into adipocytes (17, 39–41).
2.3 Additional cellular players

Macrophages in IH are mainly classified into two subtypes. In

proliferative IH, M2-polarized macrophages secrete pro-

angiogenic factors and exosomes that regulate HemSC and

HemEC behavior. During the involution phase, M1-polarized

macrophages increase to promote hemangioma regression (42,

43). Mast cells, though fewer during proliferation and more active

during early regression, secrete both pro- and anti-angiogenic

factors (e.g., VEGF, Fibroblast Growth Factor 2 (FGF2/bFGF),

Interferon (IFN), Transforming Growth Factor-Beta (TGF-b))
that modulate angiogenesis and regression, with their activity

influenced by the local environment (19, 44). Telocytes (TCs), a

distinctive type of interstitial cells, have garnered significant

interest because of their distinct morphology and diverse

functions. In IH, TCs exhibit overexpression of CD34, PDGFR-

a, Vimentin, and Aquaporin-1 (AQP-1), with AQP-1 and

PDGFR-a being the most reliable markers for identifying TCs

in IH (45). TCs, which closely interact with endothelial cells and

pericytes, may regulate intercellular communication and lumen

formation (45, 46).
3 Molecular mechanisms of IH

The development of IH involves a complex interplay of

molecular mechanisms, dysregulated signaling pathways, and cell

fate decisions, as summarized in Table 1; Figure 3.
3.1 VEGF/VEGFR pathway

The VEGF/VEGFR pathway is essential for IH (33). In IH,

abnormal vascular growth arises from both angiogenesis—the

sprouting of new vessels from existing ones—and vasculogenesis,

where endothelial progenitor cells differentiate and form primitive

vessels; central to both processes is the aberrant activation of the
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VEGF/VEGFR pathway (47). VEGF-A is highly expressed during

the proliferative phase of IH and declines during involution,

underscoring its role in sustaining lesion growth (48–50). In

proliferative IH, HemECs highly express VEGFR‐2. When VEGF-

A binds to VEGFR-2, it activates the Phosphatidylinositol 3-Kinase/

Protein Kinase B (PI3K/AKT), Mitogen-Activated Protein Kinase/

Extracellular Signal-Regulated Kinase Kinas (MEK/ERK), and

Phospholipase C gamma/Protein Kinase C (PLCg/PKC) cascades,
promoting endothelial cell proliferation, migration, and lumen

formation, which leads to a dense vascular network (25, 37).

HemECs frequently activate autocrine VEGF-A/VEGFR-2

signaling, which stimulates downstream pathway that drive

proliferation, migration, and survival (33). Low VEGFR-1

expression in HemECs further amplifies VEGFR-2 signaling,

exacerbating abnormal angiogenesis (32, 51). In contrast,

HemSCs predominantly express VEGFR-1, which binds VEGF-A

to regulate their differentiation into endothelial cells (52). VEGF-B

—a VEGFR-1 ligand—is highly expressed in HemECs and similarly

promotes HemSC differentiation (53). Together, these paracrine

and autocrine VEGF/VEGFR-1 signals synergistically enhance

angiogenesis in IH (53). Aberrant VEGF/VEGFR activation not

only accelerates endothelial expansion but also stabilizes diseased

cells through anti-apoptotic signaling, presenting a clear target for

clinical treatment (54–56).
3.2 Notch signaling

Notch signaling, which depends on direct cell-to-cell contact, is

essential for cell differentiation and vascular maturation; this

evolutionarily conserved system governs cell fate decisions and

balances proliferation with differentiation (57). In IH, Notch

receptors (Notch‐1, Notch‐3, Notch‐4) and ligands (primarily

Jagged‐1 and Delta‐like ligand 4 (Dll4)) are abnormally expressed.

Upon ligand binding, the Notch intracellular domain is cleaved and

translocates to the nucleus to activate transcriptional repressors

such as Hairy and Enhancer of Split (HES) and Hairy/Enhancer-of-

split related with YRPW motif (HEY), leading to cell cycle exit and

maturation (33, 57, 58). In IH tissues, regional variations in Notch

expression reflect the differing roles of endothelial and supporting

cells. HemSCs are enriched in Notch-3 and downstream targets like

HES1, HEY1, and HEYL, priming them for differentiation into both

endothelial and mural cells and contributing to the formation of the

complex vascular structures typical of IH. In contrast, mature

HemECs exhibit higher levels of Notch-1, Notch-4, and Jagged-1

(59). Disruption of Notch receptor–ligand interactions markedly

inhibits neovascularization, highlighting its key role in vessel

formation and branching (60). Additionally, endothelial-derived

Jagged-1 can induce tumor stem cells to acquire a pericyte-like

phenotype, which is essential for maintaining vascular wall integrity

(37). The balance between Dll4 and Jagged-1 is critical; while Dll4–

Notch interactions restrict excessive sprouting by limiting tip cell

formation, Jagged-1 promotes vascular branching (61).

