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Lung cancer is the most frequently diagnosed type of cancer worldwide,

according to GLOBOCAN 2022 statistics. Key genetic alterations involve driver

gene mutations that significantly enhance cancer aggressiveness. These include

several EGFR mutations, ALK rearrangements, ROS1 rearrangements, RET

translocations, MET alterations, NTRK fusions, BRAF mutations and KRAS

mutations, such as the KRAS G12C mutation. Naturally, each of these is part of

a larger signaling pathway that becomes dysregulated via genetic alterations. We

highlight the transduction of EGFR: HER2 via RAS-RAF-MEK-MAPK pathway,

PI3K-PTEN-AKT pathway and STAT pathway, of the ALK via PI3K/AKT,MAPK/ERK

and JAK/STAT and of KRAS via effectors of the MAPK pathway and of the PI3K

pathway. MicroRNAs (miRNAs) interfere at various levels with these pathways,

either with pro-oncogenic effects or tumor suppressive effects. For instance,

miR-33a is a tumor suppressive miRNA with a role in EGFR-tyrosine kinase

inhibitor (TKI) resistance, miR-200c regulates the ALK pathway, and miR-22-3p

regulates theMET pathway. The present paper also serves as an integrative work,

highlighting the main cancer progression processes regulated by miRNAs,

following these mutations. Specifically, we highlight the modulatory roles of

miRNA in cancer cell survival and proliferation (miR-28, miR-30b/c), invasion and

metastasis (miR-218, miR-182), neoangiogenesis (miR-29c), metabolic

reprogramming (miR-124), and therapy resistance (miR-378, miR-328, miR-

1244). The broad implications of miRNAs in lung cancer underline their

potential real-world utility, as these entities can function as biomarkers for

prognosis/diagnosis and even future therapeutic targets or agents.
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1 Introduction

Lung cancer is an intricate malignancy, with an estimated 2.48

million new cases and 1.81 million deaths worldwide in 2022 alone

(1). Many factors, including late diagnosis, patient characteristics

and acquisition of cancer progression features can explain the poor

prognosis (2). Comprehensive genomic characterization is

increasingly recognized as essential in lung cancer management,

as certain oncogene-driven lung cancers can benefit from targeted

therapeutics. In specific cases, these targeted therapeutics can

significantly prolong overall survival and/or progression-free

survival compared to conventional chemotherapy and/or

radiotherapy. For instance, in the PROFILE 1014 clinical trial,

crizotinib, a first generation ALK tyrosine kinase inhibitor (TKI)

significantly improved progression-free survival (PFS) in

comparison to standard chemotherapy - median PFS (mPFS) =

10.9 months in the crizotinib group versus 7.0 months in the

standard chemotherapy group; hazard ratio (HR) = 0.45, [95% CI

0.35-0.60], p < 0.001 for progression/death (3). Similarly, in patients

with activating BRAF mutations, the combination of dabrafenib-

trametinib in treatment-naive patients led to mPFS = 10.8 months

[95% CI:7.0-14.5 months] and investigator-assessed median

duration of response (mDoR) = 10.2 months [95% CI: 8.3-15.2

months] (4).

Histologically, lung cancer subtypes present significant

differences that translate into prognostic differences, along with

different treatment approaches. In general terms, lung cancers are

classified as small cell lung cancers (SCLCs), which comprise about

15% of cases, and non-small cell lung cancers (NSCLCs), which

comprise the rest of 85% of cases. NSCLC is further subclassified

into lung adenocarcinoma (LUAD, with about 40% of total cases),

lung squamous cell carcinoma (LUSC, 25-30%) and large cell

carcinoma (LCC), with approximately 5-10% of all lung cancers

(5, 6). Each of these lung cancer subtypes fosters diverse genomic

and epigenomic alterations that develop and drive lung cancer from

initiation to progression. For simplification purposes, the present

paper will focus on NSCLC.

The human genome encompasses coding and non-coding

regions, each playing distinct roles in cellular function (7).

Coding regions, which make up about 2% of the genome, are

responsible for producing proteins that perform various cellular

functions. In contrast, non-coding regions, which constitute a large

part of the genome, do not code for proteins. Instead, they are

crucial in regulating gene expression and maintaining genomic

stability (8). The interplay between the coding and non-coding

regions is increasingly recognized as a fundamental aspect in the

development and progression of various cancers, including lung

cancer (9). Both the coding and non-coding genome are largely

implicated in the carcinogenesis and progression processes of lung

cancer. Specific genetic alterations in driver genes are the mainstay

of targeted therapeutics in lung cancer, including subtypes such as

LUAD. Some of the most well-known oncogenes and tumor

suppressor genes associated with lung cancer include EGFR,

KRAS, and TP53 (10). These genetic alterations of the coding

genome are pivotal in the initiation and progression of lung
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cancer, making them primary targets for therapeutic

interventions. By comparison, the non-coding genome

encompasses various elements, including promoters, enhancers,

microRNAs (miRNAs), and long non-coding RNAs (lncRNAs),

which interact with coding regions to influence cancer development

and progression. Non-coding RNAs can modulate the epithelial-to-

mesenchymal transition (EMT)/invasion, angiogenesis, and other

progression processes (11). The functions and mechanisms of

action are variable between different classes of ncRNAs, as is their

biogenesis (12). MiRNAs are small non-coding RNAs of various

lengths (approximately 22 nucleotides) generated via primary

miRNAs (pri-miRNA), derived from introns or other non-coding

transcripts (13). Their discovery by the Victor Ambros’ group (14)

and Gary Ruvkun’s group (15, 16) revolutionized the field of non-

coding RNAs. The main function of miRNAs includes mRNA

degradation or translational repression via binding the 3’-UTR of

a target mRNA through the miRNA-induced silencing complex

(miRISC) (17). Other mechanisms of action include binding to

coding regions and thus inhibiting protein expression, or binding to

the 5’-UTR of mRNAs (12). Alternatively, miRNAs can also directly

upregulate expression (18).

The present study serves as an integrative and comprehensive

review of the current roles of non-coding RNAs in lung cancer

progression processes, including neoangiogenesis, metastasis,

immune evasion, and the acquisition of therapeutic resistance,

with a specific focus on miRNAs. It also consolidates the main

genetically altered genes that drive lung cancer. The novelty of this

paper is given by the translational overview of miRNAs in NSCLC.

The updated information regarding miRNAs implicated in this

malignancy, in parallel with the main pathway alterations and

driver mutations reinforces the approach.
2 The mutational landscape in lung
cancer: genetic alterations, signaling
pathways, and relevant miRNAs

NSCLCs present a significant number of alterations within their

coding genome. For didactic purposes, this section will examine the

NSCLC mutational landscape, focusing on genes that encode

essential oncogenic drivers in specific subtypes of NSCLC, as well

as miRNAs that are involved in modulating these entities. Specific

genetic alterations render driver genes in NSCLC that enhance the

proliferation rate of cancer cells and cancer aggressiveness.

However, driver genes offer multiple therapeutic strategies by

exploiting these elements as druggable targets. This section will

briefly discuss the main driver genes and targetable mutations in

NSCLC, along with relevant modulatory miRNAs and their

potential applications.
2.1 Epidermal growth factor receptor

EGFR is part of the HER/ErbB family of receptor tyrosine

kinases (RTKs) (19) and is found in approximately 15-40% of
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non-squamous NSCLC tumors (20); when activated, physiological

non-mutated EGFR can recruit HER2 in heterodimers, forming the

EGFR::HER2 functional unit (21), leading to the downstream

signaling pathways which promote cell survival, growth and

migration (22). Intracellular signaling cascades pertain to the

RAS-RAF-MEK-MAPK pathway, PI3K-PTEN-AKT pathway and

STAT pathway (23), among others (22, 23). In lung cancer, the

activated state is achieved through initial oncogenic mutations in

exons 18-21, which encode the kinase domain (24). Two of the most

frequent EGFR activating mutations are the L858R point mutation

in exon 21 and the LREA in-frame deletion on exon 19 (19, 24).

