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Introduction:Machine learning (ML) has shown significant potential in improving

prostate cancer (PCa) diagnosis, prognosis, and treatment planning. Despite

rapid advancements, a comprehensive quantitative synthesis of global research

trends and the knowledge structure of ML applications in PCa remains lacking.

This study aimed to systematically map the evolution, research hotspots, and

collaborative landscape of ML-PCa research.

Methods: A systematic bibliometric review was performed on English-language

articles and reviews published between January 2005 and December 2024.

Publications were retrieved from the Web of Science (WOS) and Scopus

databases. Analytical tools including CiteSpace, VOSviewer, and the R-

bibliometrix package were employed to assess publication growth trends,

country and institutional contributions, collaboration networks, author

productivity, journal outlets, and keyword co-occurrence patterns.

Results: A total of 2,632 publications were identified. Annual output increased

from fewer than 20 papers during 2005–2014 to 661 in 2024, with 82% of all

studies published since 2021. Emerging frontiers included deep learning,

radiomics, and multimodal data fusion. China (649 publications) and the United

States (492 publications) led in research volume, while Germany demonstrated

the highest proportion of multinational collaboration (39.29%). Leading

institutions by output were the Chinese Academy of Sciences, the University of

British Columbia, and Shanghai Jiao Tong University. In terms of citation impact,

the University of Toronto, Case Western Reserve University, and the University of

Pennsylvania ranked highest. The journals Cancers, Frontiers in Oncology, and

Scientific Reports published the most ML-PCa studies, highlighting the cross-

disciplinary nature of the field. Madabhushi Anant emerged as the most central

author hub in global collaboration networks.
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Discussion: ML applications in PCa research have experienced exponential

growth, with methodological innovations driving interest in deep learning and

radiomics. However, a persistent translational gap exists between algorithmic

development and clinical implementation. Future directions should focus on

fostering interdisciplinary collaboration, conducting prospective multicenter

validation studies, and aligning with regulatory standards to accelerate the

integration of ML models into clinical PCa workflows.
KEYWORDS

prostate cancer, machine learning, bibliometric analysis, deep learning, radiomics,
translational research
Introduction

In recent years, prostate cancer (PCa) has emerged as a leading

public-health challenge for men (1), with new cases accounting for

approximately 14.1% of all male cancers and PCa-specific deaths

comprising about 7% of global cancer mortality (2). Although the

widespread adoption of prostate-specific antigen (PSA) screening

since the 1990s and advances in surgical and radiotherapeutic

techniques have improved early detection and treatment (3, 4),

existing biomarkers still suffer from limited specificity, contributing

to overdiagnosis rates as high as 30%–40% (5, 6). Moreover, high-

risk subtypes such as castration-resistant PCa continue to bear poor

prognoses, with five-year survival rates below 30% (7), underscoring

the urgent need to transcend traditional diagnostic and

therapeutic paradigms.

Machine learning (ML), as a transformative technological force,

has demonstrated substantial promise across multiple facets of PCa

management (8). In imaging diagnostics, MRI-based radiomics

models and deep-learning algorithms have facilitated automated

Gleason grading and early tumor detection, markedly enhancing

diagnostic accuracy (9–11). In genomics, multimodal ML

approaches can mine complex gene-expression profiles and

exosomal signatures to uncover novel biomarkers (12, 13). At the

therapeutic level, deep neural networks have been employed to

predict patient outcomes under varying treatment regimens,

guiding personalized medication strategies and radiotherapy

planning (14, 15).

Despite these advances, concerns persist regarding

reproducibility, external validation, and the clinical utility of ML

applications. Multiple systematic reviews have highlighted a pattern

of methodological innovation outpacing clinical readiness. For

example, among AI systems benchmarked against clinicians (11,

16, 17), only a minority were prospectively tested or deployed in

real-world settings, and adherence to reporting guidelines such as

CONSORT-AI remains inconsistent (18). This imbalance

underscores the need for bibliometric evaluations to characterize

the trajectory of research outputs, identify key domains of progress,

and expose areas where translational gaps remain.
02
Against this backdrop, the present study conducts a systematic

review and bibliometric analysis of ML-PCa literature published

between 2005 and 2024 in the Web of Science (WOS) and Scopus

databases. Utilizing CiteSpace, VOSviewer, and the R-bibliometrix

package, we analyze publication trends, authorship and institutional

networks, journal and reference co-citations, and the evolution of

thematic keywords, providing a structured overview of this

rapidly evolving field. In addition to these descriptive analyses, we

further examine proportional signals related to clinical

validation and translation. Specifically, within our corpus (2005–

2024; n=2,632), the explicit use of the keyword “validation”

accounted for only ~2.8% (73/2,632), and terms directly reflecting

prospective evaluation, randomization, or real-world implementation

were absent among the most frequent author keywords. By

combining quantitative bibliometric mapping with critical appraisal

of clinical integration, we aim to pinpoint both the technological and

implementation gaps that must be bridged for ML to fulfil its promise

in PCa care.
Methods

Data collection and preprocessing

On July 5, 2025, a systematic literature search was conducted

across two widely recognized databases: the WOS Core Collection

and Scopus. The search strategy for WOS was defined by the query:

TS=(“machine learn*”) AND (“prostate cancer” OR “prostate

carc inoma” OR “pros ta t i c neop la sm” OR “pros ta t e

adenocarcinoma” OR “castration-resistant prostate cancer” OR

“metastatic prostate cancer” OR “PCa”), while the search for

Scopus used the query: TITLE-ABS-KEY (“machine learn*” AND

(“prostate cancer” OR “PCa” OR “prostate carcinoma” OR

“prostatic neoplasm” OR “prostate adenocarcinoma” OR

“castration-resistant PCa” OR “metastatic PCa”)). Both searches

were limited to publications from January 1, 2005, to December 31,

2024, and restricted to articles and reviews published in English. For

the Scopus database, additional filtering was applied to include only
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articles from the following subject categories: “Medicine,”

“Biochemistry, Genetics and Molecular Biology,” “Computer

Science,” “Health Professions,” “Immunology and Microbiology,”

“Pharmacology, Toxicology and Pharmaceutics,” “Neuroscience,”

“Nursing,” and “Psychology.” Following the retrieval, the

documents from both databases were merged using Python

(version 3.9.14), ensuring consistent terms across the two

datasets. Duplicate entries were removed, and records with
Frontiers in Oncology 03
incomplete or missing information were excluded (Figure 1). The

remaining documents were then retained for further analysis.
Bibliometric toolchain configuration

The analysis leveraged a tripartite toolchain to ensure

methodological rigor and multidimensional insights. First,
FIGURE 1

Flowchart of this study.
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CiteSpace 6.4.R1 (19, 20) was deployed to detect citation bursts and

temporal trends. It was configured with 1-year time slices (2005–

2024), a g-index term selection criterion (k=25), and Pathfinder

network pruning (g=0.7) to optimize cluster resolution.

