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Introduction: Machine learning (ML) has shown significant potential in improving
prostate cancer (PCa) diagnosis, prognosis, and treatment planning. Despite
rapid advancements, a comprehensive quantitative synthesis of global research
trends and the knowledge structure of ML applications in PCa remains lacking.
This study aimed to systematically map the evolution, research hotspots, and
collaborative landscape of ML-PCa research.

Methods: A systematic bibliometric review was performed on English-language
articles and reviews published between January 2005 and December 2024.
Publications were retrieved from the Web of Science (WOS) and Scopus
databases. Analytical tools including CiteSpace, VOSviewer, and the R-
bibliometrix package were employed to assess publication growth trends,
country and institutional contributions, collaboration networks, author
productivity, journal outlets, and keyword co-occurrence patterns.

Results: A total of 2,632 publications were identified. Annual output increased
from fewer than 20 papers during 2005-2014 to 661 in 2024, with 82% of all
studies published since 2021. Emerging frontiers included deep learning,
radiomics, and multimodal data fusion. China (649 publications) and the United
States (492 publications) led in research volume, while Germany demonstrated
the highest proportion of multinational collaboration (39.29%). Leading
institutions by output were the Chinese Academy of Sciences, the University of
British Columbia, and Shanghai Jiao Tong University. In terms of citation impact,
the University of Toronto, Case Western Reserve University, and the University of
Pennsylvania ranked highest. The journals Cancers, Frontiers in Oncology, and
Scientific Reports published the most ML-PCa studies, highlighting the cross-
disciplinary nature of the field. Madabhushi Anant emerged as the most central
author hub in global collaboration networks.
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Discussion: ML applications in PCa research have experienced exponential
growth, with methodological innovations driving interest in deep learning and
radiomics. However, a persistent translational gap exists between algorithmic
development and clinical implementation. Future directions should focus on
fostering interdisciplinary collaboration, conducting prospective multicenter
validation studies, and aligning with regulatory standards to accelerate the
integration of ML models into clinical PCa workflows.

prostate cancer, machine learning, bibliometric analysis, deep learning, radiomics,

translational research

Introduction

In recent years, prostate cancer (PCa) has emerged as a leading
public-health challenge for men (1), with new cases accounting for
approximately 14.1% of all male cancers and PCa-specific deaths
comprising about 7% of global cancer mortality (2). Although the
widespread adoption of prostate-specific antigen (PSA) screening
since the 1990s and advances in surgical and radiotherapeutic
techniques have improved early detection and treatment (3, 4),
existing biomarkers still suffer from limited specificity, contributing
to overdiagnosis rates as high as 30%-40% (5, 6). Moreover, high-
risk subtypes such as castration-resistant PCa continue to bear poor
prognoses, with five-year survival rates below 30% (7), underscoring
the urgent need to transcend traditional diagnostic and
therapeutic paradigms.

Machine learning (ML), as a transformative technological force,
has demonstrated substantial promise across multiple facets of PCa
management (8). In imaging diagnostics, MRI-based radiomics
models and deep-learning algorithms have facilitated automated
Gleason grading and early tumor detection, markedly enhancing
diagnostic accuracy (9-11). In genomics, multimodal ML
approaches can mine complex gene-expression profiles and
exosomal signatures to uncover novel biomarkers (12, 13). At the
therapeutic level, deep neural networks have been employed to
predict patient outcomes under varying treatment regimens,
guiding personalized medication strategies and radiotherapy
planning (14, 15).

Despite these advances, concerns persist regarding
reproducibility, external validation, and the clinical utility of ML
applications. Multiple systematic reviews have highlighted a pattern
of methodological innovation outpacing clinical readiness. For
example, among Al systems benchmarked against clinicians (11,
16, 17), only a minority were prospectively tested or deployed in
real-world settings, and adherence to reporting guidelines such as
CONSORT-AI remains inconsistent (18). This imbalance
underscores the need for bibliometric evaluations to characterize
the trajectory of research outputs, identify key domains of progress,
and expose areas where translational gaps remain.
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Against this backdrop, the present study conducts a systematic
review and bibliometric analysis of ML-PCa literature published
between 2005 and 2024 in the Web of Science (WOS) and Scopus
databases. Utilizing CiteSpace, VOSviewer, and the R-bibliometrix
package, we analyze publication trends, authorship and institutional
networks, journal and reference co-citations, and the evolution of
thematic keywords, providing a structured overview of this
rapidly evolving field. In addition to these descriptive analyses, we
further examine proportional signals related to clinical
validation and translation. Specifically, within our corpus (2005-
2024; n=2,632), the explicit use of the keyword “validation”
accounted for only ~2.8% (73/2,632), and terms directly reflecting
prospective evaluation, randomization, or real-world implementation
were absent among the most frequent author keywords. By
combining quantitative bibliometric mapping with critical appraisal
of clinical integration, we aim to pinpoint both the technological and
implementation gaps that must be bridged for ML to fulfil its promise
in PCa care.

Methods
Data collection and preprocessing

On July 5, 2025, a systematic literature search was conducted
across two widely recognized databases: the WOS Core Collection
and Scopus. The search strategy for WOS was defined by the query:
TS=(“machine learn*”) AND (“prostate cancer” OR “prostate
carcinoma” OR “prostatic neoplasm” OR “prostate
adenocarcinoma” OR “castration-resistant prostate cancer” OR
“metastatic prostate cancer” OR “PCa”), while the search for
Scopus used the query: TITLE-ABS-KEY (“machine learn*” AND
(“prostate cancer” OR “PCa” OR “prostate carcinoma” OR
“prostatic neoplasm” OR “prostate adenocarcinoma” OR
“castration-resistant PCa” OR “metastatic PCa”)). Both searches
were limited to publications from January 1, 2005, to December 31,
2024, and restricted to articles and reviews published in English. For
the Scopus database, additional filtering was applied to include only
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Flowchart of this study.

articles from the following subject categories: “Medicine,”
“Biochemistry, Genetics and Molecular Biology,” “Computer
Science,” “Health Professions,” “Immunology and Microbiology,”
“Pharmacology, Toxicology and Pharmaceutics,” “Neuroscience,”
“Nursing,” and “Psychology.” Following the retrieval, the
documents from both databases were merged using Python
(version 3.9.14), ensuring consistent terms across the two
datasets. Duplicate entries were removed, and records with
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FIGURE 1

incomplete or missing information were excluded (Figure 1). The
remaining documents were then retained for further analysis.

Bibliometric toolchain configuration

The analysis leveraged a tripartite toolchain to ensure
methodological rigor and multidimensional insights. First,
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FIGURE 2

Annual trends in publications and citations related to ML-PCa research from 2005 to 2024.

CiteSpace 6.4.R1 (19, 20) was deployed to detect citation bursts and
temporal trends. It was configured with 1-year time slices (2005-
2024), a g-index term selection criterion (k=25), and Pathfinder
network pruning (y=0.7) to optimize cluster resolution.
Concurrently, VOSviewer 1.6.20 (21) was used to generate co-
authorship and keyword co-occurrence networks. For mapping
countries and institutions, a minimum threshold of five
documents per node was applied, with full counting and
association strength normalization to minimize bias toward high-
frequency terms. For statistical validation and thematic evolution
tracking, bibliometrix (version 4.1.0) (22) in R (version 4.3.1) was
used to perform Latent Dirichlet Allocation topic modeling—
initiating 10 topics through Gibbs sampling over 2,000 iterations.
Exponential smoothing (0=0.8) was applied to model
productivity trends.

