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The impact of heart irradiation
dose on cardiac injury and
survival in lung cancer
patients after radiotherapy
Bingchen Li*

Southeast University, Nanjing, China
Thoracic radiotherapy is a primary treatment modality for lung cancer, with

approximately two-thirds of patients receiving it. The association between heart

dose and post-radiotherapy survival and cardiac injury represents a critical area

of contemporary radiotherapy research, yet understanding of radiation-induced

heart disease (RIHD) in lung cancer remains incomplete. This review synthesizes

literature on the effects of heart dose on survival and substructure-specific

cardiac injury in lung cancer patients, evaluating thresholds for reversible and

irreversible damage to cardiac substructures. We further summarize key

mechanisms underlying RIHD.
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1 Introduction

Lung cancer is a prevalent type of cancer with a increasing incidence and mortality.

According to statistical analysis of data from the American Society of Clinical Oncology

(ASCO), in 2020, lung cancer was the second most commonly diagnosed cancer in both

men and women in the United States, but it was the leading cause of cancer-related deaths

among both genders, with a mortality rate of 23% in men and 22% in women (1). Early-

stage lung cancer is often asymptomatic, and approximately one-third of patients have

already progressed to the locally advanced stage by the time they present with symptoms,

which can result in the loss of the opportunity for surgical treatment (2). Radical surgery

may not be a viable option for some early-stage patients due to poor general health or other

reasons. For the past 30 years, radical concurrent chemoradiotherapy has been the standard

treatment for locally advanced unresectable non-small cell lung cancer (3). However, the

time to disease progression after chemoradiotherapy is only approximately 8 months, with

a 5-year survival rate of less than 15% (2, 4). The Radiation Therapy Oncology Group

(RTOG) 7301 study established that a radiation dose of 60–63 Gy (single dose of 1.8-2.0

Gy) used to treat non-small cell lung cancer (5). Subsequently, studies have attempted to

increase the radiation dose to improve survival outcomes (6–10). Published in 2015, RTOG
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0617 is a phase III randomized controlled clinical trial that

employed a dose-escalating radiotherapy design for the treatment

of stage III unresectable lung cancer (11). The study demonstrated

that contrary to mainstream review, increasing the radiation dose

did not result in improved survival benefits (11). The secondary

analysis of RTOG 0617 revealed that the survival of patients with

locally advanced non-small cell lung cancer is associated with the

radiation dose received by the heart (12).
2 Methods

2.1 Search strategy

PubMed, Embase, Cochrane Library, and Web of Science

databases were searched. The time range of the literature was

from 2010 to 2025 in each database, and the language was

limited. The medical subject terms used were as follows: lung

cancer, NSCLC, radiotherapy, radiation therapy, cardiac toxicity,

heart dose, RIHD.
2.2 Inclusion criteria

(1) Subjects: patients with pathologically confirmed lung cancer

(NSCLC or SCLC); (2) Interventions: radiotherapy; (3) Study types:

retrospective/prospective; (4) Outcome indicators: overall survival

(OS), progression-free survival (PFS), pericarditis, myocardial

infarction, heart failure, arrhythmia, etc.
2.3 Exclusion criteria

Articles with the following conditions will be excluded: (1)

animal or cell experiments, case reports, scientific experiment plans,

reviews, letters, editorials, conference papers, etc.; (2) articles with

missing data or serious errors; (3) repeated publications; (4) no data

on survival or cardiac events were reported; (5) The full text was

not found.
2.4 Data extraction

The retrieved literature was imported into Zotero, and the title

and abstract of the literature were screened independently by two

researchers according to the inclusion and exclusion criteria, and

then the full text was read for a second screening. Conflicting

studies were re-evaluated by discussion or by seeking the advice of a

third researcher. Two researchers independently extracted the data

information of the final included literature using Excel 2016. Two

researchers used Excel 2016 to independently extract the data

information of the final included literature, including Study,

Study type, Enrollment, Stage, Dose(Gy),Radiotherapy technique,

Heart substructures, Cut-off value, Conclusion.
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3 The correlation between heart dose
and survival