Concurrently, VOSviewer 1.6.20 (21) was used to generate co-

authorship and keyword co-occurrence networks. For mapping

countries and institutions, a minimum threshold of five

documents per node was applied, with full counting and

association strength normalization to minimize bias toward high-

frequency terms. For statistical validation and thematic evolution

tracking, bibliometrix (version 4.1.0) (22) in R (version 4.3.1) was

used to perform Latent Dirichlet Allocation topic modeling—

initiating 10 topics through Gibbs sampling over 2,000 iterations.

Exponential smoothing (a=0.8) was applied to model

productivity trends.
Frontiers in Oncology 04
Results

Publication trends and document
characteristics

Between 2005 and 2024, a comprehensive analysis identified

2,632 publications in the field of ML-PCa (Figure 2). Initial progress

was measured, with annual publications consistently below 20

throughout 2005–2014. Accelerated growth commenced in 2015,

driving a sustained increase in output that exceeded 100 articles by

2018 and reached 206 in 2020. The period 2021–2024 witnessed

exponential expansion, with annual publications peaking at 472

(2022), 559 (2023), and 661 (2024). Collectively, this trajectory

generated an average annual growth rate of 25.4% over the two-

decade period, with 82% of cumulative publications (2,173/2,632)

concentrated in the final four years (2021–2024). Cumulative

citations reached 57,771, attesting to the field’s scholarly

significance. Parallel citation trends show moderate fluctuations

(400–800 citations annually) during 2005–2013, interrupted by a

transient 2009 spike (3,478 citations) attributable to highly

influential works. From 2014 onward, citations grew robustly,

surpassing 4,000 in 2018 and surging to 6,809 in 2019. The 2020–

2022 period sustained exceptional impact (7,000–8,000 citations

annually), peaking at 7,989 in 2022. Although 2023–2024 saw a

moderate decline to ~3,700 annual citations, persistently elevated

levels confirm ML-PCa’s enduring academic relevance.
Country contributions

Globally, researchers from 92 countries/regions have

contributed to ML-PCa research. China emerged as the dominant

contributor with 649 publications (24.66% of total output), followed

by the United States (492 publications, 18.69%) and India (162
FIGURE 2

Annual trends in publications and citations related to ML-PCa research from 2005 to 2024.
TABLE 1 Top 10 most productive countries in ML-PCa research and
their pattern of international collaboration patterns.

Country Articles Articles % SCP MCP MCP %

CHINA 649 24.66 561 88 13.56

USA 492 18.69 389 103 20.93

INDIA 162 6.16 144 18 11.11

UNITED
KINGDOM

109 4.14 74 35 32.11

CANADA 108 4.10 76 32 29.63

ITALY 106 4.03 77 29 27.36

GERMANY 84 3.19 51 33 39.29

KOREA 72 2.74 53 19 26.39

AUSTRALIA 63 2.39 43 20 31.75

IRAN 50 1.90 38 12 24.00
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publications, 6.16%) (Table 1). Network analysis positioned the

United States and China as central hubs (Figure 3A), with the

United Kingdom, Canada, and India forming key peripheral

connections. Annual growth patterns indicate accelerated global

output after 2018, with China and the United States establishing

overwhelming dominance by 2024 (Figure 3B).

Analysis of international collaboration revealed significant

strategic differences: While China maintained a relatively low

multinational collaboration proportion (MCP ratio=13.56%), the

United States exhibited higher collaborative engagement (MCP

ratio=20.93%). Germany demonstrated the most extensive

international integration among top contributors (MCP

ratio=39.29%) (Table 1).

Bilateral analysis identified the United States-China partnership

(62 joint publications) as the strongest collaborative dyad, followed

by United States-Canada (36) and United States-United Kingdom

(34) (Figure 3C, Table 2). Citation-based clustering confirmed the
FIGURE 3

Country contributions and collaboration network in ML-PCa research. (A) Annual publication trends of the most productive countries from 2005 to
2024. (B) Global collaboration map illustrating international cooperation between countries or regions based on co-authorship. (C) Chord diagram
of country-level collaborations, where the ribbon width represents the collaboration intensity between countries. (D) Country citation clustering
network, where node size reflects the number of citations received by each country and node color indicates different citation clusters.
TABLE 2 Top 10 bilateral collaborations in ML-PCa research.

From To Frequency

USA CHINA 62

USA CANADA 36

USA UNITED KINGDOM 34

USA GERMANY 26

ITALY UNITED KINGDOM 20

USA ITALY 19

UNITED KINGDOM GERMANY 18

USA FRANCE 18

USA KOREA 16

CHINA CANADA 15
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dual centrality of the United States and China, while revealing

distinct regional clusters: Italy, Germany, and the United Kingdom

formed European-oriented groupings, whereas India anchored a

separate citation community (Figure 3D).
Frontiers in Oncology 06
Institution features

Global institutional engagement in ML-PCa research spans

3,638 unique organizations. Annual publication trends
FIGURE 4

Institutional contributions to ML-PCa research. (A) Annual publication statistics of the top contributing institutions from 2005 to 2024. (B) Institutional
collaboration network in ML-PCa research. Each node represents a research institution, with node size proportional to the number of publications. Colors
denote distinct clusters of collaborating institutions, and connecting lines represent co-authorship links. (C) Cluster map of keyword co-occurrence for
institutions. Each colored cluster corresponds to a major thematic area, with node size reflecting keyword frequency and link strength indicating
co-occurrence. (D) Institutional citation clustering network. Nodes represent institutions, sized by total citation counts, and colored by citation clusters;
link thickness reflects citation relationships.
TABLE 3 Top 10 most productive institutions in ML-PCa research, including citation count, average citations per article, and centrality.

Institution Documents Citations Average citations Centrality

Chinese Academy of Sciences 42 1609 38.31 0.04

University of British Columbia 32 1330 41.56 0.06

Shanghai Jiao Tong University 25 357 14.28 0.03

University of Pennsylvania 24 1436 59.83 0.05

University of Toronto 24 1693 70.54 0.03

Zhejiang University 23 451 19.61 0.01

Case Western Reserve University 21 1467 69.86 0.03

Stanford University 21 668 31.81 0.03

University of California, Los Angeles
(UCLA)

21 533 25.38 0.00

Harvard Medical School 20 1145 57.25 0.02
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demonstrate markedly accelerated output after 2015, with

particularly steep growth emerging post-2020 (Figure 4A).