TABLE 1 Top 10 most productive countries in ML-PCa research and
their pattern of international collaboration patterns.

Country Articles Articles % SCP MCP MCP %
CHINA 649 2466 561 88 13.56
USA 492 18.69 389 103 2093
INDIA 162 6.16 144 18 1111
UNITED 109 4.14 74 35 32.11
KINGDOM

CANADA 108 4.10 76 32 29.63
ITALY 106 4.03 77 29 27.36
GERMANY 84 3.19 51 33 39.29
KOREA 72 274 53 19 2639
AUSTRALIA 63 2.39 43 20 31.75
IRAN 50 1.90 38 12 24.00
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Results

Publication trends and document
characteristics

Between 2005 and 2024, a comprehensive analysis identified
2,632 publications in the field of ML-PCa (Figure 2). Initial progress
was measured, with annual publications consistently below 20
throughout 2005-2014. Accelerated growth commenced in 2015,
driving a sustained increase in output that exceeded 100 articles by
2018 and reached 206 in 2020. The period 2021-2024 witnessed
exponential expansion, with annual publications peaking at 472
(2022), 559 (2023), and 661 (2024). Collectively, this trajectory
generated an average annual growth rate of 25.4% over the two-
decade period, with 82% of cumulative publications (2,173/2,632)
concentrated in the final four years (2021-2024). Cumulative
citations reached 57,771, attesting to the field’s scholarly
significance. Parallel citation trends show moderate fluctuations
(400-800 citations annually) during 2005-2013, interrupted by a
transient 2009 spike (3,478 citations) attributable to highly
influential works. From 2014 onward, citations grew robustly,
surpassing 4,000 in 2018 and surging to 6,809 in 2019. The 2020-
2022 period sustained exceptional impact (7,000-8,000 citations
annually), peaking at 7,989 in 2022. Although 2023-2024 saw a
moderate decline to ~3,700 annual citations, persistently elevated
levels confirm ML-PCa’s enduring academic relevance.

Country contributions
Globally, researchers from 92 countries/regions have
contributed to ML-PCa research. China emerged as the dominant

contributor with 649 publications (24.66% of total output), followed
by the United States (492 publications, 18.69%) and India (162
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FIGURE 3

Country contributions and collaboration network in ML-PCa research. (A) Annual publication trends of the most productive countries from 2005 to
2024. (B) Global collaboration map illustrating international cooperation between countries or regions based on co-authorship. (C) Chord diagram
of country-level collaborations, where the ribbon width represents the collaboration intensity between countries. (D) Country citation clustering
network, where node size reflects the number of citations received by each country and node color indicates different citation clusters.

TABLE 2 Top 10 bilateral collaborations in ML-PCa research.

From To Frequency

USA CHINA 62
USA CANADA 36
USA UNITED KINGDOM 34
USA GERMANY 26
ITALY UNITED KINGDOM 20
USA ITALY 19
UNITED KINGDOM GERMANY 18
USA FRANCE 18
USA KOREA 16
CHINA CANADA 15

Frontiers in Oncology

publications, 6.16%) (Table 1). Network analysis positioned the
United States and China as central hubs (Figure 3A), with the
United Kingdom, Canada, and India forming key peripheral
connections. Annual growth patterns indicate accelerated global
output after 2018, with China and the United States establishing
overwhelming dominance by 2024 (Figure 3B).

Analysis of international collaboration revealed significant
strategic differences: While China maintained a relatively low
multinational collaboration proportion (MCP ratio=13.56%), the
United States exhibited higher collaborative engagement (MCP
ratio=20.93%). Germany demonstrated the most extensive
international integration among top contributors (MCP
ratio=39.29%) (Table 1).

Bilateral analysis identified the United States-China partnership
(62 joint publications) as the strongest collaborative dyad, followed
by United States-Canada (36) and United States-United Kingdom
(34) (Figure 3C, Table 2). Citation-based clustering confirmed the
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Yearly Article Output by Institution
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FIGURE 4

Institutional contributions to ML-PCa research. (A) Annual publication statistics of the top contributing institutions from 2005 to 2024. (B) Institutional
collaboration network in ML-PCa research. Each node represents a research institution, with node size proportional to the number of publications. Colors
denote distinct clusters of collaborating institutions, and connecting lines represent co-authorship links. (C) Cluster map of keyword co-occurrence for
institutions. Each colored cluster corresponds to a major thematic area, with node size reflecting keyword frequency and link strength indicating
co-occurrence. (D) Institutional citation clustering network. Nodes represent institutions, sized by total citation counts, and colored by citation clusters;
link thickness reflects citation relationships.

dual centrality of the United States and China, while revealing |nstitution features

distinct regional clusters: Italy, Germany, and the United Kingdom

formed European-oriented groupings, whereas India anchored a Global institutional engagement in ML-PCa research spans
separate citation community (Figure 3D). 3,638 unique organizations. Annual publication trends

TABLE 3 Top 10 most productive institutions in ML-PCa research, including citation count, average citations per article, and centrality.

Institution Documents Citations Average citations Centrality

Chinese Academy of Sciences 42 1609 38.31 0.04
University of British Columbia 32 1330 41.56 0.06
Shanghai Jiao Tong University 25 357 14.28 0.03
University of Pennsylvania 24 1436 59.83 0.05
University of Toronto 24 1693 70.54 0.03
Zhejiang University 23 451 19.61 0.01
Case Western Reserve University 21 1467 69.86 0.03
Stanford University 21 668 31.81 0.03
University of California, Los Angeles ”n 533 25.38 0.00
(UCLA)

Harvard Medical School 20 1145 57.25 0.02
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TABLE 4 Top 10 most productive journals in ML-PCa research, including citation metrics and 2024 impact factors.

Journal Documents Citations Average citations Impact factor (2024) H_index

Cancers 82 1127 15.67 44 17
Frontiers in Oncology 70 946 13.37 33 18
Scientific Reports 52 1111 21.37 3.9 17
Diagnostics 39 690 18.42 33 16
IEEE Access 33 557 17.22 3.6 13
Sensors 33 597 18.53 3.5 12
Applied Sciences-Basel 30 245 8.17 2.5 9
Plos One 29 769 26.52 2,6 13
Medical Physics 27 719 27.79 32 13
Frontiers in Genetics 22 273 14.58 2.8 8

demonstrate markedly accelerated output after 2015, with
particularly steep growth emerging post-2020 (Figure 4A).
Leading institutions by publication volume include the Chinese
Academy of Sciences (42 publications), University of British
Columbia (32 publications), and Shanghai Jiao Tong University
(25 publications). Disparities emerge when assessing scholarly
impact: while the Chinese Academy of Sciences leads in volume,
its average citation rate (CPP=38.31) trails behind several Western
counterparts. The University of Toronto achieves the highest CPP
(70.54), followed closely by Case Western Reserve University
(69.86) and University of Pennsylvania (59.83), signaling
exceptionally influential research from these institutions (Table 3).

The institutional collaboration network reveals distinct
structural patterns (Figure 4B). Western institutions, particularly
University of British Columbia (highest centrality=0.06), Stanford
University, and University of Pennsylvania, function as primary
global connectors with extensive international linkages. Major
Chinese institutions including the Chinese Academy of Sciences
and Shanghai Jiao Tong University participate actively in global
networks while exhibiting stronger regional cohesion. Research
specialization clusters show clear geographic alignment
(Figure 4C): North American and European institutions
demonstrate concentrated expertise in digital pathology and
artificial intelligence applications, whereas Chinese counterparts
show heightened focus on cell-free DNA analysis and medical
imaging diagnostics.