The term RIHD was originally first described in the cardiac

complications that arose in patients with breast cancer or

lymphoma who received thoracic radiotherapy (13, 14). Radiation

oncologists have long held the belief that RIHD was a delayed effect

that primarily affected those who survived cancer for an extended

period. However, this notion overlooked the significant impact that

RIHD could have on patients with cancers that had a shorter

survival rate, such as lung cancer, which has a 5-year survival rate

of approximately 10%-20% (15). Following the RTOG 0617 study,

an increasing number of researchers have turned their attention to

the relationship between heart dose and survival in lung cancer

patients receiving thoracic radiotherapy. On the one hand, lung

cancer patients are typically diagnosed at an older age than breast

cancer patients and tend to have more comorbidities, including

cardiac complications. On the other hand, lung cancer patients

receive higher radiation doses than breast cancer patients, which

makes them less tolerant of heart irradiation, leading to earlier onset

of cardiac adverse events. Thus, it is crucial to consider the radiation

dose received by the heart during radiotherapy for lung cancer

patients. Table 1 provides a summary of the relevant studies

published to date that investigate the relationship between

radiation dose received by the whole heart and survival.

Existing studies indicate a potential association between cardiac

radiation dose and overall survival (OS) in lung cancer patients

receiving radiotherapy, yet the conclusions remain inconsistent.

Such variability largely reflects differences in patient population

characteristics, the evolution of treatment techniques, and

variations in follow-up duration. In early clinical cohorts, the

high tumor-related mortality of lung cancer often obscured the

long-term impact of radiation-induced cardiac injury, making it

difficult to detect a significant correlation between cardiac dose and

prognosis (16, 17). With the refinement of radiotherapy and

chemotherapy, as well as the widespread adoption of

consolidation immunotherapy, median OS has been markedly

prolonged; consequently, the detrimental effect of cardiac

irradiation on long-term survival has gradually become more

evident, a phenomenon confirmed by large-scale studies in recent

years (18).

Meanwhile, advances in radiotherapy are reshaping the

relationship between cardiac dose and survival. During the 3D-

CRT era, extensive irradiation field increased the volume of low-

dose exposure, and as a result, low-dose and intermediate-dose

parameters (V5, V30, V50) showed a trend toward correlation with

OS in some studies—for example, Speirs et al. (19) reported a

significant association between V50 and OS. With the widespread

implementation of IMRT, however, greater conformity has led to

the concentration of high-dose exposure in specific cardiac regions

or substructures, such as the left anterior descending artery (LAD)

and the left atrium. In this setting, high-dose parameters pertaining

to these substructures appear to carry stronger prognostic value.

Notably, Atkins et al. (20) reported that LAD V15≥10% was
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associated with a significantly increased risk of major adverse

cardiac events and death (HR 1.58, 95% CI 1.09-2.29).

The development of proton therapy has substantially reduced

exposure to mean heart dose (MHD). Nevertheless, results may be

subject to bias due to stringent patient selection criteria. For

instance, Tucker et al. (21) often selected high−risk cases with

tumors situated close to the heart, a factor that may have

contributed to an overestimation of the relationship between

MHD and OS. Furthermore, the biological interpretations of

different dosimetric parameters are not entirely consistent: MHD

reflects only the global average and may underestimate the impact

of focal high-risk exposure; intermediate and high-dose volume

fractions (V30–V50) provide a better indication of risks such as

cardiac fibrosis or large-vessel injury; and low-dose volume (V5)

has been linked to systemic inflammatory responses or

immunosuppression. It should also be emphasized that in the era
Frontiers in Oncology 03
of immunotherapy, prolonged survival has made delayed

cardiotoxicity increasingly relevant, and accumulating evidence

suggests that focal irradiation of critical substructures such as the

LAD or atrium is associated with increased mortality risk (20).
4 The correlation between
substructure heart dose and survival

According to some researchers, limiting the radiation dose to

the heart as a whole organ is a crude method. As a result, scholars

have divided the heart into several substructures to assess the

radiation dose more accurately. Table 2 provides a summary of

relevant studies that explore the correlation between cardiac

substructures dose and survival. In some studies, the
TABLE 1 Study on the correlation between heart dose and survival.