Experimental evidence shows that blocking Notch signaling leads

to significant defects in vessel formation and maturation (60, 62).
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3.3 b‐adrenergic signaling

The clinical success of propranolol has redirected attention to

b‐adrenergic signaling in IH. HemECs express several b‐adrenergic
receptor subtypes (b1, b2, and b3), and activation of these receptors

by catecholamines triggers the classical Cyclic Adenosine

Monophosphate (cAMP) signaling cascade, leading to the

activation of Protein Kinase A (PKA) and Exchange Protein

Activated by cAMP and an increase in proangiogenic factors such

as VEGFR‐2 (63–65). In experimental models, b‐receptor agonists
enhance endothelial cell sensitivity to growth factors, while b‐
blockers mitigate this effect (66–71). Moreover, b‐adrenergic
stimulation may exacerbate angiogenesis in hypoxic conditions by
Frontiers in Oncology 05
indirectly upregulating Hypoxia‐Inducible Factors-1a (HIF-1a)
and VEGF (72, 73). Interestingly, propranolol’s therapeutic effects

are not solely due to b‐blockade. Its S(–) enantiomer strongly blocks

b‐adrenergic receptors, while the R(+) enantiomer targets the

endothelial transcription factor SRY-box transcription factor 18

(SOX18), a master regulator of endothelial differentiation that is

aberrantly upregulated in proliferative IH lesions (74–76).

Inhibition of SOX18 disrupts transcriptional programs necessary

for vessel formation, thereby reducing vascular proliferation. Recent

studies indicate that SOX18 also regulates genes in the mevalonate

pathway, which is essential for cholesterol biosynthesis and

membrane prenylation—key processes for endothelial growth.

The R(+) enantiomer selectively inhibits SOX18 independently of
TABLE 1 Key dysregulated pathways and regulatory axes in infantile hemangioma.

Pathway/
regulatory
axis

Key
components

Dysregulated mechanism Impact on IH

VEGF/VEGFR
VEGF-A,
VEGFR-2,
VEGFR-1

Excessive VEGF-A production with constant VEGFR-2 activation in HemECs;
VEGFR-1 regulate differentiation of HemSCs to HemECs

Drives rapid endothelial proliferation
and abnormal neovascularization.

Notch
Notch receptors
(Notch-1, -3, -4),
Jagged-1, Dll4

Dynamic shifts in receptor/ligand expression direct the differentiation of HemSCs
into mature endothelial cells and pericytes.

Regulates cell differentiation and
contributes to complex vessel formation.

b‐Adrenergic
b1, b2, b3
receptors, cAMP,

Activation triggers cAMP-mediated pathways
Enhances angiogenic responses and
promotes IH cell proliferation.

SOX18
SOX18, SREBP2,
HMGCR

SOX18 regulates endothelial differentiation; aberrant activity sustains mevalonate
pathway and angiogenesis; target of R(+)-propranolol

regulator of IH pathogenesis; potential
therapeutic target for propranolol and
statins

Tie2/
Angiopoietin

Tie2,
Ang1,
Ang2

An imbalance—often marked by upregulated Ang2—leads to competitive inhibition
of Tie2, destabilizing vessels by disrupting the Ang1-mediated maintenance of
vascular integrity.

Contributes to the formation of
immature, leaky vascular networks.

Hypoxia/HIF HIF-1a
Localized hypoxia stabilizes HIFs, which then drive the transcription of VEGF-A and
other proangiogenic factors.

Integrates environmental cues to further
potentiate angiogenesis.

FGF2/FGFR1
FGF2,
FGFR1

Overexpression of FGF2 leads to enhanced receptor activation and stimulation of
downstream proliferative signals.

Promotes endothelial and smooth
muscle cell proliferation.

PI3K/AKT/
mTOR

PI3K,
AKT,
mTOR

Aberrant activation reinforces survival and proliferation signals, with upregulation of
HIF and VEGF further sustaining the pathway.