Citation network analysis confirms a multipolar global impact
landscape (Figure 4D). Both the Chinese Academy of Sciences and
University of British Columbia anchor densely connected citation
cores, with additional regional clusters emerging: Chinese institutions
including Huazhong University of Science and Technology form a
distinctive citation collective, while institutions from the United
States and United Kingdom establish self-contained high-impact
modules. This structural configuration reflects China’s transition
from peripheral contributor to central knowledge producer, while
Western institutions maintain leadership in specialized
methodologies and collaborative infrastructure.

Frontiers in Oncology

Journal distribution and citation impact

Globally, ML-PCa research has been disseminated across 10,437
unique journals, with Cancers (82 publications), Frontiers in
Oncology (70 publications), and Scientific Reports (52
publications) constituting the dominant outlets (Table 4).
Analysis of scholarly impact reveals Cancers as the most cited
journal (1,127 total citations), though Medical Physics
demonstrates superior per-article influence (CPP=27.79) despite
moderate output volume. Notably, Cancers, Scientific Reports, and
IEEE Access share equivalent long-term impact metrics (H-
index=17), indicating comparable dominance within the
domain (Table 4).

Annual publication trends exhibit exponential growth after
2018, peaking in 2024 with Cancers, Frontiers in Oncology, and
Applied Sciences-Basel leading this expansion (Figure 5A). Thematic
clustering delineates distinct journal specializations: Cancers and
Frontiers in Oncology anchor oncology-focused research, while
Sensors and IEEE Access concentrate on computational modeling
applications. Medical Physics emerges as a critical interdisciplinary
hub through its bridging position between clinical and
technological clusters (Figure 5B).

Co-citation network analysis positions high-impact journals
including Nature, IEEE Transactions on Medical Imaging, and
Cancers as foundational knowledge sources within tightly
interconnected citation modules (Figure 5C). These citation
relationships underscore the integration of machine learning
methodologies into medical research paradigms. Temporal keyword
evolution further reveals a transformative trajectory: pre-2015
research emphasized conventional techniques like feature extraction
and support vector machines, whereas post-2020 publications
increasingly prioritize deep learning, convolutional neural networks
(CNN), and radiogenomics (Supplementary Figure 1).

Analysis of cross-domain knowledge flows revealed three
primary diffusion trajectories, each demonstrating distinct
transdisciplinary pathways (Figure 6). The most prominent
trajectory originates from systems and computer engineering
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FIGURE 5

Journal-level bibliometric and thematic analysis of ML-PCa research. (A) Annual article output by top journals from 2010 to 2024, shown as a
stacked bar chart where each color represents one of the leading journals. (B) Thematic clustering of journals based on their publication profiles in
ML-PCa research: nodes represent journals, colored by dominant thematic cluster, with size proportional to publication volume. (C) Journal co-
citation network: nodes represent journals sized by the number of times they are cited in ML-PCa articles, colors denote co-citation clusters, and

edges indicate co-citation links.

journals, with knowledge subsequently adopted by publications in
medicine and genetics research. A secondary pathway involves
mathematical modeling sources transferring methodological
innovations to clinical medical imaging applications. The third
trajectory captures how sensor technology literature progressively
informs molecular biology and immunology studies. Collectively,
this tripartite diffusion pattern establishes ML-PCa research as a
multidisciplinary convergence domain wherein computational
innovations continually enable transformative advances in
precision oncology, fundamentally reshaping biomedical
discovery paradigms through cross-pollination of computational
and life science methodologies.

Frontiers in Oncology

Author productivity and collaboration
networks

The global ML-PCa research community comprises 12,345
authors, with 23.21% of publications involving international
collaborations. As documented in Table 5 and Figure 7A,
Madabhushi Anant stands as the foremost contributor with 19
publications achieving 1,475 total citations, yielding an exceptional
average citation rate of 77.63 per paper and an H-index of 16,
establishing clear scholarly leadership. Additional high-impact
authors include Abolmaesumi Purang and Mousavi Parvin (8
publications each), while specialists like Shiradkar Rakesh
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FIGURE 6

Dual-map overlay of citing and cited journals across scientific domains: left-hand map shows subject areas of citing journals, right-hand map shows

domains of cited journals, and curved paths trace knowledge flows.

(average citations = 45.13) and Cuocolo Renato (47.50)
demonstrate significant influence through focused high-quality
output despite modest publication volumes.

Collaboration network analysis reveals critical structural
patterns (Figure 7B). Madabhushi Anant occupies the central

TABLE 5 Top 10 most productive authors in ML-PCa research, including
documents, citation count, average citations per article, and H-index.

o Average H-
Author Documents Citations .. ~. :
citations index
Madabhushi
19 1475 77.63 16
Anant
Abolmaesumi
8 198 24.75 7
Purang
Mousavi
. 8 78 9.75 5
Parvin
Shiradkar
8 361 45.13 7
Rakesh
Turkbey Baris 7 199 2843 8
Algohary
21 .
Ahmad 6 6 36.00 5
Cacciamani p 170 2833 5
Giovanni E. ’
Comelli
6 128 21.33 5
Albert
Cuocolo
6 285 47.50 6
Renato
Duddalwar
. 6 120 77.63 4
Vinay

Frontiers in Oncology

network hub, maintaining robust ties with Abolmaesumi Purang,
Comelli Albert, and Cacciamani Giovanni E., forming the nucleus
of a densely interconnected cluster. Distinct multinational
subgroups—notably Italian, Spanish, and U.S. researcher
collectives—form peripheral subnetworks, reflecting the domain’s
internationalized character.

Co-citation analysis identifies foundational knowledge
contributors transcending direct publication output (Figure 7C;
Table 6). Leo Breiman emerges as the most influential cited author
(373 co-citations) with maximal centrality (0.09), underscoring his
methodological primacy. Complementary authorities include Siegel
Rebecca L. (327 citations) in epidemiological foundations and
Wang Yuxing (252 citations) in statistical applications. Thematic
clustering demarcates specialized knowledge streams: red and pink
clusters concentrate on computational innovations in image
recognition and deep learning, while blue and green clusters
anchor clinical diagnostics and statistical epidemiology. Litjens
Geert’s bridging centrality (0.13) despite moderate citations (202)
confirms his role in cross-domain knowledge integration.

Longitudinal keyword evolution documents a profound
methodological transition (Supplementary Figure 2). Pre-2015
research emphasized feature engineering techniques (“support
vector machines”, “texture analysis”, “TRUS imaging”). During
2015-2020, focus shifted toward integrated approaches
(“radiomics”, “multiparametric MRI”, “deep learning”). Post-2020
innovations feature advanced architectures (“transformer models”,
“attention mechanisms”) and multimodal integration
(“radiogenomics”). This trajectory delineates the field’s
progression from manual feature extraction toward sophisticated
multimodal AI frameworks, increasingly prioritizing automated
pattern discovery and biological correlation.
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Keyword co-occurrence and thematic
evolution

Keyword co-occurrence analysis establishes a multidisciplinary
framework for ML-PCa research, integrating computational
methods with clinical diagnostics (Figure 8A; Table 7). “machine
learning” emerges as the dominant keyword (2,388 occurrences),
followed by “prostate cancer” (1,726 occurrences), confirming their
foundational importance. Centrality analysis identifies critical
bridging terms including “Survival” (centrality=0.08), “System”,
“Biopsy”, and “Validation” (centrality > 0.06), which facilitate
knowledge exchange between technical and clinical domains.
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While less frequent, “Identification” and “MRI” also demonstrate
significant network connectivity, underscoring their role in
thematic integration.