Study Study type Enrollment Stage Dose(gy)
Radiotherapy
technique

Conclusion

Schytte et al. (16) retrospective 328 I-III 60/66/80 3DCRT MHD not associated with OS

Bradley et al. (11) prospective 554 III 74 vs. 60
3DCRT/
IMRT/

V5, V30 associated with OS

Tucker et al. (21) retrospective 468 IIIA/IIIB 63(60-76)
3DCRT/
IMRT/

PROTON
V5, MHD not associated with OS

Guberina et al. (17) prospective 161 IIIA/IIIB 45 vs. 45+(20-26) 3DCRT V5 not associated with survival

Dess et al. (22) prospective 125 II/III 70(45-88)
IMRT/
3DCRT

V5, V30, V50, MHD not associated with
OS

Wang et al. (23) prospective 127 III 74(70-90) 3DCRT V5, V30, MHD not associated with OS

McWilliam et al. (24) retrospective 1101 – 55
IMRT/
3DCRT

V5, V30, MHD not associated with OS

Ning et al. (25) prospective 201 I-IV 74(60-74)
PROTON/
IMRT

MHD not associated with OS

Chun et al. (12) prospective 482 IIIA/IIIB 74 vs. 60
IMRT/
3DCRT

V40 associated with OS

Vivekanandn et al. (26) prospective 78 IIB-III 67.6(63-73)
3DCRT/
VMAT

V63–69 associated with OS

Ma et al. (27) retrospective 141 III 66(60-76)
IMRT/
3DCRT

V30, V35, V40, V45 not associated with
OS

Stam et al. (28) retrospective 469 IIA-IIIB 66 IMRT V2 associated with OS

Speirs et al. (19) retrospective 416 II-III (50-84.9)
3D-CRT/
IMRT

V50 associated with OS

Contreras et al. (29) retrospective 400 II-III 66(50-77.25)
3DCRT/
IMRT/

PROTON
V50 associated with OS

Yegya-Ramn et al. (30) retrospective 140 IIA-IV 61.2(50.4-70.2)
3DCRT/
IMRT

MHD associated with OS; MHD not
associated with V5, V30, V50

Xue et al. (31) prospective 94 I-III 70(45–85.5) 3DCRT
V5, V30, V55, MHD not associated with

OS

Atkins et al. (18) retrospective 748 IIIB 64.0(54.9-66.0)
3DCRT/
IMRT

MHD associated with all-cause mortality
3DCRT, three dimensional conformal radiation therapy; IMRT, intensity modulated radiation therapy; PROTON, proton radiotherapy; MHD, mean heart dose; OS, overall survival.
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substructures of the heart are defined based on its inherent basic

structure, including the left and right atria, left and right ventricles,

pericardium, coronary system, valves, and major blood vessels.

Other studies have examined the correlation between self-defined

special structures or regions and survival. In a retrospective study,

McWilliam demonstrated that the radiation dose received by the

bottom region of the heart was correlated with the survival of lung

cancer patients undergoing radiotherapy (24). In another

retrospective study, the same author defined a special region of

the heart that included the right atrium, right coronary artery, and

ascending aorta (32). The study revealed that patients with an

equivalent dose in 2-Gy fractions (EQD2) greater than 23 Gy in this

region had significantly shorter overall survival (OS) than those

with an EQD2 of less than 23 Gy (EQD2 >23 Gy: 12 months, 95%

CI: 10–14 months; EQD2 <23 Gy: 21 months, 95% CI: 17–23

months, P = 0.008) (32). However, recent studies have attempted to

explore the correlation between established substructures of the

heart and survival. For instance, Thor et al. utilized the RTOG 0617

database to establish a multifactorial survival prediction model (33).