Leading institutions by publication volume include the Chinese

Academy of Sciences (42 publications), University of British

Columbia (32 publications), and Shanghai Jiao Tong University

(25 publications). Disparities emerge when assessing scholarly

impact: while the Chinese Academy of Sciences leads in volume,

its average citation rate (CPP=38.31) trails behind several Western

counterparts. The University of Toronto achieves the highest CPP

(70.54), followed closely by Case Western Reserve University

(69.86) and University of Pennsylvania (59.83), signaling

exceptionally influential research from these institutions (Table 3).

The institutional collaboration network reveals distinct

structural patterns (Figure 4B). Western institutions, particularly

University of British Columbia (highest centrality=0.06), Stanford

University, and University of Pennsylvania, function as primary

global connectors with extensive international linkages. Major

Chinese institutions including the Chinese Academy of Sciences

and Shanghai Jiao Tong University participate actively in global

networks while exhibiting stronger regional cohesion. Research

specialization clusters show clear geographic alignment

(Figure 4C): North American and European institutions

demonstrate concentrated expertise in digital pathology and

artificial intelligence applications, whereas Chinese counterparts

show heightened focus on cell-free DNA analysis and medical

imaging diagnostics.

Citation network analysis confirms a multipolar global impact

landscape (Figure 4D). Both the Chinese Academy of Sciences and

University of British Columbia anchor densely connected citation

cores, with additional regional clusters emerging: Chinese institutions

including Huazhong University of Science and Technology form a

distinctive citation collective, while institutions from the United

States and United Kingdom establish self-contained high-impact

modules. This structural configuration reflects China’s transition

from peripheral contributor to central knowledge producer, while

Western institutions maintain leadership in specialized

methodologies and collaborative infrastructure.
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Journal distribution and citation impact

Globally, ML-PCa research has been disseminated across 10,437

unique journals, with Cancers (82 publications), Frontiers in

Oncology (70 publications), and Scientific Reports (52

publications) constituting the dominant outlets (Table 4).

Analysis of scholarly impact reveals Cancers as the most cited

journal (1,127 total citations), though Medical Physics

demonstrates superior per-article influence (CPP=27.79) despite

moderate output volume. Notably, Cancers, Scientific Reports, and

IEEE Access share equivalent long-term impact metrics (H-

index=17), indicating comparable dominance within the

domain (Table 4).

Annual publication trends exhibit exponential growth after

2018, peaking in 2024 with Cancers, Frontiers in Oncology, and

Applied Sciences-Basel leading this expansion (Figure 5A). Thematic

clustering delineates distinct journal specializations: Cancers and

Frontiers in Oncology anchor oncology-focused research, while

Sensors and IEEE Access concentrate on computational modeling

applications. Medical Physics emerges as a critical interdisciplinary

hub through its bridging position between clinical and

technological clusters (Figure 5B).

Co-citation network analysis positions high-impact journals

including Nature, IEEE Transactions on Medical Imaging, and

Cancers as foundational knowledge sources within tightly

interconnected citation modules (Figure 5C). These citation

relationships underscore the integration of machine learning

methodologies into medical research paradigms. Temporal keyword

evolution further reveals a transformative trajectory: pre-2015

research emphasized conventional techniques like feature extraction

and support vector machines, whereas post-2020 publications

increasingly prioritize deep learning, convolutional neural networks

(CNN), and radiogenomics (Supplementary Figure 1).

Analysis of cross-domain knowledge flows revealed three

primary diffusion trajectories, each demonstrating distinct

transdisciplinary pathways (Figure 6). The most prominent

trajectory originates from systems and computer engineering
TABLE 4 Top 10 most productive journals in ML-PCa research, including citation metrics and 2024 impact factors.

Journal Documents Citations Average citations Impact factor (2024) H_index

Cancers 82 1127 15.67 4.4 17

Frontiers in Oncology 70 946 13.37 3.3 18

Scientific Reports 52 1111 21.37 3.9 17

Diagnostics 39 690 18.42 3.3 16

IEEE Access 33 557 17.22 3.6 13

Sensors 33 597 18.53 3.5 12

Applied Sciences-Basel 30 245 8.17 2.5 9

Plos One 29 769 26.52 2,6 13

Medical Physics 27 719 27.79 3.2 13

Frontiers in Genetics 22 273 14.58 2.8 8
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journals, with knowledge subsequently adopted by publications in

medicine and genetics research. A secondary pathway involves

mathematical modeling sources transferring methodological

innovations to clinical medical imaging applications. The third

trajectory captures how sensor technology literature progressively

informs molecular biology and immunology studies. Collectively,

this tripartite diffusion pattern establishes ML-PCa research as a

multidisciplinary convergence domain wherein computational

innovations continually enable transformative advances in

precision oncology, fundamentally reshaping biomedical

discovery paradigms through cross-pollination of computational

and life science methodologies.
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Author productivity and collaboration
networks

The global ML-PCa research community comprises 12,345

authors, with 23.21% of publications involving international

collaborations. As documented in Table 5 and Figure 7A,

Madabhushi Anant stands as the foremost contributor with 19

publications achieving 1,475 total citations, yielding an exceptional

average citation rate of 77.63 per paper and an H-index of 16,

establishing clear scholarly leadership. Additional high-impact

authors include Abolmaesumi Purang and Mousavi Parvin (8

publications each), while specialists like Shiradkar Rakesh
FIGURE 5

Journal-level bibliometric and thematic analysis of ML-PCa research. (A) Annual article output by top journals from 2010 to 2024, shown as a
stacked bar chart where each color represents one of the leading journals. (B) Thematic clustering of journals based on their publication profiles in
ML-PCa research: nodes represent journals, colored by dominant thematic cluster, with size proportional to publication volume. (C) Journal co-
citation network: nodes represent journals sized by the number of times they are cited in ML-PCa articles, colors denote co-citation clusters, and
edges indicate co-citation links.
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(average citations = 45.13) and Cuocolo Renato (47.50)

demonstrate significant influence through focused high-quality

output despite modest publication volumes.

Collaboration network analysis reveals critical structural

patterns (Figure 7B). Madabhushi Anant occupies the central
Frontiers in Oncology 09
network hub, maintaining robust ties with Abolmaesumi Purang,

Comelli Albert, and Cacciamani Giovanni E., forming the nucleus

of a densely interconnected cluster. Distinct multinational

subgroups—notably Italian, Spanish, and U.S. researcher

collectives—form peripheral subnetworks, reflecting the domain’s

internationalized character.