Thematic mapping reveals distinct research concentrations
through cluster analysis (Figure 8B). Key groupings include
Cluster #0 (“deep learning”), Cluster #2 (“prostate cancer”),
Cluster #6 (“artificial intelligence”), and Cluster #15 (“predictive
modeling”), delineating core domains spanning diagnostic
modeling and AI applications. Density visualization
(Supplementary Figure 3) further highlights intensive research
activity around “prostate cancer”, “diagnosis”, “biopsy”, and
“identification”, forming the field’s substantive core.
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TABLE 6 Top 10 most cited-authors in ML-PCa research, including
citation count and centrality.

Author Citations Centrality
Breiman Leo 373 0.09
Siegel Rebecca L. 327 0.01
Wang Yuxing 252 0.02
Zhang Yucheng 250 0.00
Wang Jing 239 0.00
Sung Hyuna 224 0.00
Liu Yuanbin 215 0.00
Pedregosa Fabian 205 0.00
Litjens Geert 202 0.13
Epstein Jonathan I. 197 0.03

Temporal evolution demonstrates a paradigm shift in research
priorities (Supplementary Figure 4; Supplementary Figure 5). Early-
phase research (pre-2015) emphasized conventional techniques like
“pattern recognition”, “algorithm”, “classification”, and “support
vector machine”. Post-2015 witnessed accelerating adoption of
“deep learning”, “radiomics”, and “image segmentation”, with
post-2020 research dominated by emergent concepts including

» o«

“transfer learning”, “segmentation”, and “radiogenomics”. This
progression reflects the field’s transition from feature engineering
toward complex multimodal integration.

Burst detection analysis (Figure 9) reinforces this evolutionary
trajectory. Foundational methodologies including “algorithm” and
“automated pattern recognition” exhibited strong bursts during
2005-2018, while contemporary emphases feature “transfer
learning”, “radiotherapy dosage”, and “radiology” (2020-2024).
This shift from methodological exploration to clinical
implementation signifies ML-PCa’s maturation into a translational
research domain focused on precision oncology applications.

To quantify the extent of clinically oriented research, we relied
on bibliometric proxies. Author keyword frequency provided a
conservative lower bound: validation appeared 73 times,
representing approximately 2.8% of the corpus (73/2,632;
Table 7). Keywords such as prospective, randomized, trial,
implementation, or real-world were absent from the top 25,
suggesting low prevalence overall.

References and knowledge base

Core literature analysis identifies seminal works anchoring the
intellectual structure of ML-PCa research. Bera et al. (2019) (23)
(Nature Reviews Clinical Oncology, 880 citations) establishes AT’s
transformative role in digital pathology and precision oncology,
while Litjens (2014) (24), Fehr (2015) (25), and Lalonde (2014) (26)
demonstrate foundational advances in MRI-based detection and
tumor microenvironment analysis (Figure 10A; Table 8). These
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highly connected works reflect the domain’s emphasis on clinical-
Al integration across radiology and pathology.

The cited-reference network reveals central clinical guidelines
underpinning ML-PCa development (Figure 10B; Table 9). Sung
et al. (2021) (115 citations; Table 9) provides critical epidemiology
data through GLOBOCAN 2020 (27), while Turkbey et al. (2019)
(28)and Weinreb et al. (2016) (29) standardize mpMRI
interpretation via PI-RADS v2.1/v2. Key validation studies -
Ahmed et al. (2017)’s PROMIS trial (30) and Strom et al. (2020)’s
Al-assisted biopsy system (31) - demonstrate the translational
impact of these frameworks. Keyword clustering (Supplementary
Figure 6) confirms this cross-disciplinary focus, with “machine

» o«

learning,” “multiparametric MRI,” and “predictive models”
forming dominant conceptual hubs.

Co-citation analysis reveals five interconnected thematic
clusters that define the methodological architecture of ML-PCa
research (Figure 10C; Table 10). The red cluster anchors the field in
algorithmic foundations, dominated by Pedregosa et al. (2011)’s
Scikit-learn framework (126 co-citations) (32) and Chen et al.
(2016)’s XGBoost model (33), establishing Python-based machine
learning workflows as standard practice. Directly adjacent, the blue
cluster encompasses clinical and imaging standardization,
integrating epidemiological benchmarks (27) such as Sung et al.
(2021)’s global cancer statistics with PI-RADS validation studies
that operationalize mpMRI interpretation guidelines.
Complementing these clinical pillars, the purple cluster develops
radiomics frameworks for quantitative imaging biomarker
extraction, exemplified by Gillies et al. (2016)’s (34) seminal work
positioning medical images as mineable data sources. Parallel
advances in bioinformatics methods (green cluster) underpin
multi-omics data integration through gene expression analysis
tools like GSEA and Limma, while the yellow cluster traces
clinical translation pathways that bridge technical innovations
with implementation workflows, ultimately connecting algorithm
development to diagnostic applications.

Highly cited and co-cited reference sets further reinforced this
pattern. Landmark clinical validation studies (Strom 2020 (31);
Bulten 2020 (35); Kasivisvanathan 2018 (36)) were represented, yet
the majority of influential works emphasized methodological
development, algorithmic benchmarking, or standardization
(Tables 9, 10). Taken together, these bibliometric signals converge
on the conclusion that robust clinical validation and implementation
studies constitute only a small minority within the field.

Bibliographic coupling (Supplementary Figure 7; Table 11)
further validates research convergence into distinct domains: Al-
driven clinical imaging applications (Choy et al., 2018 (37); Bera
et al,, 2019) (23), multi-omics integration platforms (Xia et al.,
2009’s MetaboAnalyst) (38), and emerging multimodal fusion
techniques (Liu et al., 2017’s Raman spectroscopy approach) (39).

Temporal trends emerge through citation burst analysis
(Figure 11). Early bursts (pre-2018) feature radiomics methods
(Gillies et al., 2016) (34)and PI-RADS standardization (Weinreb
et al., 2016) (29), while later surges prioritize clinical-AI
integration: Sung et al. (2021)’s (27) epidemiology burst

frontiersin.org


https://doi.org/10.3389/fonc.2025.1675459
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Gu et al.

10.3389/fonc.2025.1675459

ST SR et

g “ZIEI. g U1, LB+, er10
Ke10s7. e
s

magnetic

rtifici

Qﬁr

machine

‘sensmvl"peclﬂclty

support
d-cl. treé’

.e Ieamu°stems oy

a'o colm.cgw
image s‘onhﬁd’l“:'ﬂs’d 1"'9 LR Sy

rany rest  jun, cer *
@ Q@ .
cohn’lysis d‘s 0
nog@lys
area un.a curve o
Pf°°" biolo

prostate ic anti
@

radl’rlp’

e acglitacy
= ' diagno,cunqy
= support vegly machin

clas;

Igence
pr

4 ' o'
cance nosis
tion

featu
CiteSpace

. v. 6.4.R1 (64-bit) Advanced
#o% 5, 2025, 10:03:10 AM CST

Timespan: 20052024 (Sice Length=1
lection Crite gam-x (k-?’;? LRP=2.5, LIN=10, LBY=5, e=1.0
AL iy=0.0056)

Pruning: Pathfinder
Modul

#14 di

"’.0#13 in vivo study

00 *

L]

#12 raman spectrometry
.3

o e o
#11 psma @

° 3 co‘omuonalndgnuwork
o . * cancerd®

et . _#10 deep learning
'
= °° ,oq . identifig@jon C

CiteSpace
"