Activating EGFRmutations are druggable via EGFR TKIs, classified

in first-generation EGFR TKIs, such as gefitinib and erlotinib and

second-generation TKI afatinib (20). The exon 20 T790M

“gatekeeper” mutation is considered one of the secondary EGFR

point mutations in NSCLC. This mutation renders acquired

resistance towards EGFR TKIs that do not specifically target this

mutation (25). Third-generation EGFR TKI osimertinib is selective

for the T790M resistance and for EGFR-TKI-sensitizing mutations.

The FLAURA clinical trial showed that in patients with untreated

EGFR mutation-positive (either L858R point mutation or exon 19

deletion) advanced NSCLC, the mPFS was significantly longer in

patients treated with osimertinib than in the group treated with

other standard EGFR-TKIs (gefitinib or erlotinib): 18.9 months

versus 10.2 months, respectively, with HR = 0.46 [95% CI: 0.37-

0.57, p < 0.001) for disease progression or death (26). This proves

that osimertinib is superior to the other standard EGFR-TKIs.

Further analysis in the FLAURA trial showed an improved

overall survival (OS) of 38.6 months [95% CI: 34.5-41.8] in the

group treated with osimertinib versus 31.8 months [95% CI: 26.6-

36.0] in the group treated with other EGFR-TKIs, HR = 0.80

[95.05% CI: 0.64-1.00, p = 0.046] for death (27). Furthermore,

recent clinical trial results show that in untreated EGFR-mutated

(L858Rmutation or exon 19 deletion) patients with advanced NSCLC,

the addition of chemotherapy (pemetrexed + platinum-based agent in

adjusted dosages) showed an increased investigator-assessed PFS, with

HR = 0.62 [95% CI: 0.49-0.79, p < 0.001] for disease progression or

death in comparison to the osimertinib monotherapy group.

Moreover, 57% [95% CI: 50-63] of patients in the osimertinib-

chemotherapy group were alive and disease progression-free at 24

months versus 41% [95% CI: 35-47] of patients receiving osimertinib

monotherapy (28). The European Society for Medical Oncology

Clinical Practice Guideline for Oncogene-Addicted Metastatic Non-

Small-Cell Lung Cancer recommends the use of first-line EGFR TKIs

in all patients with sensitizing EGFR mutation, regardless of

performance status, gender, histology or tobacco exposure. In this

case, osimertinib is the preferred first-line agent in patients with

L858R/exon 21 or exon 19 deletions NSCLC and for patients with

central nervous system metastases, as osimertinib can partly cross the

blood-brain barrier (29).

Concomitantly, from a non-coding RNA perspective, there are

several miRNAs associated with the modulation of EGFR-dependent

processes in lung cancer. MiR-33a is involved in EGFR-TKI

resistance. In gefitinib-resistant cells, resistance to TKIs is increased

through HDAC1-dependent miR-33a suppression. This involves
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several processes, including cancer cell proliferation, migration, and

apoptosis. Mechanistically, HDAC1 bound FOXK1 in gefitinib-

resistant cells and silenced miR-33a. Conversely, miR-33a

overexpression downregulated ABCB7 and p70S6K1 expression,

leading to tumor-suppressive effects (30). Furthermore, miR-128b

directly regulates EGFR. In tumor samples, loss of heterozygosity for

miR-128b was frequent and correlated significantly with clinical

response and survival after gefitinib treatment (31). In another

study, let-7c expression led to increased cancer cell proliferation

and invasion; high let-7c expression led to a reversal of EMT and

increased cancer sell sensitivity to osimertinib via aWNT1- and TCF-

4-dependent mechanism. From a more in-depth view, let-7c

suppressed WNT1 and TCF-4 expression epigenetically via

promoter methylation, leading to increased osimertinib activity

upon the EGFR-mutated NSCLC cells (32).
2.2 ALK rearrangements

ALK rearrangement was first reported as a key driver in NSCLC

by Soda et al. in 2007, when the authors identified the EML4-ALK

fusion (33). Notably, other ALK fusions also exist (34). These

alterations render constitutive ALK kinase activity (34). Usually,

the ALK pathway includes downstream signaling via PI3K/AKT,

MAPK/ERK and JAK/STAT pathways (35). Statistics indicate that

rearrangements involving ALK are present in approximately 5% of

NSCLCs (36, 37), while they are predominantly identified in

adenocarcinomas (38). Tumors with ALK rearrangements exhibit

aggressive behavior, including nodal metastasis and advanced stages

at diagnosis (39). In this case, targeting these RTKs is a desideratum.

First-line treatment options in NSCLC patients with ALK

rearrangement include ALK-targeted TKIs such as crizotinib,

alectinib, brigatinib and lorlatinib (29). Disease progression under

treatment with crizotinib can be approached via newer-generation

ALK TKIs, such as ceritinib (40) or alectinib (41), which have

proven to have efficacy both intracranially and extracranially (40,

41). Furthermore, lorlatinib proved effective in subsequent lines of

treatment in NSCLC patients previously treated with second-

generation ALK TKIs, whilst presenting CNS activity (42).

In an in vitro and in silico study by Lai et al. on EML4-ALK

mutant NSCLC cell lines, the authors found that miR-100-5p is a

regulator of resistance to ALK TKIs. There was, however, no

validation of the target. The in silico analysis identified the mTOR

signaling pathway as a target (43). In a study by Fukuda et al.,

pretreatment with quisinostat, an HDAC inhibitor, resulted in the

upregulation of miR-200c/141 promoter activity, thereby restoring

miR-200c expression. This, in turn, reverted EMT. Next,

administration of an ALK inhibitor can bypass EMT-induced

therapy resistance (44). In a combined in vitro and in vivo study

by Yun et al., treatment of cancer cells with panobinostat altered

H3K27ac signal in promoters and enhancers, and led to activation

of miRNAs with tumor suppressive effects, such as miR-449,

followed by antiproliferative effects of ALK inhibitors upon

resistant cancer cells, xenografts and EML4-ALK transgenic

mice (45).
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2.3 ROS1 rearrangements

ROS1 is a proto-oncogene that encodes a transmembrane

protein with common structural features with ALK and insulin

receptor families (46). ROS1 protein-tyrosine kinase protein fusions

are rare, occurring in an estimated 1-2% of NSCLC (47),

predominantly in adenocarcinomas, but other histology types

have also been described (48). Although the literature reports

numerous fusion partners, CD74 is the most common (47). Other

fusion partners include SLC34A2, EZR and TMP3 (49). The ROS1

fusions lead to constitutive ROS1 kinase activity and increased cell

survival, proliferation, and migration via the STAT, PI3K, RAS/

RAF/MEK/ERK1/2 and Vav3 pathways (46). First-line treatment

options in ROS1 translocation metastatic NSCLC include crizotinib,

entrectinib and repotrectinib as an alternative option (29). Second-

line options for NSCLC patients who had systemic progression and

received first-line ROS1 TKI include alternative next-generation

ROS1 TKI or platinum-based chemotherapy after rebiopsy (29).