Cox multivariate analysis revealed that both the left atrium D45%

(the minimum dose received by 45% of the volume) and the

ventricular MOH5% (the average dose received by 5% of the

volume) were independent prognostic factors for survival (33). In

a study of 701 non-small cell lung cancer patients, Atkins et al.

discovered that a coronary left anterior descending artery V15

≥10% significantly increased the mortality of lung cancer patients

(HR = 1.58, 95% CI: 1.09-2.29, P = 0.02)[33]. However, manually or

automatically segmenting and delineating substructures of the heart
Frontiers in Oncology 04
remains a challenging and time-consuming task in routine

radiotherapy planning (34–36). Therefore, the delineation of

substructures of the heart has not yet been widely implemented

in clinical practice.

Table 2 shows that several studies have reported associations

between radiation dose to specific cardiac substructures(such as the

left anterior descending artery (LAD), left atrium, heart base, and

pulmonary artery—and OS) whereas the MHD often failed to

demonstrate statistical significance. This suggests that the effect of

small, high risk cardiac substructures may be “diluted” when

assessed using the MHD. At present, however, substantial

heterogeneity exists among studies, including differing definitions

and delineation methods for substructures, limited sample sizes,

and variable results. For instance, McWilliam et al. (32) reported

that the dose to the heart base was associated with OS, whereas

certain chamber-based parameter (such as the mean dose to the

right ventricle) did not demonstrate prognostic value, indicating

that clinical significance may depend on both structural function

and its spatial relationship to tumor location. Overall, when tumors

are located in the left upper lobe or in the mediastinum adjacent to

major vessels, particular attention should be paid to the coronary

arteries and left atrium. Conversely, when the target volume is close

to the pulmonary artery or heart base, limiting intermediate-dose to

high-dose exposure in these regions becomes essential. In the

future, the integration of automated segmentation and

multicenter validation may enable the development of

standardized substructure dose–survival models, which are

expected to provide greater guidance than reliance on MHD alone.
TABLE 2 Study on the correlation between heart substructures dose and survival.

Study Stage Heart substructures
Cut-off
value

HR (95%CI)
OS difference

(months)

Xue et al. (31) I-III
Pericardium V30 29% 1.019 (1.004-1.033) 13.3 vs. 35.8

Pericardium V55 21% 1.030 (1.006-1.054) 13.3 vs. 30.0

McWilliam et al. (32) –
Specific area (including right atrium, right coronary artery,
ascending aorta) Dmax

19.5 Gy 1.010 (1.010-1.020) 12.0 vs. 21.0

McWilliam et al. (24) – Specific area (cardiac base) Specific doses 8.5Gy 1.250 (1.01-1.56) NA

Ma et al. (27) –

Pulmonary artery V40 80% 2.113 (1.014-4.936) 14.0 vs. 27.8

Pulmonary artery V45 68% 2.660 (1.089-5.717) 13.5 vs. 37.9

Pulmonary artery V50 45% 1.203 (0.062-2.056) 14.2 vs. 32.7

Pulmonary artery V55 32% 1.489 (0.098-2.096) 10.9 vs. 41.8

Vivekanandan et al. (26) IIB/III Left atrial wall V63 2.2% 1.520 (1.070-2.170) 39.2 vs. 27.9

Thor et al. (33) III

Atrium cordis D45% 44/30Gy NA NA

Pericardium MOH55% 51/39Gy NA NA

Ventricle MOH5% 56/41Gy NA NA

Atkins et al. (20) II-III Left anterior descending coronary artery V15 10% 1.580 (1.090-2.290) NA

Olive et al. (37) – Ventricle Dmax NA 1.020 (1.000-1.040) NA

Stam et al. (38) –
Left atrium D0% NA 1.006 (NA) NA

Superior vena cava D90% NA 1.025 (NA) NA
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5 Mechanisms of cardiac fibrosis in
RIHD

The development of fibrosis is the primary damage caused by

radiotherapy to the heart. Radiotherapy generates reactive oxygen

species (ROS) by ionizing water molecules and damaging the

mitochondrial respiratory chain, leading to ROS accumulation.