Supports sustained cell proliferation and
vascular growth.

PDGF-B/
PDGFR-b

PDGF-B,
PDGFR-b

Active signaling maintains vessel integrity during the proliferative phase; reduced
expression during regression facilitates tissue remodeling and adipogenesis.

Regulates pericyte recruitment and
vascular wall formation.

IGF

IGF-1,
IGF-1R,
IGF-2,
IGF2R

IGF-1 and IGF-2 activate PI3K/AKT signaling, promoting HemSC adipogenesis; IGF-
2 may also inhibit leptin-induced adipogenesis; IGF2R supports proliferation via
PCNA, while its loss induces apoptosis in HemECs

Coordinates HemSC differentiation and
HemEC survival

PPARg

PPARg,
PPARg2,
LPL,
C/EBPa, COX-2

PPARg activation downregulates angiogenic factors, suppresses EC proliferation, and
promotes HemSC adipogenesis during involution; COX-2 inhibition further enhances
adipogenic gene expression

Mediates transition from proliferative
vessels to adipose tissue; represents a
potential therapeutic target.

TBX2 TBX2, C/EBPb
TBX2 overexpression enhances C/EBPb activity, driving HemSC adipocyte
differentiation and replacement of vascular tissue with adipose/fibrotic elements

Regulates HemSC fate decisions and
may facilitate IH involution.
IH, Infantile Hemangioma; VEGF, Vascular Endothelial Growth Factor; VEGFR, Vascular Endothelial Growth Factor Receptor; HemSCs, Hemangioma Stem Cells; HemECs, Hemangioma
endothelial cells; Dll4, Delta-like Ligand 4; cAMP, Cyclic Adenosine Monophosphate; SOX18, SRY-box Transcription Factor 18; SREBP2, Sterol Regulatory Element-Binding Protein 2; HMGCR,
3-Hydroxy-3-Methylglutaryl-Coenzyme A Reductase; Tie2, Tyrosine Kinase with Immunoglobulin-like and EGF-like Domains 2; Ang, Angiopoietin; HIF, Hypoxia-Inducible Factor; FGF2,
Fibroblast Growth Factor 2; PI3K, Phosphatidylinositol 3-Kinase; AKT, AKT Serine/Threonine Kinase; mTOR, Mechanistic Target of Rapamycin; PDGF-B, Platelet-Derived Growth Factor
Subunit B; PDGFR-b, Platelet-Derived Growth Factor Receptor Beta; IGF, Insulin-Like Growth Factor; PCNA, Proliferating Cell Nuclear Antigen; PPARg, Peroxisome Proliferator-Activated
Receptor Gamma; LPL, Lipoprotein Lipase; C/EBPa, CCAAT/Enhancer-Binding Protein Alpha; TBX2, T-box Transcription Factor 2.
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b‐adrenergic antagonism, downregulating angiogenic signaling and

suggesting potential for drug repurposing (77).
3.4 (Tie2)/Angiopoietin signaling

Tie2/Angiopoietin signaling is another key regulator of IH

vascular dynamics. The Tie2 receptor on endothelial cells

interacts with angiopoietin‐1 (Ang1) and angiopoietin‐2 (Ang2)
Frontiers in Oncology 06
to control vessel maturation and stability (78, 79). Under normal

conditions, Ang1 binding to Tie2 activates pathways such as PI3K/

AKT and Mitogen-Activated Protein Kinase (MAPK), promoting

endothelial survival, pericyte recruitment, and vessel quiescence

(80, 81). In contrast, Ang2—often upregulated during the

proliferative phase of IH—acts as a context‐dependent antagonist

by competitively inhibiting Tie2 activation, which destabilizes

vessels, impairs pericyte recruitment, and leads to the formation

of immature, leaky vascular networks (82).
FIGURE 3

Key signaling pathways and molecular mechanisms in IH pathogenesis. HemECs overexpress VEGFR-2, activating the PI3K/AKT, MEK/ERK, and PLCg/
PKC pathways to drive proliferation, migration, and tube formation. An autocrine VEGFA–VEGFR-2 loop, potentiated by low VEGFR-1 levels, sustains
HemECs growth, while paracrine VEGFR-1 signaling directs HemSCs differentiation. Notch signaling—via Notch1/3/4 receptors and Dll4/Jagged1
ligands—controls tip versus stalk cell fate, branching, and pericyte recruitment. b-Adrenergic signaling through b1/2/3 receptors elevates cAMP/PKA
and EPAC, upregulating VEGFR-2. The Tie2–Ang1 axis stabilizes vessels via PI3K/EPAC, whereas Ang2 and hypoxia-induced HIF-1a/2a destabilize
vessels and enhance VEGFA expression. FGF (bFGF) binding FGFR1 activates ERK1/2 to promote proliferation. Concurrently, IGF-1, IGF-2, PPARg
(including PPARg2), and TBX2 drive HemSCs adipogenic differentiation, while declining PDGF-B/PDGFR-b signaling permits adipogenesis. (Created
with BioRender.com).
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3.5 HIFs