One of the miRNAs that is in direct relation with ROS1 is miR-

760. In a study by Yan et al., miR-760 levels were found to be

downregulated in 71.4% of NSCLC tissues considered and in

NSCLC cell lines. In addition, overexpressing miR-760 led to

inhibition of cancer cell proliferation, migration and cell cycle.

Mechanistically, miR-760 inhibited ROS1 expression in NSCLC

cells and the miR-760 expression level was inversely correlated with

ROS1 expression level in NSCLC tissues (50, 51).
2.4 RET translocations

Another chromosomal rearrangement that drives NSCLC is the

fusion of the rearranged during transfection (RET) gene with other

fusion partners, such as KIF5B and CCDC6. This leads in turn to

RET protein overexpression (52–54). Mechanistically, the RET gene

encodes a proto-oncogene RTK which transduces to downstream

RAS/MAPK, PI3K/AKT and JNK (53). RET rearrangements lead to

fusion proteins that present a ligand-independent constitutive

activation of RET , downstream pathway activation and

stimulatory effects upon cancer cell growth, survival and

proliferation (47). RET translocations are encountered in

approximately 1-2% of NSCLC, predominantly adenocarcinomas

(53) and predispose the patient to the development of brain

metastases (55). Targeted therapeutics that act on RET fusions

include selpercatinib and pralsetinib (29) and are recommended in

patients previously untreated with RET inhibitors. Both drugs

present high intracranial response rates (29).
2.5 MET

The MET tyrosine kinase is expressed on epithelial cells in

various localizations. The c-MET proto-oncogene encodes MET

and is a member of the RTKs family, with the main ligand being

hepatocyte growth factor (HGF) (56). The activation of the MET

TK activates the downstream signaling cascades RAS/ERK/MAPK,
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PI3K/Akt, Wnt/b-catenin and STAT. This modulates cell

proliferation, survival and migration, among other processes (57).

In general terms, the main MET pathological alterations include

MET exon 14 skipping mutation (58) through various mutations –

insertions, deletions, point mutations and others (59), MET

amplification that is reported in up to 5% of NSCLC patients

(60), MET overexpression, and the formation of MET fusion

products. The fusion counterparts include TPR, TRIM4 and HLA-

DRB1 (59, 61). All these MET alterations lead to the activation of

the MET tyrosine kinase with consecutive pro-oncogenic activity

(56). In a clinical setting in NSCLC, capmatinib and tepotinib are

FDA-approved for MET exon 14 skipping mutations but are not

currently EMA-approved for first-line therapy (29). Capmatinib

can also be used in patients with high MET amplification (>= 10

GCN) after immunotherapy and/or platinum-based chemotherapy,

although this drug is currently not approved by the Food and Drug

Administration (FDA) or European Medicines Agency (EMA) in

this setting (29).

When considering a miRNA-dependent approach to lung

cancers driven by MET alterations, several key points need to be

addressed. First, in the Romano study, edited miR-411-5p (ed.miR-

411-5p) induced EGFR TKIs sensitivity in gefitinib-resistant

NSCLC cell lines that were only partially dependent on MET

repression. Mechanistically, ed.miR-411-5p directly targeted MET

and repressed the MAPK pathway (62). Moreover, in the Yang

study, miR-22-3p was found to be downregulated in lung cancer

tissues in comparison to normal lung tissues. MiR-22-3p mimics

could reduce MET and STAT3 expression, leading to the induction

of apoptosis (63). In the Migliore study, epigenetically induced miR-

205 expression in NSCLC cells resistant to MET-TKIs resulted in

the downregulation of ERRFI1, leading to EGFR activation and

sustained resistance to MET-TKIs. Conversely, the in vivo

transduction of anti-miR-205 reversed crizotinib resistance.

Furthermore, in the absence of EGFR alterations, the EGFR

activation via miR-205/ERRFI1 led to sensitivity of MET-TKI-

resistant cells to combined MET-EGFR inhibition (64). MiR-182

was found to be downregulated in metastatic NSCLC cells in

comparison to pr imary tumor t issues . Furthermore ,

overexpression of miR-182 inhibited cancer cell migration and

invasion, reduced Snail expression and increased E-cadherin

expression. Additionally, miR-182 directly suppressed Met

expression. As such, the authors concluded that miR-182 may

inhibit EMT and metastasis via inactivation of the Met/AKT/Snail

pathway in NSCLC cells (65), highlighting the significant

implications of these non-coding RNAs in specific lung

cancer settings.
2.6 NTRK

The NTRK genes encode tropomyosin receptor kinases (TRKs)

such as TRKA, TRKB and TRKC (66). NSCLC NTRK fusions have a

variable prevalence, depending on the study (66); however, ESMO

guidelines suggest a prevalence of less than 0.1% (29).NTRK fusions

are obtained through intra- and interchromosomal rearrangements,
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as the 3’-sequence of NTRK1, NTRK2 or NTRK3 is fused with the

5’-sequences of various other genes (67). The chimeric product

obtained by the fusion presents constitutive activation that is

independent of ligands (68). This leads to activation of the

downstream signaling pathways such as MAPK, PI3K and PKC

(68). Targeted therapeutics, including larotrectinib and entrectinib,

are recommended for patients with NTRK fusion-positive NSCLC

who have no satisfactory alternative treatments (29).
2.7 BRAF mutations

In NSCLC, BRAF mutations occur in approximately 3-5% of

cases and, for the most part, are mutually exclusive with EGFR

mutations and ALK and ROS1 rearrangements (29, 69). BRAF is a

serine/threonine protein kinase of the RAF kinase family that can

activate the MAPK signaling cascade via oncogenic mutations (70).

Mechanistically, extracellular growth factors can activate RTK,

activating the SOS family guanine nucleotide exchange factors

(GEFs) and thus activating RAS. This cascade results in the

activation and dimerization of RAF proteins via GTP-RAS, which

further leads to the phosphorylation of MEK1/2, followed by the

phosphorylation of ERK1/2. In its turn, ERK1/2 phosphorylates

downstream effectors, which modulate cell survival, proliferation,

differentiation, and cell motility (71). The classification of BRAF

mutations has led to a better understanding of the impact of these

alterations. Class I BRAF mutations include BRAF V600D/E/K/R

mutants that generate an important BRAF kinase activity, with a

constitutive MAPK signaling activation. Class II and III BRAF

mutations are non-V600 BRAF mutations. These are identified in

the activation segment or P-loop for class II BRAFmutants, leading

toMAPK pathway activation, and P-loop, catalytic loop, DFG motif

for class III mutants, which present a lower basal kinase activity

compared to wild-type BRAF or that do not present kinase activity

(72). According to ESMO guidelines, patients who present with

BRAF V600E mutations benefit from the dual therapy of dabrafenib

in combination with trametinib in the setting of advanced or

metastatic V600-mutated NSCLC (29). Of note is that the clinical

trial only included patients with the BRAF V600E mutation (4).
2.8 KRAS G12C mutation

Activating KRAS mutations are observed in approximately 30%

of NSCLC-LUAD cases, with the KRAS G12C mutation being the

most common (73, 74). Oncogenic mutations in the KRAS gene are

most prevalent at codons 12, 13 and 61 (75). These mutations activate

RAS signaling through impairment of intrinsic GTPase or by

alteration of KRAS, leading to the inability of KRAS to respond to

GTPase-activating proteins (75). In general terms, KRAS mutations

are associated with poor prognosis (76). The activation of KRAS leads

to interaction with the effectors of the MAPK pathway – RAF/MEK/
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ERK – and with effectors of the PI3K pathway – AKT/mTOR –,

among others (77–79), leading to cell survival and cell proliferation

(80, 81). Current ESMO guidelines for NSCLC patients with KRAS

G12C mutation recommend classic first-line treatment algorithms

according to the non-oncogene addicted metastatic NSCLC (29, 82).