The activation of enzymes such as NADPH oxidase and

cyclooxygenase can also accelerate ROS accumulation.

Meanwhile, radiation suppresses antioxidant enzymes, which

impairs the ability of antioxidants to clear accumulated ROS,

exacerbating oxidative stress and resulting in various chemical

reactions in the body (39). Oxidative stress is closely associated

with myocardial fibrosis. The release of proinflammatory factors,

such as TNF-a, IL-1, and IL-11, as well as adhesion molecules,

increases the number of fibroblasts (40). This leads to the formation

of microthrombi and vascular occlusion, resulting in perfusion

defects and focal ischemia, which exacerbate cardiomyocyte death

and fibrosis (40). Myocardial fibrosis is primarily identified by the

accumulation of collagen in the heart, which eventually replaces

cardiomyocytes (41). Moreover, ROS and lipid peroxidation

products can deactivate membrane-bound receptors and enzymes,

resulting in increased tissue permeability, protein inactivation, and

ultimately the destruction of cardiomyocyte membranes (41).

Studies have shown that ROS and protein oxidation may impact

the function of receptors, enzymes, and transport proteins (41). For

instance, ROS can overactivated Ca2+-calmodulin-dependent

protein kinase II, resulting in irregular excitation-contraction

coupling, heart failure, and arrhythmia (42). Radiation-induced

microvascular damage can cause elevated capillary permeability and

the swift emergence and progression of protein-rich exudates,

ultimately resulting in radiation-induced pericarditis (43). The

accumulation of collagen in the interstitium and apex of the

pericardium can also result in pericardial fibrosis.

The DNA double-strand breaks (DSBs) which is caused by the

radiation and the ROS can activate I-kB kinase, which mediates I-

kB degradation and releases NF-kB into the nucleus (44). NF-kB
binds to the promoter regions of target genes, promoting the

expression of NADPH oxidase and cyclooxygenase in target genes

to result in further elevation of ROS levels (45). These ROS, in turn,

continue to affect NF-kB, forming a positive feedback loop that

speeds up the cardiac fibrosis. In addition, NF-kB also induces some

pro-inflammatory factors such as TNF-a to increase the number of

presenting cells.

Radiation-induced cardiac fibrosis frequently demonstrates

overexpression of TGF-b, indicating that an elevated level of

transforming growth factor may worsen RACD. Ionizing

radiation damage can activate TGFb through various pathways,

including ROS generation, excessive inflammation activation,

microvascular damage, platelet activation, and cellular aging and

apoptosis (46). TGF-b can induce fibrosis through both the

canonical and noncanonical signaling pathways. In the canonical

pathway, TGF-b activates target genes, including type I collagen,

type III collagen, CTGF, and a-smooth muscle actin, via Smad
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transcription factors (47). TGF-b can also exert its effects through

non-Smad pathways, such as Rho/ROCK, which further enhance

fibrosis. Simultaneously, TGF-b can strengthen the profibrotic

signals mentioned earlier through ROS, resulting in the formation

and accumulation of myofibroblasts and extracellular matrix and

accelerating the onset and progression of fibrosis (48). The platelet-

derived growth factor (PDGF) family of factors is another critical

mediator of myocardial fibrosis. Research has revealed that the

overexpression of cardiac PDGF-C and PDGF-D through

transgenic technology leads to extensive cardiac fibrosis (49, 50).
6 Mechanisms of cardiac cell injury
and death in RIHD