FIGURE 8

contj tudy I
ing prostaox

i
stu” nu;‘c-u “"c,l e
. geceiver oper’characlerlslic
.anra’rvlval > ml.up

) Q. %

. ® D
!'”?u 38
ident ilon.

by @,

faaMQacnon
r‘ction nvolution;

multiparametric ma' resonance imaging

‘lral natwork!p%t'nomy

ce imaging

lasms

© .0
major 0 study Q
i orithm

glea core
pro mor
S
hun'sue B
ene ssion
‘ncor'menpy 9 '
. ""."" magnet
. pargliye study
. g ‘. canc«’nosis
prodi‘valu.
rlskl'lmom

nance imaging

cer

tomy

prior.umal

.n'hd imaging
age .mmé’"g"""g'“g

Imag’qalﬁ.cs cllnl’mclt diagnostic t’urﬂcy study
. artificial ’I networ

puter as.od diagnosis

°
multiparametric magnetic resonance imaging
retrospective study

sensluvv% 5
learning alf

. ° o revid Id}ljmfelligence
*  diagn##6 artificial intelligence
il

e e. )’
-‘hlonm.... (<]

Ielmlng sysla m~ °
#7 gene expression profiling
U

nonty joumal-‘. e

e @ °  DER i nly
°  deep A0

e #9 feature selectlon neural networks! °
" cntur‘salu '; "%, erandom ms.,v

feamre extraction
.

artificial neural networke °
comparative smdy

Keyword-based bibliometric analysis of ML-PCa research. (A) Co-occurrence network of author-assigned keywords: each node represents a
keyword, node size reflects occurrence frequency, edges indicate co-occurrence relationships, and color intensity denotes citation centrality.
(B) Keyword clustering map: Keywords are grouped into distinct thematic clusters based on co-occurrence, visualized with color-coded clusters.

Node size represents frequency, and colors indicate cluster membership.

(intensity 17.36, 2022-2024) and Kasivisvanathan et al. (2018)’s
validation of MRI-targeted biopsies (36). The 2018-2020 inflection
saw deep learning methodologies (LeCun et al., 2015; XGBoost) (40)
gain prominence, accelerating the shift toward clinically

deployable tools.
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Discussion

The evolution of ML-PCa research represents a transformative
convergence of computational innovation and precision oncology.
These findings directly align with our study’s stated goals of not
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TABLE 7 Top 25 keywords in ML-PCa research.

Keywords Occurrences Centrality

Machine Learning 2388 0.01
Prostate-Cancer 1726 0.02
Prediction 368 0.01
Diagnosis 363 0.03
Classification 278 0.01
Identification 117 0.00
Cancer 106 0.01
Expression 95 0.03
Risk 92 0.04
System 88 0.06
Model 86 0.02
Biopsy 76 0.06
Validation 73 0.07
Men 69 0.02
Features 67 0.05
MRI 61 0.03
Radical Prostatectomy 61 0.04
Images 59 0
Segmentation 59 0.01
Algorithm 57 0.04
Selection 56 0.01
Breast-Cancer 54 0.02
Feature-Selection 54 0.03
Survival 54 0.08
Carcinoma 43 0.01

only mapping technological evolution but also critically examining
the extent to which these advances have translated into clinical
application. From its nascent interdisciplinary origins, the field has
rapidly matured into a dynamic knowledge ecosystem characterized
by accelerated global engagement, structural diversification across
methodological and clinical domains, and reconfigured geopolitical
knowledge hierarchies. This growth trajectory underscores
profound synergies between algorithmic advancements and
biomedical discovery, yet persistent translational gaps in clinical
validation, interdisciplinary harmonization, and equitable
implementation highlight critical challenges.

Publication trajectory and intellectual
emergence

The exponential growth in ML-PCa publications post-2015
signals a critical shift from theoretical exploration to clinical
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integration. This inflection aligns with pivotal advancements: deep
learning maturation (CNN architectures enabling automated image
analysis), data infrastructure proliferation (public repositories like
PROSTATEx, TCIA), and cross-disciplinary consortia bridging
computational and clinical domains (41, 42). The 82% output
concentration in 2021-2024, coupled with 57,771 cumulative
citations, underscores ML-PCa’s rapid maturation into a core
oncology subfield. Yet, the recent citation dip (2023-2024) may
reflect preliminary saturation in algorithm-focused studies, urging a
pivot toward clinical validation and implementation research.

Geopolitical dynamics and collaborative
networks

China’s volumetric dominance (24.66%) highlights state-led
investment in Al/healthcare priorities, though its lower MCP ratio
(13.56%) suggests regional collaboration preferences. Conversely, the
US’s centrality—despite smaller output (18.69%)—exemplifies global
scientific integration (MCP ratio: 20.93%), reinforcing its role in
knowledge diffusion. Germany’s outlier MCP ratio (39.29%) reflects
strategic multilateralism within EU frameworks (Horizon Europe).
The bipolar US-China collaboration hub (62 joint publications),
alongside India’s autonomous citation cluster, reveals a stratified
network topology. Risks include knowledge siloing (Western-centric
clinical standards vs. Eastern imaging focus) and resource
asymmetry, necessitating policies incentivizing Global South
inclusion and data-sharing equity.

Institutional output and impact
asymmetries

Though Chinese institutions dominate publication volume (e.g.,
Chinese Academy of Sciences: 42 papers), Western counterparts
lead influence (University of Toronto CPP: 70.54 vs. 38.31). This
quantity-impact divergence stems from differential specialization:
North American/European institutions focus on high-impact Al
methodology and digital pathology (University of Pennsylvania’s
radiomics innovations), while Chinese clusters prioritize imaging
diagnostics. Western centrality in networks (UBC: 0.06 centrality)
accelerates clinical translation, yet China’s emerging citation cores
signify rising methodological credibility. Future gains necessitate
bidirectional collaboration: integrating Chinese computational
efficiency with Western clinical-validation pipelines.

Journal integration and cross-domain
synthesis

ML-PCa research exhibits robust interdisciplinary diffusion
across three dominant pathways. Engineering-driven innovations
(IEEE Access, Sensors) catalyze clinical adoption in oncology
journals (Cancers, Frontiers in Oncology), while Medical Physics
(CPP=27.79) bridges methodological and clinical domains with
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Top 25 Keywords with the Strongest Citation Bursts

Keywords Year Strength Begin End 2005 - 2024
algorithm 2005 25.312005 2019
pattern recognition 2005 19.66 2005 2018
automated pattern recognition 2005 9.27 2005 2018
classification 2006  23.872006 2019
models 2006  15.28 2006 2018
support vector machines 2006 14.87 2006 2017
data mining 2006  11.642006 2017
learning algorithms 2006 8.952006 2019
learning systems 2005 23.82009 2018
biology 2013 8.712013 2021
procedures 2006 22.482014 2019
computer assisted diagnosis 2014  17.652014 2019 —————ee
image interpretation 2014 15.53 2014 2019 ————— e
urology 2012 11.842014 2020
radiotherapy 2015 15.92015 2019 ———
reproducibility of results 2007 12.112015 2020
radiotherapy planning system 2016 11.622016 2021 —
area under curve 2016 10.182016 2020 —ee.
regression analysis 2016 9.252016 2020 —e
radiotherapy planning 2016 8.97 2016 2021 [ ——
features 2007  10.422017 2020
intensity modulated radiation therapy 2009 10.292018 2021
neoplasm grading 2018 8.86 2018 2020 —e
radiotherapy dosage 2018 8.852018 2021 —
transfer learning 2020 8.78 2020 2022 ——

FIGURE 9

Top 25 keywords with the strongest citation bursts (2005-2024): red bars mark the active burst period for each keyword, and numbers indicate

burst strength and timing.

superior per-article influence. Temporal keyword evolution
confirms deepening integration: post-2020 prioritization of
“transformer models” and “radiogenomics” reflects the field’s shift
from siloed applications toward biologically contextualized AI
systems. Despite this convergence, fragmentation persists between
computational and clinical clusters. Standardized reporting
frameworks (MI-CLAIM) are urgently needed to streamline
translation, particularly as Scientific Reports and IEEE Access
emerge as critical venues for methodological prototyping
preceding clinical validation.