Targeted therapeutics include sotorasib, which is recommended for

patients with NSCLC with failed prior therapy, as the phase III

clinical trial tested sotorasib in patients who progressed under

platinum-based chemotherapy or ICI-based therapy (83). Another

targeted therapeutic for the KRAS G12Cmutation is adagrasib, which

is currently approved only by the FDA and not by the EMA.

Adagrasib was also studied in patients who progressed under

platinum-based chemotherapy or ICI-based therapy and

demonstrated an mPFS = 6.5 months [95% CI: 4.7-8.4] (84).

When considering the implications of miRNAs, several KRAS-

related studies warrant mention. First and foremost, in the Xie

study, miR-148a-3p inhibited NSCLC cancer cell proliferation and

EMT by reducing SOS2 expression, thereby decreasing RAS

activation (85). In a study by Edmonds et al., miR-31 was found

to be overexpressed in LUAD, overexpression that was

independently correlated with reduced patient survival. In a

transgenic mouse model, the induction of miR-31 led to lung

hyperplasia, adenoma formation, and ultimately, the development

of adenocarcinoma. In the Edmonds study, miR-31 promoted

mutant KRAS-mediated oncogenesis by targeting and reducing

the expression of negative regulators of RAS/MAPK cascade (86).

In the Li study, METTL3 promoted the m6A methylation of

circ_0000620, leading to increased expression and stability, which

in turn modulated the miR-216b-5p/KRAS axis and influenced

apoptosis and cisplatin sensitivity in NSCLC cells.

Furthermore, transfection with si-circ_0000620 or miR-216b-

5p mimic led to decreased KRAS expression in LUAD cells

compared to the control group (87). In the Yan study, miR-1205

was found to directly bind 3’-UTR of KRAS and downregulate its

expression. Furthermore, in a A549 xenograft model in nude mice,

miR-1205 inhibited tumor growth and decreased levels of KRAS,

MDM4 and E2F1 in tumor tissues (88, 173).

Table 1 encompasses the targeted therapeutics discussed in

this chapter.

Figure 1 summarizes some of the specific molecular targets

discussed in the present chapter and their signaling pathways in

lung cancer, highlighting their modulatory role in several cancer

development processes.

Furthermore, we sought to provide an integrative perspective

on the current understanding of the modulation of these key

oncogenes involved in NSCLC via non-coding RNAs, specifically

miRNAs. As entities that are widely implicated in carcinogenesis

and cancer progression, miRNAs can exert their oncogenic or

tumor suppressive capabilities through silencing of molecules

taking part in the signaling cascades of these specific oncogenes.

Table 2 presents several key miRNAs that modulate specific target

genes involved in these signaling cascades.
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3 Dysregulation mechanisms of the
non-coding genome in lung cancer

The non-coding genome describes the largest part of the human

genome, as protein-coding sequences account for only

approximately 1.5% of it (94). The non-coding genome is

comprised of various entities, including non-coding regulatory

regions such as non-coding RNAs (ncRNAs), promoters,

enhancers and insulators, as well as untranslated regions (UTRs)

(95). Advances in technology and high-throughput sequencing

techniques led to the unravelment of this large part of the

genome. As such, several types of ncRNAs have been described,

some with a large number of evidence behind their proposed

modulatory activity – miRNAs, long non-coding RNAs

(lncRNAs), PIWI-interacting RNAs (piRNAs), small nuclear

RNAs (snRNAs), small nucleolar RNAs (snoRNAs) and others

(12). Although initially categorized as ncRNAs, recent reports

suggest that some circRNAs may also have protein-coding

abilities (96).

As miRNAs modulate numerous cellular processes, from cell

growth and differentiation to development and apoptosis, it is

abundantly clear that these entities play significant roles in

malignancies (97). In cancer, miRNAs are categorized as

oncogenes or tumor suppressors, depending on a given
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malignancy and the context (11); oncogenic miRNAs promote

cancer traits and properties, while tumor suppressors have cancer

suppressive abilities.

Regarding the practical interaction of miRNAs with the key

updated hallmarks of cancer, as envisioned by Hanahan (98), it is

comprehensible and realistic to expect the implication of

modulatory miRNAs in each hallmark.
3.1 MiRNAs and the ECM

MiRNAs are significantly implicated in the regulation of the

tumor microenvironment (TME), particularly in orchestrating and

modulating the ECM. The dysregulated ECM has a significant role

in lung cancer progression (99). Collagens are the most abundant

proteins found within the ECM. Alteration in collagen expression

influence TME cells (99). Discoidin domain receptor 1 (DDR1) is a

RTK that binds collagen and activates downstream signaling

cascades (100). DDR1 is largely implicated in cancer progression

(101, 102). In a study by Ming et al., miR-199a-5p suppressed

DDR1 expression. Circ_0087378 sponged miR-199a-5p and

promoted malignant behavior through a DDR1-dependent

mechanism (103). Concomitantly, integrins are proteins that

intervene in the interaction between cells and ECM. This implies
TABLE 1 Targeted therapeutics in lung cancer, their aberrant targets and class/mechanisms.

Targeted
therapeutic

Main aberrant target molecule/
pathway indication

Class/Mechanism References

Gefitinib EGFR First generation EGFR TKI (29)

Erlotinib EGFR First generation EGFR TKI (29)

Afatinib EGFR Second generation EGFR TKI (29)

Osimertinib EGFR
Third generation EGFR TKI; selective for exon 20 T790M gatekeeper

mutation and EGFR-TKI-sensitizing mutations
(29)

Crizotinib ALK First generation ALK inhibitor; ROS1 inhibitor (29, 89)

Alectinib ALK Second generation ALK inhibitor (29, 89)

Brigatinib ALK
Second generation ALK inhibitor; potent dual inhibitor for ALK L1196M

and EGFR T790M mutations
(29, 89)

Lorlatinib ALK Third generation ALK and ROS1 inhibitor (29, 89)

Ceritinib ALK Second generation ALK inhibitor (29, 89)

Entrectinib ROS1 TRKA/B/C, ROS1 and ALK TKI (29, 90)

Repotrectinib ROS1 Newer generation ROS1/TRK-ALK TKI (29)

Selpercatinib RET Highly selective/potent RET inhibitor (29, 91)

Pralsetinib RET Highly selective/potent RET inhibitor (29, 91)

Capmatinib MET Selective MET TKI type Ib (29, 56)

Tepotinib MET Selective MET TKI type Ib (29, 56)

Dabrafenib/
Trametinib

BRAF BRAF inhibitor + MEK inhibitor for BRAF V600E mutation (29, 92)

Sotorasib KRAS Direct KRAS G12C inhibitor (29, 93)