Co-citation analysis identifies foundational knowledge

contributors transcending direct publication output (Figure 7C;

Table 6). Leo Breiman emerges as the most influential cited author

(373 co-citations) with maximal centrality (0.09), underscoring his

methodological primacy. Complementary authorities include Siegel

Rebecca L. (327 citations) in epidemiological foundations and

Wang Yuxing (252 citations) in statistical applications. Thematic

clustering demarcates specialized knowledge streams: red and pink

clusters concentrate on computational innovations in image

recognition and deep learning, while blue and green clusters

anchor clinical diagnostics and statistical epidemiology. Litjens

Geert’s bridging centrality (0.13) despite moderate citations (202)

confirms his role in cross-domain knowledge integration.

Longitudinal keyword evolution documents a profound

methodological transition (Supplementary Figure 2). Pre-2015

research emphasized feature engineering techniques (“support

vector machines”, “texture analysis”, “TRUS imaging”). During

2015–2020, focus shifted toward integrated approaches

(“radiomics”, “multiparametric MRI”, “deep learning”). Post-2020

innovations feature advanced architectures (“transformer models”,

“attention mechanisms”) and multimodal integration

(“radiogenomics”). This trajectory delineates the field ’s

progression from manual feature extraction toward sophisticated

multimodal AI frameworks, increasingly prioritizing automated

pattern discovery and biological correlation.
FIGURE 6

Dual-map overlay of citing and cited journals across scientific domains: left-hand map shows subject areas of citing journals, right-hand map shows
domains of cited journals, and curved paths trace knowledge flows.
TABLE 5 Top 10 most productive authors in ML-PCa research, including
documents, citation count, average citations per article, and H-index.

Author Documents Citations
Average
citations

H-
index

Madabhushi
Anant

19 1475 77.63 16

Abolmaesumi
Purang

8 198 24.75 7

Mousavi
Parvin

8 78 9.75 5

Shiradkar
Rakesh

8 361 45.13 7

Turkbey Baris 7 199 28.43 8

Algohary
Ahmad

6 216 36.00 5

Cacciamani
Giovanni E.

6 170 28.33 5

Comelli
Albert

6 128 21.33 5

Cuocolo
Renato

6 285 47.50 6

Duddalwar
Vinay

6 120 77.63 4
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Keyword co-occurrence and thematic
evolution

Keyword co-occurrence analysis establishes a multidisciplinary

framework for ML-PCa research, integrating computational

methods with clinical diagnostics (Figure 8A; Table 7). “machine

learning” emerges as the dominant keyword (2,388 occurrences),

followed by “prostate cancer” (1,726 occurrences), confirming their

foundational importance. Centrality analysis identifies critical

bridging terms including “Survival” (centrality=0.08), “System”,

“Biopsy”, and “Validation” (centrality > 0.06), which facilitate

knowledge exchange between technical and clinical domains.
Frontiers in Oncology 10
While less frequent, “Identification” and “MRI” also demonstrate

significant network connectivity, underscoring their role in

thematic integration.

Thematic mapping reveals distinct research concentrations

through cluster analysis (Figure 8B). Key groupings include

Cluster #0 (“deep learning”), Cluster #2 (“prostate cancer”),

Cluster #6 (“artificial intelligence”), and Cluster #15 (“predictive

modeling”), delineating core domains spanning diagnostic

model ing and AI appl icat ions . Densi ty visual izat ion

(Supplementary Figure 3) further highlights intensive research

activity around “prostate cancer”, “diagnosis”, “biopsy”, and

“identification”, forming the field’s substantive core.
FIGURE 7

Author and topic-level mapping of ML-PCa research. (A) Publication productivity of authors in the current study: each node represents an author,
node size reflects the number of articles they published. (B) Author citation network: nodes sized by citation counts of authors, edges represent
citation relationships, indicating authors’ scholarly impact. (C) Cited-author co-citation network: nodes are authors cited in ML-PCa publications,
sized by co-citation frequency, with colors denoting co-citation clusters.
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Temporal evolution demonstrates a paradigm shift in research

priorities (Supplementary Figure 4; Supplementary Figure 5). Early-

phase research (pre-2015) emphasized conventional techniques like

“pattern recognition”, “algorithm”, “classification”, and “support

vector machine”. Post-2015 witnessed accelerating adoption of

“deep learning”, “radiomics”, and “image segmentation”, with

post-2020 research dominated by emergent concepts including

“transfer learning”, “segmentation”, and “radiogenomics”. This

progression reflects the field’s transition from feature engineering

toward complex multimodal integration.

Burst detection analysis (Figure 9) reinforces this evolutionary

trajectory. Foundational methodologies including “algorithm” and

“automated pattern recognition” exhibited strong bursts during

2005–2018, while contemporary emphases feature “transfer

learning”, “radiotherapy dosage”, and “radiology” (2020–2024).

This shift from methodological exploration to clinical

implementation signifies ML-PCa’s maturation into a translational

research domain focused on precision oncology applications.

To quantify the extent of clinically oriented research, we relied

on bibliometric proxies. Author keyword frequency provided a

conservative lower bound: validation appeared 73 times,

representing approximately 2.8% of the corpus (73/2,632;

Table 7). Keywords such as prospective, randomized, trial,

implementation, or real-world were absent from the top 25,

suggesting low prevalence overall.
References and knowledge base

Core literature analysis identifies seminal works anchoring the

intellectual structure of ML-PCa research. Bera et al. (2019) (23)

(Nature Reviews Clinical Oncology, 880 citations) establishes AI’s

transformative role in digital pathology and precision oncology,

while Litjens (2014) (24), Fehr (2015) (25), and Lalonde (2014) (26)

demonstrate foundational advances in MRI-based detection and

tumor microenvironment analysis (Figure 10A; Table 8). These
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highly connected works reflect the domain’s emphasis on clinical-

AI integration across radiology and pathology.

The cited-reference network reveals central clinical guidelines

underpinning ML-PCa development (Figure 10B; Table 9). Sung

et al. (2021) (115 citations; Table 9) provides critical epidemiology

data through GLOBOCAN 2020 (27), while Turkbey et al. (2019)

(28)and Weinreb et al. (2016) (29) standardize mpMRI

interpretation via PI-RADS v2.1/v2. Key validation studies –

Ahmed et al. (2017)’s PROMIS trial (30) and Ström et al. (2020)’s

AI-assisted biopsy system (31) – demonstrate the translational

impact of these frameworks. Keyword clustering (Supplementary

Figure 6) confirms this cross-disciplinary focus, with “machine

learning,” “multiparametric MRI,” and “predictive models”

forming dominant conceptual hubs.