Author productivity and methodological
evolution

Madabhushi Anant’s leadership (H-index: 16, CPP:77.63)
epitomizes the blend of computational expertise and clinical
partnerships driving high-impact innovation. Author clusters
reveal globalized specialization: North American/European teams
pioneer deep learning integration, while regional hubs (e.g., Italy’s
Comelli cluster) refine clinical applications. Co-citation patterns
affirm dual foundations: Breiman’s ML theory (centrality: 0.09) and
Siegel’s epidemiological frameworks. Temporal keyword shifts—
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from SVM/feature engineering (pre-2015) to deep learning (2015-
2020) and multimodal AI (post-2020)—highlight accelerating
biological complexity. Future success hinges on nurturing
“bilingual” researchers fluent in both biomedicine and
algorithmic design.

Thematic trajectories and translational
bottlenecks

The evolution from technical exploration to clinical
implementation defines ML-PCa’s maturation. Early emphases on
“support vector machines” and “feature extraction” (pre-2015)
transitioned toward integrative paradigms (“deep learning,”
“multiparametric MRI”) during 2015-2020, culminating in today’s
focus on multimodal frameworks (“attention mechanisms,”
“radiogenomics”). Burst detection corroborates this trajectory:
algorithm-centric bursts (2005-2018) gave way to clinical
implementation keywords (“radiotherapy dosage,” burst intensity
5.72, 2020-2024). However, network centrality metrics expose
critical translational gaps. High-connectivity terms like “validation”
(centrality=0.06), “survival,” and “biopsy” remain underdeveloped
compared to methodological terms, indicating insufficient linkage

frontiersin.org
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FIGURE 10

Reference-based bibliometric analysis in ML-PCa research. (A) Local co-citation network based on included literature: Constructed using
VOSviewer, where each node represents a document, node size indicates the number of local citations, edges denote co-citation relationships
between documents, and colors correspond to different thematic clusters. (B) Citation network analysis of external references cited by ML-PCa
publications. Each node corresponds to a referenced article, with size proportional to the number of times it was cited. Nodes are color-coded by
citation centrality. (C) Co-citation network of references. Nodes represent frequently co-cited references within ML-PCa literature. Clusters denote
groups of papers that are often cited together, revealing major research themes and intellectual structure.

between AI performance metrics and clinical endpoints. Similar
concerns have been noted in other bibliometric studies of Al in
oncology, where methodological innovation often outpaces clinical
integration (23, 43). For example, Elmarakeby et al. (12) highlighted
that biologically informed neural networks demonstrated strong
discovery potential, yet lacked systematic validation in prospective
cohorts. This pattern mirrors our bibliometric evidence of an
implementation gap. This imbalance—coupled with geographical
bias in training data (78% Western cohorts)—hampers real-world
deployment despite technical sophistication.

Our results are consistent with other domain-level bibliometric
analyses, which have similarly observed rapid output growth coupled
with translational inertia. For instance, recent mapping of Al in
radiology underscored that fewer than 15% of studies incorporated
prospective validation or multicenter trials, despite exponential
publication growth (37, 44). By situating ML-PCa within this
broader landscape, our analysis reinforces that bibliometric
expansion alone is not a surrogate for clinical readiness.
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Knowledge foundations and future
imperatives

Five interconnected thematic clusters underpin ML-PCa’s
intellectual architecture. Algorithmic foundations (Scikit-learn,
XGBoost) directly enable clinical-imaging standards (PI-RADS,
PROMIS trials), while radiomics frameworks (Gillies et al.) and
multi-omics integration tools (GSEA, Limma) support biologically
anchored discovery. This convergence enables emerging
translational pathways where methodologies evolve into clinical
tools (Bera et al.’s digital pathology frameworks). Citation bursts
confirm accelerating clinical emphasis: Sung et al.’s epidemiology
(burst intensity 17.36, 2022-2024) and Kasivisvanathan’s biopsy
trials dominate post-2020 citations. Yet significant voids persist in
the knowledge base—fewer than 3% of highly cited works address
ethical governance, health economics, or regulatory science.

Our bibliometric analysis is consistent with broader evidence
syntheses: while publication volume and methodological innovation
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TABLE 8 Top 10 local-cited documents in the field of ML-PCa.
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Authors Year Journal Title Citations
Nature Reviews Clinical
Bera et al. (23) 2019 O;:)rlzgyewews e Artificial Intelligence in Digital Pathology - New Tools for Diagnosis and Precision Oncology 880
Choy et al. (37) | 2018 Radiology Current Applications and Future Impact of Machine Learning in Radiology 532
Van der Laak
eta: (ZL) a 2021 Nature Medicine Deep Learning in Histopathology: The Path to the Clinic 498
Litj t al. IEEE T ti
tens et @ 2014 . ransac.lons on Computer-Aided Detection of Prostate Cancer in MRI 362
(24) Medical Imaging
Yang et al. 2010 Current Bioinformatics A Review of Ensemble Methods in Bioinformatics 359
Goldenberg . - . . L
¢t al. (43) 2019 Nature Reviews Urology A New Era: Artificial Intelligence and Machine Learning in Prostate Cancer 308
et al.
Fehr et al. (25) 2015 PNAS Automatic Classification of Prostate Cancer Gleason Scores from Multiparametric Magnetic 303
Resonance Images
Lalonde et al. Tumour Genomic and Microenvironmental Heterogeneity for Integrated Prediction of 5-Year
2014 Lancet Oncology . . 279
(26) Biochemical Recurrence of Prostate Cancer
Journal of Internal . . L.
Acs et al. 2020 L. Artificial Intelligence as the Next Step Towards Precision Pathology 248
Medicine
Elmarakeby Lo .
etal. (12) 2021 Nature Biologically Informed Deep Neural Network for Prostate Cancer Discovery 225
al.

are expanding, high-quality clinical validation remains the exception
rather than the rule. For instance, a systematic review of 41 ML RCT's
found only a handful conducted with full adherence to CONSORT-AI
(18); among 81 non-randomized deep learning imaging studies
comparing Al with clinicians, only 9 were prospective and just six
tested in clinical settings (45, 46); and in primary-care predictive

TABLE 9 Top 10 cited references in the field of ML-PCa.

algorithms, only 28% of FDA- or CE-marked tools satisfied even half
of the Dutch AIPA guideline’s evidence criteria (47).

These external findings align closely with our internal
bibliometric signals: validation appeared in just ~2.8% of articles
(Table 7), trial-related terms were absent from high-frequency
keywords, and clinical trial reports were under-represented in the

Authors Year Journal Title Citations

Sung H et al. 2021 CA: A Cancer Journal Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 115

(27) for Clinicians 36 Cancers in 185 Countries

Turkbey et al. 2019 European Urology ProstatAe Imaging Reporting and Pata System Version 2.1: 2019 Update of Prostate Imaging 79

(28) Reporting and Data System Version 2
EAU-EANM-ESTRO-ESUR-SIOG Guideli Prostate C -2020 Update. Part 1:

Mottet et al. 2020 European Urology . . . wide me§ on ros.a ¢ bancer peate. Far 56
Screening, Diagnosis, and Local Treatment with Curative Intent

Stom etal (31) | 2020 The Lancet Oncology Artiﬁcia% intelligence for diagnosis and grading of prostate cancer in biopsies: a population- .
based, diagnostic study

Bulten et al. (35) | 2020 The Lancet Oncology A'utomat.ed deep-learning system for Gleason grading of prostate cancer using biopsies: a 4
diagnostic study

Ahmed et al. 2017 The Lancet Di?gnosti? ac?uracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a 48

(30) paired validating confirmatory study

Weinreb et al.