Adagrasib KRAS Direct KRAS G12C inhibitor (29, 93)
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that integrins are involved in ECM remodeling and are largely

implicated in cancer (104, 105). For instance, miR-338 may

suppress lung cancer metastasis via integrin b3 (106). MiR-29c

inhibits lung cancer metastasis and cancer cell adhesion to the ECM

by integrin b1 and MMP2 expression inhibition (107). Moreover,

exosomal miRNAs are involved in a variety of lung cancer

processes, from cancer cell proliferation, apoptosis, epithelial-to-

mesenchymal transition (EMT) and metastasis, to angiogenesis

(108). Exosomes with low miR-34c-3p levels may promote

NSCLC invasion and migration via upregulating integrin

a2b1 (109).
3.2 MiRNAs and epigenetic regulation

MiRNAs are able to contribute to the epigenetic regulation via

targeting several epigenetic regulators. MiR-101 interferes with lung

cancer progression processes via the PTEN/AKT signaling cascade,

by targeting the DNA-methyltransferase 3A (DNMT3A) (110).
Frontiers in Oncology 07
EZH2, a histone methyltransferase, functions as an epigenetic

regulator by catalyzing the methylation of histone H3 - lysine 27

(111). In a study by Xia et al., anti-miR-21 led to a downregulation

of EZH2 expression in lung cancer stem cells, proving the

interaction between this miRNA and EZH2 (112). Another

epigenetic modulators are histone deacetylases (HDACs), which

interact with the chromatin structure and alter it, leading to

transcriptional repression (113). In a study by Jeon et al.,

combined treatment with miR-449a and HDAC inhibitors in

vitro led to a significant reduction in growth when compared to

treatment with HDAC inhibitors alone (114). MiR-200b is involved

in the therapeutic resistance of LUAD cells via E2F3; the

suppression of HDAC1/4 increases miR-200b expression via

histone-H3 acetylation upregulation, suggesting a crosstalk

between miR-200b and HDAC1/4. In the Chen study, HDAC1/4

silencing led to G2/M cell cycle arrest, inhibited cancer cell

proliferative abilities, increased cancer cell apoptosis, and

counteracted the therapeutic resistance in docetaxel-resistant

LUAD cells, in part via a miR-200b-controlled mechanism (115).
FIGURE 1

Summarization of several oncogenic targets and their signaling pathways in lung cancer. After binding with the corresponding ligands of the EGFR,
the EGFR dimer activates downstream signaling pathways such as the RAS-RAF-MEK-ERK and PI3K-AKT, with an effect upon cell survival, cell
growth and cell migration (19–21). In lung cancer, the activated state of EGFR is achieved through initial oncogenic mutations in exons 18-21, which
encode the kinase domain (22). Concomitantly, KRAS plays a crucial role in signaling through the PI3K-AKT-mTOR, RAF-MEK-ERK and RALGDS-
RAL-PLD pathways, modulating cell survival, apoptosis, cell proliferation, cell cycle, vesicle trafficking and progression (77–81), highlighting its
oncogenic potential. In lung cancer, the ALK-EML4 fusion protein can form a dimer that does not require activation via ligand, which activates ALK
and downstream RAS-RAF-MEK-ERK, PI3K-AKT-mTOR, and JAK-STAT signaling pathways, leading to effects upon cancer cell survival, apoptosis,
proliferation and cell growth (33–35).
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Furthermore, in the present chapter, we will briefly discuss some

of the main NSCLC progression processes, providing several practical

examples of modulatory miRNAs from the literature. Figure 2

presents these cancer processes and the associated miRNAs.
3.3 Survival and proliferation

MiRNAs can modulate NSCLC cell survival and proliferation.

In a study by Gong et al., miR-20a promoted NSCLC cell

proliferation through PTEN inhibition and upregulation of PD-L1

(116). In another study by Cui et al., the expression of miR-28 was

significantly upregulated in NSCLC tissues and cell lines compared

to adjacent normal tissue and control cell lines, respectively.

Furthermore, miR-28 promoted cancer cell proliferation by

directly targeting PTEN (117). When referring to miR-30b/c,
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Zhong et al. found that miR-30b/c levels were downregulated in

NSCLC specimens in comparison to control – adjacent non-tumor

tissues and that miR-30b/c targeted Rab18 in a direct manner

leading to a downregulation in Rab18 expression and inhibition

of NSCLC cell proliferation (118). Moreover, Peng et al. identified

miR-19 as an oncogenic miRNA that is overexpressed in NSCLC

tissues and several lung cancer cell lines. Herein, miR-19 inhibited

CBX7 expression via CBX7 3’-UTR binding, leading to a decrease in

CBX7 mRNA expression and CBX7 protein levels. Overexpression

of miR-19 may significantly improve NSCLC cell proliferation and

migration (119). Conversely, Liu et al. showed that miR-1253 was

significantly downregulated in NSCLC tissues and associated with

several clinical parameters such as advanced clinical stage, lymph

node metastasis and even poor survival, highlighting the relevance

of miRNAs in this malignancy. In the Liu study, overexpression of

miR-1253 inhibited cancer cell proliferation, migration and

invasion in vitro and identified the long isoform of WNT5A as a

target for miR-1253 (120). Lastly, a study by Yoo et al. found that

miR-CHA1 expression was downregulated in human lung cancer

tissues (LUAD, SqCC) and cell lines. Overexpression of miR-CHA1

reduced XIAP mRNA expression and protein levels and thus

inhibited NSCLC cell proliferation and induced apoptosis both in

vitro and in vivo (121).
3.4 Invasion and metastasis

As versatile modulators of cancer progression processes,

miRNAs control invasion and metastasis, among other factors

from the local TME, such as hypoxia (122). In general terms,

metastasis implies in its first phase the epithelial-to-mesenchymal

transition, with consecutive loss of epithelial-like characteristics of

cancer cells to a mesenchymal-like state. This leads to increased

motility, invasiveness and the ability to degrade the ECM (123).

Following EMT, cancer cells may regress back towards epithelial-

like characteristics via mesenchymal-epithelial transition (MET)

(123). In a study by Shi et al., miR-218 expression was found to be

significantly downregulated in lung cancer tissues in comparison to

control; the authors identified an association between miR-218

levels and lymph node metastasis and histological grade (124).

Mechanistically, miR-218 suppressed invasion and metastatic

spread via targeting Slug and ZEB2, key factors in the EMT

process, and increased chemosensitivity to cisplatin in H1299 via

Slug and ZEB2 (124). Moreover, Li et al. found that miR-182 is

downregulated in metastatic NSCLC cells in comparison to primary

tumor tissues; miR-182 overexpression reduced Snail expression

and conversely promoted E-cadherin expression, leading to the

inhibition of migration and invasion in lung cancer cells. In

addition, miR-182 silenced MET expression, inhibited AKT

phosphorylation and nuclear Snail accumulation. Li et al.

concluded that miR-182 may inhibit NSCLC metastasis and EMT

through the inactivation of MET/AKT/Snail signaling (65).

Conversely, miRNAs can be regulated by a diverse number of

factors. In the Chang et al. study, the authors found that miR-137

expression is induced by Slug and promoted metastasis via targeting
TABLE 2 A selection of miRNAs that target essential driver genes in lung
cancer.