HIFs are critical mediators of the cellular response to low

oxygen tension and trigger many proangiogenic signals in IH.

Rapid hemangioma proliferation often results in localized

hypoxia, which stabilizes HIF‐1a and HIF‐2a by preventing their

degradation under normoxic conditions (83, 84). Stabilized HIFs

translocate to the nucleus, where they induce the transcription of

genes such as VEGF‐A and GLUT1 (49, 85, 86) The hypoxia-

induced upregulation of VEGF‐A further amplifies autocrine and

paracrine signaling loops, driving HemEC proliferation and

survival. Additionally, HIFs modulate other key signaling

molecules, integrating with pathways such as Notch and Tie2/

Angiopoietin to coordinate rapid vascular expansion during the

proliferative phase and subsequent vessel maturation and

involution as oxygenation improves (87).
3.6 bFGF

bFGF is a potent angiogenic factor that stimulates the

proliferation of endothelial and smooth muscle cells as well as

fibroblast migration (88–90). Its effects are mediated by binding to

FGFR1, which triggers receptor autophosphorylation and activates

signaling pathways that control cell proliferation, differentiation,

survival, and angiogenesis (91, 92). Overexpression of bFGF

parallels proliferative hemangioma growth, linking the bFGF/

FGFR1 pathway to hemangioma formation, proliferation, and

involution (93, 94). Additionally, miR-424 may reduce FGFR1

expression and inhibit the bFGF/FGFR1 pathway, suppressing

ERK1/2 phosphorylation and ultimately decreasing cell

proliferation, migration, and tube formation (95).
3.7 PI3K/AKT/mTOR pathway

The PI3K/AKT/mTOR pathway plays a central role in

regulating cell growth, survival, and autophagy (96–98). In IH

cells, aberrant activation of this pathway upregulates HIF-1a and

VEGF, increasing cellular tolerance to stress (96, 97). Recent studies

have shown that SOX4 binds to the promoter of endothelial cell–

specific molecule 1 (ESM1), activating the PI3K/AKT pathway and

amplifying angiogenic signaling[ (99). Consistently, ex vivo

experiments demonstrate that pharmacologic inhibition of this

pathway, including the mTOR inhibitor rapamycin, reduces IH

cell proliferation and angiogenesis, underscoring its therapeutic

potential (100).
3.8 Insulin-like growth factor signaling
pathway

The insulin-like growth factor (IGF) signaling pathway plays a

central role in cell proliferation and insulin sensitivity. IGF-1 binds

to its receptor (IGF-1R), a tetramer of two extracellular a-subunits
Frontiers in Oncology 07
and two transmembrane b-subunits with intrinsic tyrosine kinase

activity (101) This interaction activates the PI3K/AKT pathway,

increases AKT phosphorylation, and drives HemSCs to differentiate

into adipocytes (102). Similarly, IGF-2 promotes HemSCs

adipogenesis via the same mechanism. However, one study

reported that IGF-2 can inhibit leptin-induced adipogenesis in

HemSCs, indicating a context-dependent modulatory role that

warrants further investigation (103, 104). In parallel, IGF-2

signaling through IGF2R enhances proliferation by upregulating

proliferating cell nuclear antigen (PCNA). Loss of IGF2R, by

contrast, weakens PI3K/AKT signaling, reduces PCNA and Bcl-2

expression, and induces apoptosis in HemECs, underscoring

IGF2R’s dual role in growth and survival (105).
3.9 Peroxisome proliferator-activated
receptor g