(29e)mre e 2016 European Urology PI-RADS Prostate Imaging — Reporting and Data System: 2015, Version 2 45

. Communications of the e . .

Krizhevsky et al. | 2017 ACM ImageNet classification with deep convolutional neural networks 41

Campanella 2019 Nature Medicine 'Clinical-grade computational pathology using weakly supervised deep learning on whole slide "

et al. images

Kasivi th The New England

e::;‘?;;’)a. nathan 2018 ]ouernaTV: ; I\I/llge:itine MRI-Targeted or Standard Biopsy for Prostate-Cancer Diagnosis 40
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TABLE 10 Top 10 co-cited references in the field of ML-PCa.

Authors

Journal

10.3389/fonc.2025.1675459

Co-
citations

Pedregosa F

tal. (32) 2011 | Journal of Machine Learning Research Scikit-learn: Machine Learning in Python 126
etal.
Breiman L ) .
et al 2001 = Machine Learning Random Forests 121
Sung H et al. 2021 | CA: A Cancer Journal for Clinicians Global Qancer Statistics 202.0: GLOBOCA‘N Estimates of Incidence and Mortality 116
27) Worldwide for 36 Cancers in 185 Countries
Weinreb JC
ot lenE;9)] 2016 | European Urology PI-RADS Prostate Imaging — Reporting and Data System: 2015, Version 2.1 83
Gillies R
. 165(341) 2016 = Radiology Radiomics: Images Are More than Pictures, They Are Data 81
etal.
Turkbey B . . .
etal. (28) 2019 | European Urology Prostate Imaging Reporting and Data System Version 2.1: 2019 Update 79
Ahmed HU 2017 | The Lancet Diagnostic Accuracy of Multi-parametric MRI and TRUS Biopsy in Prostate 78
et al. (30) Cancer (PROMIS)
Chen T KDD ‘16: ACM SIGKDD International
en TQ 2016 . fternationa XGBoost: A Scalable Tree Boosting System 75
et al. (33) Conference Proceedings
Cortes C et al. 1995 = Machine Learning Support—Vector Networks 75
Lambin P Radiomics: extracting more information from medical images using advanced
2012 | European Journal of Cancer . 59
et al. feature analysis

most-cited clusters (Tables 9, 10). Together, these patterns
underscore a structural imbalance—abundant retrospective
algorithmic benchmarks but scarce prospective, validated, and
implemented studies.

Looking forward, closing this gap will require: (1) multi-
institutional validation studies using standardized imaging
biomarkers (48); (2) Federated Learning solutions for data-scarce
populations (49, 50); and (3) SNOMED-CT integration to bridge
EHR siloes (51). Without these, ML-PCa risks becoming a

TABLE 11 Top 10 bibliographic coupling references.

methodological echo chamber rather than a transformative
clinical discipline.

Research hotspots
Multimodal MRI deep learning diagnosis

Research in PCa diagnostics increasingly leverages
multiparametric MRI (mpMRI)-based machine learning to

Authors Year Journal Title Citations
Xia et al. (38) 2009 Nucleic Acids Research MetaboAnalyst: A Web Server for Metabolomic Data Analysis and Interpretation 1692
Marmion et al. 2009 Diversity and Distributions Evaluation of Consensus Methods in Predictive Species Distribution Modelling 1095
Artificial Intelli in Digital Pathology - New Tools for Di is and
Bera et al. (23) 2019 Nature Reviews Clinical Oncology g 1'c.13 ntefligence in Uigl athology ew Tools for Diagnosis an 880
Precision Oncology
Saul et al. 2004 Journal of Machine Learning Thin'k Globally, Fit Locally: Unsupervised Learning of Low Dimensional 721
Research Manifolds
Choy et al. (37) 2018 Radiology Current Applications and Future Impact of Machine Learning in Radiology 532
Anowar et al. 2021 Computer Science Review Conceptual and Empirical Comparison of Dimensionality Reduction Algorithms 500
Van der Laak et al.
(::)1 e Ladketa 2021 Nature Medicine Deep Learning in Histopathology: The Path to the Clinic 498
Liu et al. (39) 2017 Analyst Dee.p Convol}ltiona.l Neural Networks for Raman Spectrum Recognition: A 167
Unified Solution
IEEE T ti Medical
Litjens et al. (24) 2014 . ransactions on Medica Computer-Aided Detection of Prostate Cancer in MRI 362
Imaging
Yang et al. 2010 Current Bioinformatics A Review of Ensemble Methods in Bioinformatics 359
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. . .
Top 25 References with the Strongest Citation Bursts
References Year Strength Begin End 2005 - 2024
Lemaitre G, 2015, COMPUT BIOL MED, V60, P8, DOI
10.1016/j.compbiomed.2015.02.009, DO! e 9i66.2046° 2020
Fehr D, 2015, P NATL ACAD SCI USA, V112, PE6265, DOI 10.1073/pnas.1505935112, DOI 2015 12.842017 2020 S —
Weinreb JC, 2016, EUR UROL, V69, P16, DOI 10.1016/j.eururo.2015.08.052, DOI 2016 13.452018 2021 R —
Gillies RJ, 2016, RADIOLOGY, V278, P563, DOI 10.1148/radiol.2015151169, DOI 2016 11.03 2018 2021 e —
Rusk N, 2016, NAT METHODS, V13, P35, DOI 10.1038/nmeth.3707, DOI 2016 10.7 2018 2020 P —
Ronneberger 0, 2015, LECT NOTES COMPUT SC, V9351, P234, DOI 10.1007/978-3-319-
24574-4, 28, DOI 2015 9.07 2018 2020 ——— e
Wibmer A, 2015, EUR RADIOL, V25, P2840, DOI 10.1007/s00330-015-3701-8, DOI 2015 9.072018 2020 S —
Aerts HJWL, 2014, NAT COMMUN, V5, PO, DOI 10.1038/ncomms5006, DOI 2014 8.182018 2019 e S e
Ginsburg SB, 2017, J MAGN RESON IMAGING, V46, P184, DOI 10.1002/jmri.25562, DOl 2017 7.242018 2020 e
;_pojtem JI,2016, AM J SURG PATHOL, V40, P244, DOI 10.1097/PAS.0000000000000530, 2016 7132018 2021
Ahmed HU, 2017, DIAGNOSTIC ACCURACY OF MULTI-PARAMETRIC MRI AND TRUS
BIOPSY IN PROSTATE CANCER (PROMIS): A PAIRED VALIDATING CONFIRMATORY 2017 6312018 2022 —
STUDY @ LANCET, V389, P815-822
Wang J, 2017, EUR RADIOL, V27, P4082, DOI 10.1007/500330-017-4800-5, DOI 2017 5532018 2021 — — e
Mottet N, 2017, EUR UROL, V71, P618, DOI 10.1016/j.eururo.2016.08.003, DOI 2017 6.92019 2022  ee———
LeCunY, 2015, DEEP LEARNING @ NATURE, V521, P436-444 2015 6.62019 2020 == S—
Litjens G, 2017, MED IMAGE ANAL, V42, P60, DOI 10.1016/j.media.2017.07.005, DOI 2017 5242019 2021 S —
Shiradkar R, 2018, J MAGN RESON IMAGING, V48, P1626, DOI 10.1002/jmri.26178, DOI 2018 5.07 2019 2020 R —
Kourou K, 2015, COMPUT STRUCT BIOTEC, V13, P8, DOI 10.1016/j.csbj.2014.11.005, ¢ oo oo o
Dol
Ahmed HU, 2017, LANCET, V389, P815, DOI 10.1016/S0140-6736(16)32401-1, DOI 2017 10.172020 2022 e —
Chen TQ, 2016, KDD16: PROCEEDI ...... ERY AND DATA MINING, VO, PP785, DOI 2016 7622020 2021 S —
Krizhevsky A, 2017, COMMUN ACM, V60, P84, DOI 10.1145/3065386, DOI 2017 6.96 2020 2022 P —
He KM, 2016, PROC CVPR IEEE, VO, PP770, DOI 10.1109/CVPR.2016.90, DOI 2016 5.612020 2021 S —
Cao RM, 2019, IEEE T MED IMAGING, V38, P2496, DOI 10.1109/TM1.2019.2901928, DOI 2019 5532021 2022 o
Sung H, 2021, CA-CANCER J CLIN, V71, P209, DOI 10.3322/caac.21660, DOI 2021 17.36 2022 2024 ——
KasivisvanathanV, 2018, NEW ENGL J MED, V378, P1767, DOI
10.1056/NEJM0a1801993, DOI 2018 7092022 2024
Tataru 0S, 2021, DIAGNOSTICS, V11, PO, DOI 10.3390/diagnostics11020354, DOI 2021 5232022 2024 | —
FIGURE 11