MiRNA Effect
Expression

level
Pathway
affected

References

miR-33a
tumor

suppressive
↓ EGFR (30)

miR-128b
tumor

suppressive
generally ↓ EGFR (31)

let-7c
tumor

suppressive
Not mentioned EGFR (32)

miR-100-
5p

pro-
oncogenic

↑ ALK/mTOR (43)

miR-200c
tumor

suppressive
↓ ALK (44)

miR-449
tumor

suppressive
↓ ALK (45)

miR-760
tumor

suppressive
↓ ROS1 (50, 51)

ed.miR-
411-5p
(A-to-I,
pos. 5)

tumor
suppressive

N/A MET (62)

miR-22-
3p

tumor
suppressive

↓ MET (63)

miR-205
pro-

oncogenic
↑ MET (64)

miR-182
tumor

suppressive
predominantly

↓
MET (65)

miR-
148a-3p

tumor
suppressive

↓
Ras/MAPK/

ERK
(85)

miR-31
pro-

oncogenic
↑ Ras/MAPK (86)

miR-
216b-5p

tumor
suppressive

↓/sponged by
circ_0000620

KRAS (87)

miR-1205
tumor

suppressive
↓ KRAS (88, 173)
Downregulated (↓), Upregulated (↑).
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transcription factor AP-2 gamma (TFAP2C) (125). MiR-137

knockdown inhibited Slug-induced NSCLC cell invasion and

migration (125).
3.5 Neoangiogenesis

NSCLC progression is dependent on generating new

vascularization via the neoangiogenic process, sustaining the

relative oxygenation inside the TME. Our group has critically

reviewed the neoangiogenesis process in NSCLC and the

implication of miRNAs as potential neoangiogenesis-related

therapeutic agents/targets in another paper (126). In general

terms, neoangiogenesis is governed by pro-angiogenic factors,

including VEGFA, FGF2, PDGFB, EGF, MMP2, and anti-

angiogenic factors, such as THBS1 and TIMP1. Neoangiogenesis

is driven by the imbalance between the pro-angiogenic and anti-

angiogenic factors, termed the angiogenic switch (126). Intuitively,

the miRNA-related modulation of neoangiogenesis can be achieved
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via miRNAs that target either pro-angiogenic or anti-angiogenic

factors. In a lung cancer study by Liu et al., miR-29c was found to

target VEGFA and act as a tumor suppressor by inhibiting cancer

cell proliferation, migration and invasion, and angiogenesis in vitro.

Furthermore, the authors identified a significant association

between the downregulated miR-29c expression and poor

prognosis in LUAD stage IIIA-N2 patients (127). In another

study by Mao et al., tumor-derived miR-494 targeted and

downregulated PTEN with a consecutive activation of the AKT/

eNOS signaling pathway within human vascular endothelial cells,

thus promoting neoangiogenesis (128).
3.6 Metabolic reprogramming

Cancer cells are able to reprogram their metabolism in order to

increase the uptake of nutrients and promote their survival, growth

and proliferation (129–131). One such alteration is the Warburg

effect – a metabolism switch towards the use of glycolysis even in
FIGURE 2

The main cancer progression processes discussed in the present paper, along with downregulated and upregulated miRNAs that modulate factors
involved in these processes.
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aerobic conditions (130, 131). Naturally, miRNAs can regulate

factors that are in relation with metabolic rewiring as well. For

instance, miR-124 overexpression inhibited NSCLC cell growth,

energy metabolism, glucose consumption and lactate production

via targeting glucose transporter 1 (GLUT1) and hexokinase II

(HKII) and negatively regulating AKT1 and AKT2 (132).
3.7 Therapy resistance

Therapy resistance is an essential process in the evolution of

NSCLC under treatment and represents a major challenge for

clinicians, as it leads to therapeutic failure and cancer progression. In

non-oncogene-addicted metastatic NSCLC, platinum-based

chemotherapeutics remain a viable treatment option in various

circumstances (82). Therapy resistance to cisplatin (cDDP) is

multifaceted, as multiple mechanisms might be involved at a certain

point. Such mechanisms include efflux transporters, EMT, autophagy,

and modulation of different signaling cascades that pertain to cancer

cell survival and apoptosis (133). For instance, miR-378 upregulation in

cell lines A549/cDDP and Anip973/cDDP led to secreted form

clusterin (sCLU) expression downregulation via direct targeting,

sensitizing the NSCLC cells to cDDP. Concomitantly, patients

sensitive to cDDP had higher levels of miR-378 and lower levels of

sCLU in tumor tissues (134). In a study by Wang et al., miR-328

expression was significantly increased, and PTEN mRNA expression

level was significantly decreased in tumor tissues from cDDP-resistant

NSCLC patients in comparison to cDDP-sensitive NSCLC patients.

Furthermore, the authors observed a higher miR-328 expression level

and lower PTEN expression level in the cDDP-resistant A549 cell line

(A549rCDDP) compared to the parental A549 cell line and confirmed

that miR-328 targeted PTEN.Wang et al. showed that the inhibition of

miR-328 in A549rCDDP cells treated with cDDP induced apoptosis

and decreased cancer cell proliferation, highlighting the association of

miR-328/PTEN in NSCLC cDDP resistance (135). In another study by

Li et al., miR-589 and miR-1244 were downregulated in A549/cDDP

cells in comparison to the parental A549 cell line, while the expression

of miR-182 and miR-224 was found to be increased in the A549/cDDP

cell line, with statistical significance. Transfection of the resistant A549/

cDDP cells with miRNA mimics miR-589 or miR-1244 led to an

improvement in cDDP sensitivity, reducing cancer cell invasion and

apoptosis and underlining the implication of these miRNAs in cDDP

chemosensitivity (136).

Figure 3 provides a visual representation of the implication of

miRNAs in specific lung cancer processes.

Furthermore, Table 3 integrates a larger variety of miRNAs that

modulate essential cancer processes, exemplifying their wide

distribution in this malignancy.
4 Implications and future directions

As exemplified, lung cancer is an intricate malignancy with high

incidence and poor overall prognosis. Recent developments in the

field have brought a modest improvement in patient survival, with
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the addition of immunotherapy and targeted therapeutics in specific

circumstances. Herein, we have critically reviewed the main driver

mutations that may be identified in lung cancer, along with essential

data regarding the associated signaling pathways and their

modulation via non-coding RNAs, specifically miRNAs.

MiRNAs emerged as key players with modulatory roles across

the spectra of cancer processes - from lung cancer development, to

progression. Indeed, these entities are able to modulate cancer cell

proliferation, invasion and metastasis, neoangiogenesis, metabolic

effects, therapy resistance and other. Hence, considering their large

implication in cancer, the interest in their use as therapeutic targets,

agents, or even biomarkers for diagnosis/prognosis is increasing.

From a biomarker perspective, in a study by Liu et al. (160), the

authors analyzed in 168 early-stage NSCLC patients, 100 healthy

volunteers and 128 patients with benign lung nodules a number of

clinical and biochemical parameters, along with miR-200

expression in peripheral blood-derived extracellular vesicles

(EVs). The parameters taken into account included carbohydrate

antigen 199 (CA199), carbohydrate antigen 242 (CA242),

carcinoembryonic antigen (CEA), interleukin-6 (IL-6) and tumor

necrosis factor-a (TNF-a). Interestingly, peripheral blood-derived
miR-200 EVs displayed diagnostic value, with a sensitivity of

60.12%, specificity of 95.18%, area under the curve (AUC) =

0.855 [95% CI: 0.816-0.888], p < 0.001 for early-stage NSCLC.

Furthermore, the addition of CA242, CEA and CA199 besides

peripheral blood-derived miR-200 EVs displayed increased

diagnostic efficacy, with a sensitivity of 89.88%, specificity of

98.68% and AUC = 0.942 [95% CI: 0.914-0.964], p < 0.001 for

early-stage NSCLC, rendering the potential utility of miR-200 as a

biomarker in this malignancy (160).

Furthermore, Wozniak et al. (161) sampled 100 NSCLC

patients stages I to IIIA, marked as early-stage NSCLC and 100

non-cancer controls, screening 754 circulating miRNAs through

qRT-PCR. This led to a model of 24-miRNA panel which can be

consulted in the Wozniak study (161). Herein, logistic regression

analyses showed diagnostic potential for the 24-miRNA panel with

an AUC = 0.92 [95% CI: 0.87-0.95] in discriminating lung cancer

cases from controls. Furthermore, when adjusted to sex, age and

smoking status, the diagnostic efficacy of the combined 24-miRNA

panel increased to an AUC = 0.94 [95% CI: 0.90-0.97]. Moreover,

the 24-miRNA panel had similar performances across the different

NSCLC subtypes - with an AUC = 0.94 for LUADs and AUC = 0.96

for LUSCs. In addition, subgroup analyses showed AUC = 0.96

for stage I (IA and IB), AUC = 0.98 for stage II (IIA and IIB) and

AUC = 0.97 for stage IIIA NSCLC patients (161).