Peroxisome proliferator-activated receptor g (PPARg) signaling
has gained increasing attention in angiogenesis research. Activation

of PPARg exerts anti-angiogenic effects by downregulating

angiogenic factors and suppressing endothelial cell migration and

proliferation (106, 107). PPARg agonists, such as thiazolidinediones

(TZDs), inhibit angiogenesis by reducing chemotaxis and

promoting apoptosis through Erk5 activation (106). In tumor

cells, PPARg ligands also induce growth arrest and apoptosis via

the p63 and p73 pathways (108). During involution of IH, PPARg
and its isoform PPARg2 orchestrate HemSCs differentiation into

adipocytes (109). The involuting phase is marked by coordinated

upregulation of PPARg2, lipoprotein lipase (LPL), CCAAT

Enhancer-Binding Protein a (C/EBPa), and apolipoprotein A

(110). Moreover, cyclooxygenase-2 (COX-2) inhibition may

further enhance adipogenic gene expression via the PPARg/C/
EBP axis (111). Collectively, these findings highlight PPARg as a

potential therapeutic target in IH.
3.10 T-box transcription factor 2

T-box transcription factor 2 (TBX2), highly expressed in

HemSCs, has been proposed as a critical regulator of cell fate

decisions (112). TBX2 overexpression augments C/EBPb activity,

promoting adipocyte differentiation of HemSCs, and facilitates the

gradual replacement of proliferative vascular tissue with mature

adipose and fibrous elements (113).However, current evidence is

largely based on in vitro studies, with limited in vivo validation. It

also remains unclear whether TBX2 acts independently or as part of

a broader transcriptional network, underscoring gaps in

mechanistic understanding.
3.11 PDGF-B/PDGFR-b

PDGF family consists of four ligands—PDGF-A, -B, -C, and -D

—that bind to the tyrosine kinase receptors PDGFR-a and PDGFR-
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b (114). The PDGF-B/PDGFR-b system mediates communication

between endothelial cells and pericytes, regulating pericyte

recruitment and vascular wall formation (115). In proliferative

IH, active PDGF signaling maintains vessel integrity by inhibiting

adipose differentiation, while reduced PDGFR-b expression during

regression facilitates tissue remodeling and adipogenesis (51).

Overall, receptor-mediated PDGF signaling appears to constrain

involution, but further research is needed to clarify the mechanisms

underlying altered PDGF-B expression.
4 Role of the microenvironment

4.1 Immune and inflammatory mechanisms

Inflammatory cytokines and immune cells play pivotal roles in

both the progression and regression of IH. In the proliferative

phase, high local concentrations of cytokines such as IL-6, Tumor

necrosis factor-a (TNF-a), and IL-1b stimulate the proliferation of

HemECs and HemSCs, while enhancing VEGF expression via

activation of pathways like Janus Kinase/Signal Transducer and

Activator of Transcription (JAK/STAT) and Nuclear factor-kappa B

(NF-kB) (116, 117). Allograft inflammatory factor-1(AIF-1) is

highly expressed in endothelial cells in most IH samples, which

may recruit myeloid cells to the lesion, although the exact source of

these cells remains unclear (118). TNF-a exhibits dual effects: it

inhibits vascular expansion in regions with insufficient pericytes,

whereas in areas with an adequate pericyte population, TNF-a
promotes neovascularization, highlighting the modulatory role of

pericytes in inflammatory signaling (119).

During the proliferative phase, immune cells in IH are

predominantly M2-type macrophages. These cells secrete anti-

inflammatory cytokines such as IL-10 and TGF-b, in addition to

pro-angiogenic factors, thereby reducing local immunoreactivity

and supporting tumor cell immune escape (117, 120). Conversely,

in the degenerative phase, the proportion of M1-type

macrophages increases; these cells release pro-apoptotic factors

such as TNF-a, IL-1b, and IFN-g, which induce endothelial

apoptosis or trigger endothelial–mesenchymal transition

(EndMT), thus facilitating tumor regression (117). Moreover,

exosomes secreted by M2-type macrophages contain specific

non-coding RNAs (e.g., lncRNA mir 4435-2HG) that further

enhance HemEC proliferation, migration, and invasion via NF-

kB activation (121). Mast cells also exhibit dynamic changes

during IH progression. Their numbers are low during the

proliferative phase but their enzymatic activity peaks during

early regression. Activated mast cells secrete pro-angiogenic

factors (e.g., VEGF, FGF2) along with matrix-degrading

enzymes (including chymotrypsin, trypsin, and matrix

metalloproteinases [MMPs]) to facilitate extracellular matrix

(ECM) remodeling and neovascularization (19, 122–126).