Top 25 references with the strongest citation bursts from 2005 to 2024. Red bars denote the active burst period for each reference, and the burst
strength quantifies the sudden increase in citations over time, highlighting pivotal or trending literature in the field.

improve detection, grading, and characterization (52). Deep
learning models now integrate T2-weighted, diffusion-weighted
imaging (DWI), and dynamic contrast-enhanced (DCE)
sequences to enhance identification of clinically significant
prostate cancer (csPCa) (53). For instance, the Deep Radiomics
model, trained on 615 patients from four cohorts (PROSTATEx,
Prostatel58, PCaMAP, NTNU/St. Olavs Hospital), achieved a
patient-level AUROC of 0.91 in independent testing,
demonstrating robustness comparable to PI-RADS assessment
(AUROC: 0.94) without significant difference (54). Similarly, an
MRI-TRUS fusion 3D-UNet model tested on 3,110 patients showed
superior sensitivity (80% vs. 73%) and lesion Dice coefficient (42%
vs. 30%) over MRI-alone approaches, alongside higher specificity
(88% vs. 78%) in 110 controls (55). These approaches provide more
accurate clinical decision support than PI-RADS v2.0 alone.

CNN imaging feature engineering

CNNs excel in automatically learning discriminative features
from prostate images, outperforming traditional handcrafted
feature methods. Recent innovations include lightweight 3D-CNN
variants (XmasNet, ResNet-based blocks) with transfer learning,
enabling rapid convergence on small datasets; XmasNet achieved an
AUC of 0.84 using 199 training and 200 test cases from
PROSTATEx (56). Automated segmentation via nnU-Net
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followed by voxel-wise radiomics feature extraction and XGBoost
classification balances interpretability and efficacy (54). Further
enhancements integrate channel and spatial attention
mechanisms to weight multiscale features, improving tumor
boundary delineation and heterogeneity detection while
increasing sensitivity by >5% (57).

Large-scale public datasets and shared platforms
Multicenter public datasets address single-institution
limitations and establish validation benchmarks. The SPIE-
AAPM-NCI Prostate MR Classification Challenge (PROSTATEXx)
provided 330 training and 208 testing lesions with standardized
mpMRI quality control, while its successor PROSTATEx-2 focused
on Gleason grade prediction (42, 58). The TCIA Prostate-MRI-US-
Biopsy dataset (1,151 patients) has been extensively validated in >17
core publications Natarajan et al. Combined analysis of six
independent microarray datasets identified high-confidence
biomarker gene sets, significantly improving cross-cohort
generalization and enabling multi-omics integration (42, 59).

Challenge-driven interdisciplinary collaboration
Public competitions foster synergy among clinical, physics, and

computational experts to accelerate translation. Initiatives like the

SPIE-AAPM-NCI PROSTATEx Challenge (launched 2016)
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catalyzed algorithm innovation with real-time validation at SPIE
conferences SPIE (58, 60). The MVP-CHAMPION project
integrates clinical, genomic, and imaging data within the Million
Veteran Program, enabling closed-loop refinement of ML-PCa
models for clinical deployment. Open-science platforms (e.g.,
Grand-Challenge.org) share preprocessing scripts, model code,
and visualization tools, establishing transparent, reproducible
community standards (61, 62).

Overcoming the translational gap: future
opportunities

ML holds transformative potential across prostate cancer
research. In diagnostics, integrating multi-omics data (genomic,
proteomic, metabolic) with high-resolution imaging enables
identification of novel biomarker combinations, significantly
enhancing early detection sensitivity and specificity (63).
Therapeutically, ML facilitates personalized treatment by
predicting optimal drug combinations/sequences based on patient
genetics, tumor microenvironment, and treatment history—
improving efficacy while reducing adverse effects (64). It further
refines radiotherapy planning through precision dose delivery
tailored to tumor morphology, maximizing therapeutic impact
while sparing healthy tissue (15). Future advances center on
enhanced data processing and modeling: Automated AlI-driven
data annotation (deep learning for pathology images) will
streamline workflows (65), ensemble and transfer learning will
boost model robustness and accelerate task-specific adaptation
(66), and the development of explicable models remains critical
for clinical trust and adoption (67).

Strengths and limitations of the study

This study offers a comprehensive analysis of the rapidly
growing field of ML in PCa, identifying key trends, influential
authors, journals, and research hotspots. By utilizing multiple
bibliometric tools, this study provides a multidimensional view of
the field. However, the study’s reliance on bibliometric data
introduces certain limitations, particularly in evaluating research
quality beyond citation metrics. Furthermore, language bias and
self-citation may introduce potential sources of errors in the data.
Finally, while bibliometrics provide valuable insights into
publication trends, they do not offer a nuanced understanding of
the methodologies and clinical applicability of this study.

Conclusion

This study reveals explosive growth in ML-PCa research,
dominated by contributions from China and the United States.
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Key advances center on multimodal imaging integration, deep
learning-driven tumor classification, and large-scale dataset
utilization, offering transformative potential for early diagnosis
and personalized therapy. However, critical barriers persist,
particularly the limited proportion of studies progressing to
clinical validation and real-world testing. This echoes prior
systematic reviews of Al in cancer care that found less than one-
third of published models underwent external or prospective
validation (31, 35). Thus, despite methodological sophistication,
clinical adoption remains the exception rather than the rule.
Encouragingly, recent international initiatives such as the PI-CAI
challenge and consortium have begun to directly address these
barriers by fostering cross-population validation, methodological
standardization, and benchmarking, with several prostate Al spin-
offs already benefiting from this framework. Future progress hinges
on establishing international consortia for validation studies,
developing explainable Al systems, and creating open-access data
repositories to accelerate clinical translation and optimize global
prostate cancer management.
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