In a study by Wang et al. (162), the authors overlapped miRNA

data set from miRNA sequencing data of 8 specimens that were

collected from thoracic surgery of non-smoking female patients

with LUAD and data extracted from the TCGA database. The

authors identified hsa-miR-200a, hsa-miR-21 and hsa-miR-584 as

miRNAs significantly associated with OS in this subset of patients,

highlighting the potential of these miRNAs to be used as a

prognostic model (162).

Abdipourbozorgbaghi et al. (163) analyzed plasma miRNA

expression in a cohort of 122 patients - 78 NSCLC patients and
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TABLE 3 A selection of miRNAs that modulate the main cancer processes.

Cancer process MiRNA Expression level Study type
Stimulatory (+)
Inhibitory (-)

Proposed
effect

Ref

Cancer cell survival and
proliferation

miR-21 ↑ Review (+) proliferation Pro-oncogenic (137)

miR-4739 ↑
in vitro, in vivo,
ex vivo (tissues)

(+) proliferation Pro-oncogenic (138)

miR-6884-5p ↓ in vitro (–) proliferation
Tumor

suppressive
(139)

miR-144-5p ↓ in vitro (-) proliferation
Tumor

suppressive
(140)

miR-200c-3p – in vitro (-) proliferation
Tumor

suppressive
(141)

(Continued)
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FIGURE 3

Overview of some cancer processes regulated by microRNAs in lung cancer. Survival and Proliferation: in lung cancer, miR-20a inhibits PTEN and
upregulates PD-L1, promoting NSCLC cell proliferation (116); miR-30b/c is able to target Rab18 directly, leading to Rab18 repression and inhibition
of NSCLC cell proliferation (118); miR-19 is an oncogenic miRNA that inhibits CBX7 expression (119). Invasion and metastasis: metastasis implies
several essential processes, including epithelial-to-mesenchymal transition, with increased cancer cell invasiveness, motility and the ability to
degrade the ECM. Furthermore, the mesenchymal-to-epithelial transition reverses these mesenchymal characteristics to epithelial-like
characteristics (122, 123). In lung cancer, miR-218 is able to suppress invasion and metastatic spread by targeting key factors that modulate the EMT
process - Slug and ZEB2 (124). In addition, a study found decreased miR-182 levels in metastatic NSCLC cells compared to the primary tumor and
miR-182 may inhibit NSCLC EMT via inactivation of MET/AKT/Snail signaling pathway (65). Neoangiogenesis: essential pro-angiogenic factors include
VEGFA, FGF2, PDGFB, EGF, MMP2 (126); miR-29c is able to target VEGFA and thus act as a tumor suppressor (127). MiR-494 targets and
downregulates PTEN, with a consecutive activation of the AKT/eNOS pathway and stimulation of neoangiogenesis (128). Metabolic reprogramming:
miR-124 interferes with cancer cell metabolism by targeting GLUT1 and HKII, negatively regulating AKT1 and AKT2 (132). Therapy resistance: miRNAs
are largely implicated in therapy resistance in NSCLC, which is a multifaceted process. MiR-378 upregulation downregulates secreted form clusterin
(sCLU) via direct targeting and led to sensitizing the NSCLC cells to cDDP (134). Other miRNAs implicated in NSCLC therapy resistance include the
miR-328/PTEN duo (135), miR-589, miR-1244, miR-182, and miR-224 (136), with various expression levels of these non-coding RNAs.
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TABLE 3 Continued

Cancer process MiRNA Expression level Study type
Stimulatory (+)
Inhibitory (-)

Proposed
effect

Ref

miR-342-5p ↓
in vitro, in vivo,
ex vivo (tissues)

(-) proliferation
Tumor

suppressive
(142)

miR-489-3p
↓ in A549
↑ in H1975

in vitro (-) proliferation
Tumor

suppressive
(143)

miR-137 ↓
in vitro, in vivo,
ex vivo (tissues),

in silico
(-) proliferation

Tumor
suppressive

(144)

miR-3195 ↓ in vitro, in vivo (-) proliferation
Tumor

suppressive
(145)

hsa-miR-CHA2 ↓
in vitro, in vivo,
ex vivo (tissues)

(-) proliferation
Tumor

suppressive
(146)

miR-1976 ↓
in vitro, in vivo,
ex vivo (tissues)

(-) proliferation
Tumor

suppressive
(147)

miR-373-3p ↓
in vitro, ex vivo

(tissues)
(-) proliferation

Tumor
suppressive

(148)

miR-133a-3p ↓ in vitro, in vivo (-) proliferation
Tumor

suppressive
(149)

Invasion, migration and
metastasis

miR-21 ↑ Review
(+) metastasis, mesenchymal-

epithelial transition
Pro-oncogenic (137)

miR-522-3p ↑
in vitro, in vivo,
ex vivo (tissues)

(+) metastasis Pro-oncogenic (150)

miR-4739 ↑
in vitro, in vivo,
ex vivo (tissues)

(+) migration, metastasis Pro-oncogenic (138)

miR-4448 – in vitro, ex vivo (-) EMT
Tumor

suppressive
*SCLC

(151)

miR-6884-5p ↓ in vitro (-) EMT
Tumor

suppressive
(139)

miR-144-5p ↓ in vitro (-) invasion, migration
Tumor

suppressive
(140)

miR-200c-3p – in vitro (-) invasion
Tumor

suppressive
(141)

miR-342-5p ↓
in vitro, in vivo,
ex vivo (tissues)

(-) invasion, migration
Tumor

suppressive
(142)

miR-489-3p ↓ in vitro (-) migration
Tumor

suppressive
(143)

miR-137 ↓
in vitro, in vivo,
ex vivo (tissues),

in silico
(-) migration, invasion

Tumor
suppressive

(144)

miR-3195 ↓ in vitro, in vivo (-) migration
Tumor

suppressive
(145)

miR-1976 ↓
in vitro, in vivo,
ex vivo (tissues)

(-) migration
Tumor

suppressive
(147)

miR-373-3p ↓
in vitro, ex vivo

(tissues)
(-) invasion, migration

Tumor
suppressive

(148)

miR-133a-3p ↓ in vitro, in vivo (-) metastasis
Tumor

suppressive
(149)

Neoangiogenesis miR-1293 ↑ in vitro, in vivo (+) angiogenesis Pro-oncogenic (152)

(Continued)
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44 healthy controls. Although the authors found that miRNA

expression levels in LUAD were independent of tumor stage, 2

miRNAs were identified as early-stage (stage I and II) biomarkers -

hsa-miR-210-3p and hsa-miR-301a-5p, whilst hsa-miR-9-5p, hsa-

miR-141-5p and hsa-miR-147b-3p were identified as late-stage

(stage III and IV) biomarkers. Conversely, there was a higher

variability between the stages, with only 6 miRNAs being

common. Hsa-miR-210-3p and hsa-miR-301a-5p were found to

be early-stage miRNAs in both LUAD and LUSC, and hsa-miR-9-

5p was a late-stage biomarker in both LUAD and LUSC patients.

The authors concluded with one miRNA diagnosis panel that

included 7 miRNAs for LUAD diagnosis and a panel of 9

miRNAs for LUSC diagnosis. MiR-135b-5p, miR-196a-5p and

miR-31-5p (LUAD) were found to be independent prognostic

markers for survival in LUAD and miR-205 for LUSC (163).