Radiation can cause various types of DNA damage, among which

DNA double-strand breaks (DSBs) are the most severe. ROS and

DSBs activate I-kB kinase, which mediates I-kB degradation and

releases NF-kB into the nucleus (44). NF-kB binds to the promoter

regions of target genes, inducing the expression of proinflammatory

factors such as TNF-a, IL-1, IL-6, and IL-8, thereby regulating the

inflammatory response (44). Simultaneously, NF-kB can enhance the

adhesion ability of leukocytes by inducing the secretion of adhesion

molecules (41). The infiltration of neutrophils can result in the

additional release of various proinflammatory factors, worsening

endothelial cell damage (41). Infiltrating monocytes can

differentiate into activated macrophages, which struggle to degrade

low-density lipoprotein oxidized by ROS, progressively transforming

into foam cells, a process closely linked to the development of

atherosclerosis (41). Furthermore, NF-kB promotes the expression

of NADPH oxidase and cyclooxygenase in target genes, resulting in

further elevation of ROS levels (45). These ROS, in turn, continue to

affect NF-kB, forming a positive feedback loop that speeds up the

progression of coronary artery disease and vascular damage (45).

Research has demonstrated that in the initial phases of

radiotherapy, ROS and DNA damage repair (DDR) can boost NO

by phosphorylating serine 1177 on endothelial nitric oxide synthase

(eNOS) in human endothelial cells (51, 52). However, the

interaction between ROS and NO results in reactive nitrogen

species, which decreases the bioavailability of NO (53).

Simultaneously, ROS stimulate the production of vasoconstrictive

substances such as prostaglandins, which hinder vascular relaxation

and eventually result in vascular stenosis (53). Moreover,

radiotherapy can cause a reduction in myocardial capillaries, and

increase the expression of vonWillebrand factor in endothelial cells,

leading to platelet adhesion and thrombus formation in blood

vessels, worsening ischemia and hypoxia (54, 55). ROS and DNA

damage signals trigger cell apoptosis through the Bcl-2/Bax protein

family and the p53 protein, respectively (45, 54). The Bcl-2/Bax

protein family can also cause cell apoptosis by changing

mitochondrial permeability (56). Furthermore, radiotherapy can

enhance the release of Ca2+ from the endoplasmic reticulum,

resulting in an elevation of mitochondrial Ca2+ uptake (57).

Calcium overload can ultimately lead to cell membrane swelling
frontiersin.or
g

https://doi.org/10.3389/fonc.2025.1675772
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Li 10.3389/fonc.2025.1675772
and the release of apoptotic factors (57).
7 The expression mechanism of
micro-RNAs provides ideas for RIHD
prediction

Several studies have suggested that micro-RNAs (miRNAs) are

involved in the pathogenesis and progression of RIHD (58–60).

Therefore, we believe that miRNAs can be used as an early

molecular marker to predict heart damage. To begin with,

exposure to ionizing radiation and other oxidative stress-inducing

factors can lead to alterations in miRNA expression (58). Numerous

investigations have demonstrated that miRNAs are implicated in

the pathological processes related to cardiac radiation damage, such

as oxidative stress, inflammation, endothelial dysfunction,

hypertrophy, fibrosis, and subsequent heart failure (59, 60).

Recently, miRNAs have also been found to be involved in the

regulation of radiation-induced DNA damage (61). For instance,

miRNA-21 has been shown to promote cell proliferation and anti-

apoptosis (62). Csilla et al. reported that the expression of miRNA-

21 in the myocardium was significantly increased following

radiation, particularly in the left ventricle (63). On the other

hand, miRNA-1 expression was down-regulated in irradiated

animal models, consistent with changes in cardiac hypertrophy

and heart failure, and altered in various cardiovascular diseases

(59). Furthermore, changes in miRNA-34a expression have also

been associated with heart injury, and a study has indicated that

miRNA-34a expression was up-regulated after radiation

exposure (64).