Co-citation analysis reveals five interconnected thematic

clusters that define the methodological architecture of ML-PCa

research (Figure 10C; Table 10). The red cluster anchors the field in

algorithmic foundations, dominated by Pedregosa et al. (2011)’s

Scikit-learn framework (126 co-citations) (32) and Chen et al.

(2016)’s XGBoost model (33), establishing Python-based machine

learning workflows as standard practice. Directly adjacent, the blue

cluster encompasses clinical and imaging standardization,

integrating epidemiological benchmarks (27) such as Sung et al.

(2021)’s global cancer statistics with PI-RADS validation studies

that operational ize mpMRI interpretat ion guidel ines .

Complementing these clinical pillars, the purple cluster develops

radiomics frameworks for quantitative imaging biomarker

extraction, exemplified by Gillies et al. (2016)’s (34) seminal work

positioning medical images as mineable data sources. Parallel

advances in bioinformatics methods (green cluster) underpin

multi-omics data integration through gene expression analysis

tools like GSEA and Limma, while the yellow cluster traces

clinical translation pathways that bridge technical innovations

with implementation workflows, ultimately connecting algorithm

development to diagnostic applications.

Highly cited and co-cited reference sets further reinforced this

pattern. Landmark clinical validation studies (Strom 2020 (31);

Bulten 2020 (35); Kasivisvanathan 2018 (36)) were represented, yet

the majority of influential works emphasized methodological

development, algorithmic benchmarking, or standardization

(Tables 9, 10). Taken together, these bibliometric signals converge

on the conclusion that robust clinical validation and implementation

studies constitute only a small minority within the field.

Bibliographic coupling (Supplementary Figure 7; Table 11)

further validates research convergence into distinct domains: AI-

driven clinical imaging applications (Choy et al., 2018 (37); Bera

et al., 2019) (23), multi-omics integration platforms (Xia et al.,

2009’s MetaboAnalyst) (38), and emerging multimodal fusion

techniques (Liu et al., 2017’s Raman spectroscopy approach) (39).

Temporal trends emerge through citation burst analysis

(Figure 11). Early bursts (pre-2018) feature radiomics methods

(Gillies et al., 2016) (34)and PI-RADS standardization (Weinreb

et al., 2016) (29), while later surges prioritize clinical-AI

integration: Sung et al. (2021)’s (27) epidemiology burst
TABLE 6 Top 10 most cited-authors in ML-PCa research, including
citation count and centrality.

Author Citations Centrality

Breiman Leo 373 0.09

Siegel Rebecca L. 327 0.01

Wang Yuxing 252 0.02

Zhang Yucheng 250 0.00

Wang Jing 239 0.00

Sung Hyuna 224 0.00

Liu Yuanbin 215 0.00

Pedregosa Fabian 205 0.00

Litjens Geert 202 0.13

Epstein Jonathan I. 197 0.03
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(intensity 17.36, 2022–2024) and Kasivisvanathan et al. (2018)’s

validation of MRI-targeted biopsies (36). The 2018–2020 inflection

saw deep learning methodologies (LeCun et al., 2015; XGBoost) (40)

gain prominence, accelerating the shift toward clinically

deployable tools.
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Discussion

The evolution of ML-PCa research represents a transformative

convergence of computational innovation and precision oncology.

These findings directly align with our study’s stated goals of not
FIGURE 8

Keyword-based bibliometric analysis of ML-PCa research. (A) Co-occurrence network of author-assigned keywords: each node represents a
keyword, node size reflects occurrence frequency, edges indicate co-occurrence relationships, and color intensity denotes citation centrality.
(B) Keyword clustering map: Keywords are grouped into distinct thematic clusters based on co-occurrence, visualized with color-coded clusters.
Node size represents frequency, and colors indicate cluster membership.
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only mapping technological evolution but also critically examining

the extent to which these advances have translated into clinical

application. From its nascent interdisciplinary origins, the field has

rapidly matured into a dynamic knowledge ecosystem characterized

by accelerated global engagement, structural diversification across

methodological and clinical domains, and reconfigured geopolitical

knowledge hierarchies. This growth trajectory underscores

profound synergies between algorithmic advancements and

biomedical discovery, yet persistent translational gaps in clinical

validation, interdisciplinary harmonization, and equitable

implementation highlight critical challenges.
Publication trajectory and intellectual
emergence

The exponential growth in ML-PCa publications post-2015

signals a critical shift from theoretical exploration to clinical
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integration. This inflection aligns with pivotal advancements: deep

learning maturation (CNN architectures enabling automated image

analysis), data infrastructure proliferation (public repositories like

PROSTATEx, TCIA), and cross-disciplinary consortia bridging

computational and clinical domains (41, 42). The 82% output

concentration in 2021–2024, coupled with 57,771 cumulative

citations, underscores ML-PCa’s rapid maturation into a core

oncology subfield. Yet, the recent citation dip (2023–2024) may

reflect preliminary saturation in algorithm-focused studies, urging a

pivot toward clinical validation and implementation research.
Geopolitical dynamics and collaborative
networks

China’s volumetric dominance (24.66%) highlights state-led

investment in AI/healthcare priorities, though its lower MCP ratio

(13.56%) suggests regional collaboration preferences. Conversely, the

US’s centrality—despite smaller output (18.69%)—exemplifies global

scientific integration (MCP ratio: 20.93%), reinforcing its role in

knowledge diffusion. Germany’s outlier MCP ratio (39.29%) reflects

strategic multilateralism within EU frameworks (Horizon Europe).

The bipolar US-China collaboration hub (62 joint publications),

alongside India’s autonomous citation cluster, reveals a stratified

network topology. Risks include knowledge siloing (Western-centric

clinical standards vs. Eastern imaging focus) and resource

asymmetry, necessitating policies incentivizing Global South

inclusion and data-sharing equity.
Institutional output and impact
asymmetries

Though Chinese institutions dominate publication volume (e.g.,

Chinese Academy of Sciences: 42 papers), Western counterparts

lead influence (University of Toronto CPP: 70.54 vs. 38.31). This

quantity-impact divergence stems from differential specialization:

North American/European institutions focus on high-impact AI

methodology and digital pathology (University of Pennsylvania’s

radiomics innovations), while Chinese clusters prioritize imaging

diagnostics. Western centrality in networks (UBC: 0.06 centrality)

accelerates clinical translation, yet China’s emerging citation cores

signify rising methodological credibility. Future gains necessitate

bidirectional collaboration: integrating Chinese computational

efficiency with Western clinical-validation pipelines.
Journal integration and cross-domain
synthesis

ML-PCa research exhibits robust interdisciplinary diffusion

across three dominant pathways. Engineering-driven innovations

(IEEE Access, Sensors) catalyze clinical adoption in oncology

journals (Cancers, Frontiers in Oncology), while Medical Physics

(CPP=27.79) bridges methodological and clinical domains with
TABLE 7 Top 25 keywords in ML-PCa research.