Additionally, mast cells release anti-angiogenic factors like IFN

and TGF-b and produce Apo J, which promotes endothelial

apoptosis during the early stages of regression, thereby initiating

tumor involution (127).
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4.2 Hypoxia

A hypoxic microenvironment is a key driver of IH development.

During the proliferative phase, rapid tumor cell growth coupled

with immature neovascularization results in significant local

hypoxia. This low-oxygen state upregulates HIF-1a, which in

turn activates downstream genes such as GLUT-1 and VEGF to

accelerate HemEC proliferation and neovascularization (49, 85, 86).

Furthermore, the protein AIBP, which regulates cholesterol

metabolism, promotes cholesterol efflux, destabilizes HIF-1a,
reduces VEGF expression, and ultimately inhibits IH growth

(128). Cysteine-rich angiogenic inducer 61 (Cyr61/CCN1) is

markedly upregulated under hypoxic conditions and localizes

primarily to immature microvessels. CCN1 further promotes

VEGF-A production through activation of NF-kB and c-Jun N-

terminal kinase pathways, creating a positive feedback loop that

sustains angiogenesis (129). In addition to promoting angiogenesis,

hypoxia relates to metabolic reprogramming in hemangioma cells.

Elevated levels of lncRNAMCM3AP-AS1 enhance glycolysis by

increasing glucose uptake and lactate production, thereby providing

the energy necessary for rapid cell proliferation. This glycolytic

enhancement can be partially reversed by inhibiting HIF-1a,
underscoring its role in energy metabolism regulation (130).
4.3 ECM

ECM is vital for supporting the vascular endothelium in IH by

providing a structural scaffold and regulating angiogenesis. It

supports blood vessel formation through adhesive interactions

with integrins on endothelial cells, thus maintaining the vascular

network (131). Composed of collagen, proteoglycans, and

glycoproteins, the ECM is dynamically regulated by its synthesis

and degradation, allowing precise control over neovessel formation

and maturation. Interactions between the ECM and cells deliver

essential signals that govern adhesion, migration, and receptor

activation. Alterations in adhesion, increased cell migration, and

protease secretion can change vascular permeability, enabling

plasma-derived matrix molecules to modify the local ECM

composition. Such variations are evident between sites of vessel

formation and regions of active angiogenesis. Several studies have

shown that changes in the ECM environment correlate with IH

progression. For example, differences in ECM composition between

the proliferative and involuting phases suggest a causal link between

ECM remodeling and angiogenic growth (132). The ECM also

influences endothelial responses to angiogenic factors by

modulating integrin expression. Adhesion between ECM

components and integrins—such as a2b1, a1b1, avb3, and a5b1,
which bind collagen, fibronectin, and tenascin—is crucial for

endothelial tube formation and downstream receptor activation

(133–137). In IH, laminin (LN), fibronectin (FN), and vitronectin

(VN) are the most frequently studied ECM components (23, 138).

For example, LN has been detected in the thickened basement

membranes of hemangiomas (139), and the a6-integrin subunit is

associated with tumor angiogenesis and cellular invasiveness (140).
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Despite these insights, further research is needed to clarify other

ECM-related factors in IH.
4.4 Exosome-mediated signaling

Exosomes, which are extracellular vesicles ranging from 30 to

150 nm in diameter, play crucial roles in intercellular

communication within the IH microenvironment. Secreted by

HemSCs, HemECs, and immune cells, exosomes carry a variety of

bioactive molecules, including miRNAs, lncRNAs, and proteins,

which participate in the regulation of IH development.

M2-polarized macrophage-derived exosomes (M2-exos) have

been shown to deliver lncRNA MIR4435-2HG to HemECs. This

delivery activates the NF-kB signaling pathway via modulation of

the HNRNPA1 protein, thereby enhancing cell proliferation,

migration, and invasion, and ultimately exacerbating angiogenesis

(121). Additionally, M2-exos may transfer miR-27a-3p to HemSCs,

leading to the downregulation of Dickkopf-related protein 2

(DKK2). The resulting decrease in DKK2 expression reduces

propranolol sensitivity, promotes cell survival, and diminishes

apoptosis, offering a potential explanation for treatment resistance

in some IH patients (141). Engineered exosomes carrying miR-187-

3p have demonstrated the ability to inhibit Notch signaling in

HemSCs, resulting in reduced cell proliferation and diminished

lumen formation (142). Moreover, Exos derived from IH stem cells

are enriched with miR-196b-5p, a molecule that not only promotes

HemEC proliferation and angiogenesis but also reduces apoptosis

and cell cycle arrest by targeting the CDKN1B gene (143). Targeting

exosomal signaling pathways could thus provide a molecular

foundation for novel therapies that inhibit pathological

angiogenesis and induce tumor regression.