The above-described mechanisms are depicted in Figure 1.
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8 Strategies for prevention and
management of RIHD

8.1 Cardiac-sparing radiotherapy
techniques

Preventive strategies mainly focus on reducing the cardiac

irradiation dose. With conventional 3D conformal radiotherapy

(3DCRT), considerable incidental exposure of the heart is common.

Modern photon techniques such as intensity-modulated

radiotherapy (IMRT) and volumetric modulated arc therapy

(VMAT) provide more conformal dose distributions and

significantly reduce heart volumes receiving intermediate to high

doses (12).

Proton therapy has demonstrated superiority in reducing mean

heart dose (MHD) and left anterior descending artery (LAD)

exposure when compared to photon IMRT, as shown by

randomized and dosimetric studies (65). Robust optimization and

spread-out Bragg peak characteristics eliminate exit dose, leading to

improved sparing of cardiac substructures.

Motion management techniques, including deep inspiration

breath hold (DIBH), expiration breath hold, respiratory gating,

and tumor tracking, have emerged as pivotal strategies to increase

the distance between the tumor and critical cardiac structures (66).

DIBH is widely adopted for left breast and mediastinal targets, and

increasingly used in locally advanced lung cancer to reduce MHD.

Adaptive radiotherapy and MRI-guided RT enable daily plan

adaptation and improved visualization of heart substructures. At

the same time, AI-based automatic substructure delineation

provides standardization and efficiency, overcoming the steep

learning curve of manual segmentation (32, 67).
FIGURE 1

The mechanisms of the RIHD.
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Collectively, these strategies highlight a paradigm shift from

whole-heart dose limitation to substructure-specific constraints (eg,

LAD V15 < 10% or pericardium V30 < 30%) with the aim of better

predicting RIHD and survival outcomes (20, 66).
8.2 Management of established RIHD
events

Once RIHD occurs, management resembles standard cardiology

approaches. Arrhythmias may be treated with antiarrhythmic agents

or pacemaker/ICD implantation. Heart failure is managed with beta-

blockers, ACEIs/ARBs, diuretics, and guideline-directed therapy.

Pericarditis responds to anti-inflammatory drugs and colchicine,

while constrictive disease may require pericardiectomy. Coronary

disease can be managed with percutaneous intervention or bypass

grafts, and valvular damage may necessitate surgery (43, 55). In

patients receiving immune checkpoint inhibitors, immune-related

myocarditis requires corticosteroids and sometimes additional

immunosuppressants (68). These treatments control symptoms and

prevent progression, but do not reverse structural fibrotic changes

induced by radiation.
8.3 Lifestyle and risk factor modification

Risk factor control is essential. Smoking cessation, strict

management of hypertension, diabetes, and dyslipidemia, and the

use of statins or aspirin in selected patients may reduce the burden

of RIHD (69). Multidisciplinary “cardio-oncology” programs are

increasingly important for high-risk patients undergoing thoracic

RT (70).
9 Conclusion

Radiation-induced heart disease (RIHD) is an emerging

determinant of survival in lung cancer patients receiving thoracic

radiotherapy. Current evidence indicates that whole-heart mean

dose alone is inadequate to describe clinically relevant risk, as the

prognostic impact often arises from focal exposure of critical

substructures such as the left anterior descending artery, left

atrium, pulmonary artery, and heart base. This underscores the

need to move from global dose metrics toward substructure-

specific evaluation.

Recent advances (including IMRT, proton therapy, motion

management, and adaptive radiotherapy) facilitate selective cardiac

sparing, but heterogeneous delineation methods and limited

prospective validation hinder the establishment of universal
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constraints. Future research should prioritize standardized

segmentation, multicenter collaboration, and prospective dose-

response modeling.

In the immunotherapy era, where patient survival is improving,

refinement of cardiac-sparing strategies is essential to balance

tumor control with long-term cardiovascular safety, ultimately

optimizing both overall survival and quality of life in lung

cancer patients.
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