Keywords Occurrences Centrality

Machine Learning 2388 0.01

Prostate-Cancer 1726 0.02

Prediction 368 0.01

Diagnosis 363 0.03

Classification 278 0.01

Identification 117 0.00

Cancer 106 0.01

Expression 95 0.03

Risk 92 0.04

System 88 0.06

Model 86 0.02

Biopsy 76 0.06

Validation 73 0.07

Men 69 0.02

Features 67 0.05

MRI 61 0.03

Radical Prostatectomy 61 0.04

Images 59 0

Segmentation 59 0.01

Algorithm 57 0.04

Selection 56 0.01

Breast-Cancer 54 0.02

Feature-Selection 54 0.03

Survival 54 0.08

Carcinoma 43 0.01
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superior per-article influence. Temporal keyword evolution

confirms deepening integration: post-2020 prioritization of

“transformer models” and “radiogenomics” reflects the field’s shift

from siloed applications toward biologically contextualized AI

systems. Despite this convergence, fragmentation persists between

computational and clinical clusters. Standardized reporting

frameworks (MI-CLAIM) are urgently needed to streamline

translation, particularly as Scientific Reports and IEEE Access

emerge as critical venues for methodological prototyping

preceding clinical validation.
Author productivity and methodological
evolution

Madabhushi Anant’s leadership (H-index: 16, CPP:77.63)

epitomizes the blend of computational expertise and clinical

partnerships driving high-impact innovation. Author clusters

reveal globalized specialization: North American/European teams

pioneer deep learning integration, while regional hubs (e.g., Italy’s

Comelli cluster) refine clinical applications. Co-citation patterns

affirm dual foundations: Breiman’s ML theory (centrality: 0.09) and

Siegel’s epidemiological frameworks. Temporal keyword shifts—
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from SVM/feature engineering (pre-2015) to deep learning (2015–

2020) and multimodal AI (post-2020)—highlight accelerating

biological complexity. Future success hinges on nurturing

“bilingual” researchers fluent in both biomedicine and

algorithmic design.
Thematic trajectories and translational
bottlenecks

The evolution from technical exploration to clinical

implementation defines ML-PCa’s maturation. Early emphases on

“support vector machines” and “feature extraction” (pre-2015)

transitioned toward integrative paradigms (“deep learning,”

“multiparametric MRI”) during 2015–2020, culminating in today’s

focus on multimodal frameworks (“attention mechanisms,”

“radiogenomics”). Burst detection corroborates this trajectory:

algorithm-centric bursts (2005–2018) gave way to clinical

implementation keywords (“radiotherapy dosage,” burst intensity

5.72, 2020–2024). However, network centrality metrics expose

critical translational gaps. High-connectivity terms like “validation”

(centrality=0.06), “survival,” and “biopsy” remain underdeveloped

compared to methodological terms, indicating insufficient linkage
frontiersin.o
FIGURE 9

Top 25 keywords with the strongest citation bursts (2005–2024): red bars mark the active burst period for each keyword, and numbers indicate
burst strength and timing.
rg

https://doi.org/10.3389/fonc.2025.1675459
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Gu et al. 10.3389/fonc.2025.1675459
between AI performance metrics and clinical endpoints. Similar

concerns have been noted in other bibliometric studies of AI in

oncology, where methodological innovation often outpaces clinical

integration (23, 43). For example, Elmarakeby et al. (12) highlighted

that biologically informed neural networks demonstrated strong

discovery potential, yet lacked systematic validation in prospective

cohorts. This pattern mirrors our bibliometric evidence of an

implementation gap. This imbalance—coupled with geographical

bias in training data (78% Western cohorts)—hampers real-world

deployment despite technical sophistication.

Our results are consistent with other domain-level bibliometric

analyses, which have similarly observed rapid output growth coupled

with translational inertia. For instance, recent mapping of AI in

radiology underscored that fewer than 15% of studies incorporated

prospective validation or multicenter trials, despite exponential

publication growth (37, 44). By situating ML-PCa within this

broader landscape, our analysis reinforces that bibliometric

expansion alone is not a surrogate for clinical readiness.
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Knowledge foundations and future
imperatives

Five interconnected thematic clusters underpin ML-PCa’s

intellectual architecture. Algorithmic foundations (Scikit-learn,

XGBoost) directly enable clinical-imaging standards (PI-RADS,

PROMIS trials), while radiomics frameworks (Gillies et al.) and

multi-omics integration tools (GSEA, Limma) support biologically

anchored discovery. This convergence enables emerging

translational pathways where methodologies evolve into clinical

tools (Bera et al.’s digital pathology frameworks). Citation bursts

confirm accelerating clinical emphasis: Sung et al.’s epidemiology

(burst intensity 17.36, 2022–2024) and Kasivisvanathan’s biopsy

trials dominate post-2020 citations. Yet significant voids persist in

the knowledge base—fewer than 3% of highly cited works address

ethical governance, health economics, or regulatory science.

Our bibliometric analysis is consistent with broader evidence

syntheses: while publication volume and methodological innovation
FIGURE 10

Reference-based bibliometric analysis in ML-PCa research. (A) Local co-citation network based on included literature: Constructed using
VOSviewer, where each node represents a document, node size indicates the number of local citations, edges denote co-citation relationships
between documents, and colors correspond to different thematic clusters. (B) Citation network analysis of external references cited by ML-PCa
publications. Each node corresponds to a referenced article, with size proportional to the number of times it was cited. Nodes are color-coded by
citation centrality. (C) Co-citation network of references. Nodes represent frequently co-cited references within ML-PCa literature. Clusters denote
groups of papers that are often cited together, revealing major research themes and intellectual structure.
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are expanding, high-quality clinical validation remains the exception

rather than the rule. For instance, a systematic review of 41 ML RCTs

found only a handful conducted with full adherence to CONSORT-AI

(18); among 81 non-randomized deep learning imaging studies

comparing AI with clinicians, only 9 were prospective and just six

tested in clinical settings (45, 46); and in primary-care predictive
Frontiers in Oncology 16
algorithms, only 28% of FDA- or CE-marked tools satisfied even half

of the Dutch AIPA guideline’s evidence criteria (47).