Exosomes act not only as pro-angiogenic mediators but also as

potential therapeutic targets. Their molecular cargos may serve as

diagnostic or prognostic biomarkers, while Engineered exosomes

could be developed as precision drug-delivery systems. Future

research should focus on source-specific features, cargo profiles,

and translational applications to advance exosome-based therapies

for IH.
5 Unresolved issues in infantile
hemangioma research

5.1 Genetic mechanisms

Although familial aggregation and cases in monozygotic twins

have been reported (144), most IH cases are sporadic. This suggests

that genetic susceptibility, epigenetic regulation, and gene-

environment interactions warrant further investigation (145).

Early studies suggested a familial basis, with Walter et al.

mapping IH to chromosome 5q31–33, which includes genes
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FGFR4, PDGFRB, and VEGFR-3; variants in these genes were

linked to reduced disease risk (146). Somatic mutations in

VEGFR2 and VEGFR3 have also been identified in some patients

(147), implicating VEGF signaling in IH pathogenesis. However,

these findings lack consistent validation in larger cohorts, and their

functional significance remains unclear. Single nucleotide

polymorphism analyses have suggested a possible association

between the VEGF-A rs2010963 G allele and IH susceptibility,

but overall evidence remains inconclusive (148).

Increasingly, epigenetic mechanisms—such as DNA

methylation, histone modification, and non-coding RNA

regulation—are thought to contribute to IH initiation and

regression (149). The transcription factor SOX18 and its

downstream targets, which regulate vascular development and

differentiation, may also influence IH progression via epigenetic

pathways and represent promising therapeutic targets (150).

In summary, genetic studies have identified several candidate

genes and pathways in IH but no consistent pathogenic mutations.

Future investigations should employ multicenter genomic studies,

single-cell sequencing, and integrative epigenomic analyses to

define the genetic and epigenetic landscape of IH and identify

novel susceptibility genes and clinically relevant biomarkers.
5.2 Estrogen

IH exhibits a clear female predilection, sparking interest in the

role of estrogen and its receptors in its pathogenesis (6). Elevated

serum estrogen levels and increased expression of estrogen

receptors in IH tissues suggest that estrogen may promote tumor

progression through stimulation of endothelial cell proliferation

and angiogenesis (6, 19, 151). 17b-estradiol has been shown to bind

ER-a in HemSCs, upregulating VEGF-A and enhancing

angiogenesis and tumor growth (151). Estrogen also modulates

the secretion of multiple angiogenic and anti-angiogenic factors,

including FGF-2, IFN-a/b/g, and TGF-b, which may exert stage-

dependent effects during the proliferative and involuting phases of

IH (19). Nevertheless, the mechanisms by which estrogen influences

IH remain unclear, and its impact on intracellular signaling

pathways is debated. Future studies should systematically

investigate estrogen’s role at different stages of IH and assess its

potential as a therapeutic target.
5.3 Safety of propranolol

Propranolol, the primary treatment for IH, has shown

substantial efficacy, yet concerns remain regarding its long-term

safety, side effects, and potential for recurrence (152). Despite

numerous safety studies, there is a lack of multicenter follow-up

studies reporting long-term outcomes (153, 154). Some patients

experience relapses after treatment cessation, suggesting that

propranolol may temporarily impede lesion progression without
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providing a definitive cure (155, 156). Future large-scale,

multicenter randomized controlled trials are needed to assess

propranolol’s long-term safety and efficacy. Additionally,

exploring combination therapies with other targeted approaches

may help reduce recurrence risk.
5.4 Mechanism of IH regression

Most hemangiomas gradually degenerate into fibrous

adipose tissue after proliferation and stabilization. This regression

involves endothelial cell apoptosis, stem cell differentiation

into adipocytes, and changes in the local microenvironment (157,

158). However, the precise molecular pathways, regulatory

networks, and mechanisms of cell fate determination remain

incompletely understood.
5.5 Ideal IH model

Current in vitro and animal models do not fully mimic the

growth and regression of human IH. There is an urgent need to

develop comprehensive models that closely reflect human

pathology to advance the study of IH mechanisms and

therapeutic strategies (159, 160).
5.6 Intercellular communication

Intercellular communication in IH involves not only the

abnormal behavior of individual cell types but also complex

signaling among hemangioma stem cells, endothelial cells,

pericytes, and immune cells through cytokines, exosomes, and

direct cell-cell interactions (38, 121, 141, 143). The precise

mechanisms underlying these interactions remain incompletely

elucidated, and further research using techniques such as single-

cell sequencing and spatial transcriptomics is needed to fully
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understand these signaling networks and identify potential