From a practical perspective, the detection of miRNAs in liquid

biopsy is constantly evolving and perfecting, as miRNAs are the

most studied ncRNAs in liquid biopsies (164). According to Ma

et al., several detection methods have been used for miRNAs,

including qPCR, rolling circle amplification, strand displacement

amplification and hybridization chain reaction (164). Although the

detection of miRNAs in liquid biopsy holds great potential for

future, current large-scale use is hampered by numerous factors.

Limitations in moving from preclinical models to clinical

applications include the need for validation in large-scale

population (165), laboratory standardization (164), differences in

sample processing techniques (166), and others.

The reproducibility of these markers/panel of miRNAs in

clinical practice is seldom with great success. A major limitation
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is the reproducibility in independent cohorts due to variability in

several parameters, including patient characteristics (e.g., age, sex),

sample collection, analytical miRNA detection strategies, and

others. Furthermore, miRNA expression is modulated via

multiple methods, such as RNA-binding proteins (167), marking

their potential variability between subjects. A future direction is also

represented by the integration of miRNA panels with genomic and

epigenomic data, leading to a more comprehensive characterization

of the tumor. Yang et al. showed that there is a crosstalk between

miRNA expression for immune regulation, DNA methylation and

copy number variation in glioma (168).

When considering miRNAs in a therapeutic context, the agents

can act either as miRNA mimics or miRNA inhibitors. Table 4

presents a selection of NSCLC preclinical studies that focus on

miRNA mimics.
5 Conclusion

In the present paper, we have critically reviewed the main

prospects pertaining to the effects of miRNAs in the personalized

medicine of lung cancer.

Several mutated/genetically altered genes drive lung cancer to a

more aggressive phenotype. For instance, EGFR L858R point

mutation in exon 21 and the LREA in-frame deletion on exon 19

are two EGFR activating mutations, which are druggable via EGFR

TKIs. ALK rearrangements lead to constitutive ALK kinase activity,

with lung tumors exhibiting increased aggressive behavior. This

includes nodal metastasis and advanced stages at diagnosis; these
TABLE 3 Continued

Cancer process MiRNA Expression level Study type
Stimulatory (+)
Inhibitory (-)

Proposed
effect

Ref

miR-4739 ↑
in vitro, in vivo,
ex vivo (tissues)

(+) angiogenesis Pro-oncogenic (138)

miR-491-5p ↓ in vitro, in vivo (-) angiogenesis
Tumor

suppressive
(153)

Metabolic
reprogramming

miR-183-5p – in vitro, in vivo (+) mitoROS production
Tumor

suppressive
(154)

miR-16-5p ↓
in vitro, ex vivo

(tissues)

(-) lactate accumulation
(-) glucose uptake
(-) ATP levels

Tumor
suppressive

(155)

Therapy resistance

miR-21 ↑ Review (+) therapy resistance Pro-oncogenic (137)

hsa-miR-503-5p ↑ in vitro, in vivo (+) therapy resistance Pro-oncogenic (156)

miR-138-5p ↓ in gefitinib-resistant cells in vitro, in vivo (-) therapy resistance
Tumor

suppressive
(157)

miR-3195 ↓ in vitro, in vivo (-) therapy resistance
Tumor

suppressive
(145)

miR-185-5p ↓ in drug resistance in vitro, in silico (+) chemosensitivity
Tumor

suppressive
(158)

miR-125b
↓ in both A549 and A549/

DDP cells
in vitro, in vivo,

ex vivo
(-) therapy resistance

Tumor
suppressive

(159)
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ALK rearrangements are also druggable via targeted therapeutics

such as crizotinib. Furthermore, lung cancer tumors harboring

KRAS mutations carry usually a poor prognosis; KRAS activation

induces interactions with several key pathways, such as the RAF/

MEK/ERK pathway and the PI3K/AKT pathway. Targeted

therapeutics are also available for patients harboring KRAS

mutation - sotorasib, or adagrasib for KRAS G12C mutation.

Other well-known genetic alterations that may be encountered in

lung cancers include ROS1 rearrangements, RET translocations,

alterations in the MET gene, NTRK fusions and BRAF mutations.

Herein, we also provide a selection of miRNAs that target these

essential driver genes/signaling pathways in lung cancer - for

instance, miR-33a and miR-128b that target the EGFR pathway,

miR-200c and miR-449 that target the ALK signaling, miR-205 that

interferes withMET, miR-148a-3p that is tumor suppressive on the

RAS/MAPK/ERK signaling and miR-31 that has pro-oncogenic

effect by modulating the RAS/MAPK pathway.

Furthermore, for a better integrative overview, our paper

critically discusses the main cancer processes that govern lung

cancer progression, along with essential prospects about miRNA

modulation of these processes. We underline the implication of

miR-28 as a promoter of cancer cell proliferation and miR-218 as a

suppressor of invasion and metastatic spread via targeting Slug,

ZEB2 and EMT. MiR-29c acts as a tumor suppressor via targeting

VEGFA and several miRNAs have been described to be implicated

in therapy resistance - miR-378, miR-328, miR-589, miR-1244.

When considering potential clinical applications and future

directions in miRNA research in lung cancer, our paper

highlights several developments in the field of lung cancer

biomarkers - a combined peripheral blood-derived miR-200 EVs

with CA242, CEA and CA199 that displays high diagnostic

performance in early-stage NSCLC and also other miRNA

diagnostic panels that may prove useful in early diagnosis or even

in discriminating LUAD from LUSC. Although the liquid biopsy

strategy is not entirely standardized and developed, it appears that

the constant evolution of the field holds great potential.
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The field of lung cancer is rapidly advancing, driven by the high

mortality rates associated with this malignancy. The addition of

ncRNAs and specifically of miRNAs into the complex molecular

framework of lung cancer has the potential to improve patient care.

Although there are still numerous aspects that need to be

apprehended for a better integration of miRNA study in lung

cancer, significant steps forward have already been achieved, as

highlighted in this paper.
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TABLE 4 Examples of miRNA mimics in NSCLC preclinical studies.

MiRNA mimic
Preclinical

model/in vivo
model

Target
Delivery
system

Effect Ref

miR-34a
NSCLC tumor
xenograft

c-Met, Bcl-2, partial
repression of CDK4

Lipid-based delivery
reagent

MiR-34a downregulates CDK4, c-Met and Bcl-2 in
H460 cells and has tumor suppressive effects.

(169)

let-7b
miR-34a

KRASG12D

autochthonous
NSCLC mouse
model

Common targets:
CDK6, MYC
Other targets

Lipid-based delivery
vehicle - NLE

In a KRAS-activated NSCLC mice model, the systemic
delivery of let-7b/miR-34a mimics reduced lung tumor
burden.

(170)

miR-200c
NSCLC tumor
xenograft

PRDX2
GABP/Nrf2
SESN1

Liposomal
nanoparticle
NOV340/miR-200c

MiR-200c increased intracellular ROS levels and p21
levels.

(171)

5-Fluorouracil-miR-
129 (5-FU-miR-129)

NSCLC metastasis
model

Bcl-2
HMGB1

Vehicle-free delivery

5-FU-miR-129 inhibited cancer cell proliferation and
induced apoptosis in A549/Calu-1 cell lines. This
modified miRNA overcame the in vitro resistance to
erlotinib or 5-FU. When referring to the in vivo
effects, 5-FU-miR-129 inhibited tumor growth and led
to an increase in survival.

(172)
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