These external findings align closely with our internal

bibliometric signals: validation appeared in just ~2.8% of articles

(Table 7), trial-related terms were absent from high-frequency

keywords, and clinical trial reports were under-represented in the
TABLE 9 Top 10 cited references in the field of ML-PCa.

Authors Year Journal Title Citations

Sung H et al.
(27)

2021
CA: A Cancer Journal
for Clinicians

Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for
36 Cancers in 185 Countries

115

Turkbey et al.
(28)

2019 European Urology
Prostate Imaging Reporting and Data System Version 2.1: 2019 Update of Prostate Imaging
Reporting and Data System Version 2

79

Mottet et al. 2020 European Urology
EAU-EANM-ESTRO-ESUR-SIOG Guidelines on Prostate Cancer-2020 Update. Part 1:
Screening, Diagnosis, and Local Treatment with Curative Intent

56

Ström et al. (31) 2020 The Lancet Oncology
Artificial intelligence for diagnosis and grading of prostate cancer in biopsies: a population-
based, diagnostic study

55

Bulten et al. (35) 2020 The Lancet Oncology
Automated deep-learning system for Gleason grading of prostate cancer using biopsies: a
diagnostic study

54

Ahmed et al.
(30)

2017 The Lancet
Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a
paired validating confirmatory study

48

Weinreb et al.
(29)

2016 European Urology PI-RADS Prostate Imaging – Reporting and Data System: 2015, Version 2 45

Krizhevsky et al. 2017
Communications of the
ACM

ImageNet classification with deep convolutional neural networks 41

Campanella
et al.

2019 Nature Medicine
Clinical-grade computational pathology using weakly supervised deep learning on whole slide
images

40

Kasivisvanathan
et.al (36).

2018
The New England
Journal of Medicine

MRI-Targeted or Standard Biopsy for Prostate-Cancer Diagnosis 40
f

TABLE 8 Top 10 local-cited documents in the field of ML-PCa.

Authors Year Journal Title Citations

Bera et al. (23) 2019
Nature Reviews Clinical
Oncology

Artificial Intelligence in Digital Pathology - New Tools for Diagnosis and Precision Oncology 880

Choy et al. (37) 2018 Radiology Current Applications and Future Impact of Machine Learning in Radiology 532

Van der Laak
et al. (44)

2021 Nature Medicine Deep Learning in Histopathology: The Path to the Clinic 498

Litjens et al.
(24)

2014
IEEE Transactions on
Medical Imaging

Computer-Aided Detection of Prostate Cancer in MRI 362

Yang et al. 2010 Current Bioinformatics A Review of Ensemble Methods in Bioinformatics 359

Goldenberg
et al. (43)

2019 Nature Reviews Urology A New Era: Artificial Intelligence and Machine Learning in Prostate Cancer 308

Fehr et al. (25) 2015 PNAS
Automatic Classification of Prostate Cancer Gleason Scores from Multiparametric Magnetic
Resonance Images

303

Lalonde et al.
(26)

2014 Lancet Oncology
Tumour Genomic and Microenvironmental Heterogeneity for Integrated Prediction of 5-Year
Biochemical Recurrence of Prostate Cancer

279

Acs et al. 2020
Journal of Internal
Medicine

Artificial Intelligence as the Next Step Towards Precision Pathology 248

Elmarakeby
et al. (12)

2021 Nature Biologically Informed Deep Neural Network for Prostate Cancer Discovery 225
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most-cited clusters (Tables 9, 10). Together, these patterns

underscore a structural imbalance—abundant retrospective

algorithmic benchmarks but scarce prospective, validated, and

implemented studies.

Looking forward, closing this gap will require: (1) multi-

institutional validation studies using standardized imaging

biomarkers (48); (2) Federated Learning solutions for data-scarce

populations (49, 50); and (3) SNOMED-CT integration to bridge

EHR siloes (51). Without these, ML-PCa risks becoming a
Frontiers in Oncology 17
methodological echo chamber rather than a transformative

clinical discipline.
Research hotspots

Multimodal MRI deep learning diagnosis
Research in PCa diagnostics increasingly leverages

multiparametric MRI (mpMRI)-based machine learning to
TABLE 10 Top 10 co-cited references in the field of ML-PCa.

Authors Year Journal Title
Co-
citations

Pedregosa F
et al. (32)

2011 Journal of Machine Learning Research Scikit−learn: Machine Learning in Python 126

Breiman L
et al.

2001 Machine Learning Random Forests 121

Sung H et al.
(27)

2021 CA: A Cancer Journal for Clinicians
Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality
Worldwide for 36 Cancers in 185 Countries

116

Weinreb JC
et al. (29)

2016 European Urology PI−RADS Prostate Imaging – Reporting and Data System: 2015, Version 2.1 83

Gillies RJ
et al. (34)

2016 Radiology Radiomics: Images Are More than Pictures, They Are Data 81

Turkbey B
et al. (28)

2019 European Urology Prostate Imaging Reporting and Data System Version 2.1: 2019 Update 79

Ahmed HU
et al. (30)

2017 The Lancet
Diagnostic Accuracy of Multi−parametric MRI and TRUS Biopsy in Prostate
Cancer (PROMIS)

78

Chen TQ
et al. (33)

2016
KDD ‘16: ACM SIGKDD International
Conference Proceedings

XGBoost: A Scalable Tree Boosting System 75

Cortes C et al. 1995 Machine Learning Support−Vector Networks 75

Lambin P
et al.

2012 European Journal of Cancer
Radiomics: extracting more information from medical images using advanced
feature analysis

59
fr
TABLE 11 Top 10 bibliographic coupling references.