molecular targets for therapy.
6 Conclusion

Current research indicates that the development of IH is driven

by the synergistic effects of multiple cellular (Table 2) and molecular

factors within a dynamic microenvironment. Abnormally

proliferating HemECs and multipotent HemSCs serve as the

primary cellular sources of IH formation, while environmental

factors such as hypoxia, inflammation, ECM, and exosome-

mediated intercellular communication critically regulate tumor

growth, angiogenesis, and eventual regression (3, 17, 18, 84, 161).

With growing insight into IH biology, several molecules have

emerged as promising therapeutic targets. SOX18, a key transcription

factor in vascular development and endothelial differentiation, has

been implicated in abnormal endothelial proliferation in IH.

Pharmacologic inhibition of SOX18, including the non–b-
adrenergic effects of R(+)-propranolol and repurposing of statins

via the SOX18–mevalonate pathway axis, highlights its translational

potential (74, 77, 150). Exosomes, as central mediators of intercellular

communication and angiogenesis, represent potential intervention

points through modulation of their release or function. HIF-1a, a
major driver of VEGF expression in hypoxic niches, may provide an

opportunity for early control of IH proliferation (87). In addition,

hormonal signaling and immune microenvironmental regulation

may enable more individualized treatment strategies.

In conclusion, IH is a complex vascular anomaly regulated by a

dynamic network of cellular and molecular mechanisms. Continued

exploration of its genetic, metabolic, and immunologic drivers will

provide a foundation for future innovation in vascular biology and

therapy. Progress will require multidisciplinary approaches combining

advanced molecular technologies with rigorous clinical research. Such

efforts will be critical to resolving existing controversies, validating

emerging therapeutic targets, and accelerating the translation of

mechanistic discoveries into precision treatments for IH.
TABLE 2 Surface markers and characteristics of IH cell types.

Cell type Surface markers and characteristics

HemSCs
Express CD133 and CD90; exhibit high clonogenicity; possess multipotent differentiation capacity (able to differentiate into endothelial cells, pericytes,
and adipocytes); drive early tumor proliferation and contribute to fibro-adipose tissue formation during regression.

HemECs
Express CD31, VE-cadherin, and E-selectin; demonstrate abnormal proliferation and migration, contributing to the formation of an aberrant vascular
network.

HemPCs
Express NG2, a-SMA, PDGFRb, Calponin, and NOTCH3; surround endothelial cells to support vascular stability; exhibit strong tubulogenesis but
reduced contractility, leading to incomplete vessel coverage and contributing to vascular remodeling.

Immune Cells
Macrophages: M2-type secrete IL-10, TGF-b, and pro-angiogenic factors (supporting immune escape and angiogenesis); M1-type secrete TNF-a, IL-1b,
and IFN-g (promoting apoptosis and remodeling).
Mast Cells: Secrete VEGF, FGF2, matrix metalloproteinases, and also release anti-angiogenic factors (IFN, TGF-b).

TCs
Express CD34, PDGFR-a, Vimentin, and Aquaporin-1; involved in intercellular signaling and lumen formation; may modulate the local
microenvironment.
HemSCs, Hemangioma Stem Cells Hemangioma Stem Cells; HemECs, Hemangioma Endothelial Cells Hemangioma Endothelial Cells; HemPCs, Hemangioma Pericytes; TCs, Telocytes; M2
Macrophages, Alternatively Activated Macrophages; M1 Macrophages, Classically Activated Macrophages; NG2, Neuron-Glial Antigen 2; a-SMA, Alpha-Smooth Muscle Actin; PDGFR,
Platelet-Derived Growth Factor Receptor; NOTCH3, Neurogenic Locus Notch Homolog Protein 3; IL-10, Interleukin-10; TGF-b, Transforming Growth Factor Beta; TNF, Tumor Necrosis
Factor; IFN-g, Interferon Gamma; VEGF, Vascular Endothelial Growth Factor; FGF2, Fibroblast Growth Factor 2.
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