Authors Year Journal Title Citations

Xia et al. (38) 2009 Nucleic Acids Research MetaboAnalyst: A Web Server for Metabolomic Data Analysis and Interpretation 1692

Marmion et al. 2009 Diversity and Distributions Evaluation of Consensus Methods in Predictive Species Distribution Modelling 1095

Bera et al. (23) 2019 Nature Reviews Clinical Oncology
Artificial Intelligence in Digital Pathology – New Tools for Diagnosis and
Precision Oncology

880

Saul et al. 2004
Journal of Machine Learning
Research

Think Globally, Fit Locally: Unsupervised Learning of Low Dimensional
Manifolds

721

Choy et al. (37) 2018 Radiology Current Applications and Future Impact of Machine Learning in Radiology 532

Anowar et al. 2021 Computer Science Review Conceptual and Empirical Comparison of Dimensionality Reduction Algorithms 500

Van der Laak et al.
(44)

2021 Nature Medicine Deep Learning in Histopathology: The Path to the Clinic 498

Liu et al. (39) 2017 Analyst
Deep Convolutional Neural Networks for Raman Spectrum Recognition: A
Unified Solution

367

Litjens et al. (24) 2014
IEEE Transactions on Medical
Imaging

Computer-Aided Detection of Prostate Cancer in MRI 362

Yang et al. 2010 Current Bioinformatics A Review of Ensemble Methods in Bioinformatics 359
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improve detection, grading, and characterization (52). Deep

learning models now integrate T2-weighted, diffusion-weighted

imaging (DWI), and dynamic contrast-enhanced (DCE)

sequences to enhance identification of clinically significant

prostate cancer (csPCa) (53). For instance, the Deep Radiomics

model, trained on 615 patients from four cohorts (PROSTATEx,

Prostate158, PCaMAP, NTNU/St. Olavs Hospital), achieved a

patient-level AUROC of 0.91 in independent testing,

demonstrating robustness comparable to PI-RADS assessment

(AUROC: 0.94) without significant difference (54). Similarly, an

MRI-TRUS fusion 3D-UNet model tested on 3,110 patients showed

superior sensitivity (80% vs. 73%) and lesion Dice coefficient (42%

vs. 30%) over MRI-alone approaches, alongside higher specificity

(88% vs. 78%) in 110 controls (55). These approaches provide more

accurate clinical decision support than PI-RADS v2.0 alone.
CNN imaging feature engineering
CNNs excel in automatically learning discriminative features

from prostate images, outperforming traditional handcrafted

feature methods. Recent innovations include lightweight 3D-CNN

variants (XmasNet, ResNet-based blocks) with transfer learning,

enabling rapid convergence on small datasets; XmasNet achieved an

AUC of 0.84 using 199 training and 200 test cases from

PROSTATEx (56). Automated segmentation via nnU-Net
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followed by voxel-wise radiomics feature extraction and XGBoost

classification balances interpretability and efficacy (54). Further

enhancements integrate channel and spatial attention

mechanisms to weight multiscale features, improving tumor

boundary delineation and heterogeneity detection while

increasing sensitivity by >5% (57).

Large-scale public datasets and shared platforms
Multicenter public datasets address single-institution

limitations and establish validation benchmarks. The SPIE-

AAPM-NCI Prostate MR Classification Challenge (PROSTATEx)

provided 330 training and 208 testing lesions with standardized

mpMRI quality control, while its successor PROSTATEx-2 focused

on Gleason grade prediction (42, 58). The TCIA Prostate-MRI-US-

Biopsy dataset (1,151 patients) has been extensively validated in >17

core publications Natarajan et al. Combined analysis of six

independent microarray datasets identified high-confidence

biomarker gene sets, significantly improving cross-cohort

generalization and enabling multi-omics integration (42, 59).

Challenge-driven interdisciplinary collaboration
Public competitions foster synergy among clinical, physics, and

computational experts to accelerate translation. Initiatives like the

SPIE-AAPM-NCI PROSTATEx Challenge (launched 2016)
FIGURE 11

Top 25 references with the strongest citation bursts from 2005 to 2024. Red bars denote the active burst period for each reference, and the burst
strength quantifies the sudden increase in citations over time, highlighting pivotal or trending literature in the field.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1675459
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Gu et al. 10.3389/fonc.2025.1675459
catalyzed algorithm innovation with real-time validation at SPIE

conferences SPIE (58, 60). The MVP-CHAMPION project

integrates clinical, genomic, and imaging data within the Million

Veteran Program, enabling closed-loop refinement of ML-PCa

models for clinical deployment. Open-science platforms (e.g.,

Grand-Challenge.org) share preprocessing scripts, model code,

and visualization tools, establishing transparent, reproducible

community standards (61, 62).
Overcoming the translational gap: future
opportunities

ML holds transformative potential across prostate cancer

research. In diagnostics, integrating multi-omics data (genomic,

proteomic, metabolic) with high-resolution imaging enables

identification of novel biomarker combinations, significantly

enhancing early detection sensitivity and specificity (63).

Therapeutically, ML facilitates personalized treatment by

predicting optimal drug combinations/sequences based on patient

genetics, tumor microenvironment, and treatment history—

improving efficacy while reducing adverse effects (64). It further

refines radiotherapy planning through precision dose delivery

tailored to tumor morphology, maximizing therapeutic impact

while sparing healthy tissue (15). Future advances center on

enhanced data processing and modeling: Automated AI-driven

data annotation (deep learning for pathology images) will

streamline workflows (65), ensemble and transfer learning will

boost model robustness and accelerate task-specific adaptation

(66), and the development of explicable models remains critical

for clinical trust and adoption (67).
Strengths and limitations of the study

This study offers a comprehensive analysis of the rapidly

growing field of ML in PCa, identifying key trends, influential

authors, journals, and research hotspots. By utilizing multiple

bibliometric tools, this study provides a multidimensional view of

the field. However, the study’s reliance on bibliometric data

introduces certain limitations, particularly in evaluating research

quality beyond citation metrics. Furthermore, language bias and

self-citation may introduce potential sources of errors in the data.

Finally, while bibliometrics provide valuable insights into

publication trends, they do not offer a nuanced understanding of

the methodologies and clinical applicability of this study.
Conclusion

This study reveals explosive growth in ML-PCa research,

dominated by contributions from China and the United States.
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Key advances center on multimodal imaging integration, deep

learning-driven tumor classification, and large-scale dataset

utilization, offering transformative potential for early diagnosis

and personalized therapy. However, critical barriers persist,

particularly the limited proportion of studies progressing to

clinical validation and real-world testing. This echoes prior

systematic reviews of AI in cancer care that found less than one-

third of published models underwent external or prospective

validation (31, 35). Thus, despite methodological sophistication,

clinical adoption remains the exception rather than the rule.

Encouragingly, recent international initiatives such as the PI-CAI

challenge and consortium have begun to directly address these

barriers by fostering cross-population validation, methodological

standardization, and benchmarking, with several prostate AI spin-

offs already benefiting from this framework. Future progress hinges

on establishing international consortia for validation studies,

developing explainable AI systems, and creating open-access data

repositories to accelerate clinical translation and optimize global

prostate cancer management.
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