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Background: By performing AI-driven workflow analysis, intelligent surgical

systems can provide real-time intraoperative quality control and alerts. We

have upgraded an Intelligent Surgical Assistant (ISA) through integrating a

redesigned hierarchical recognition algorithm, an expanded surgical dataset,

and an optimized real-time intraoperative feedback framework.

Objective: We aimed to assess the accuracy of the ISA in real-time instrument

tracking, organ segmentation, and phase classification during laparoscopic

hemi-hepatectomy.

Methods: In this retrospective multi-center analysis, a total of 142861 annotated

frames were collected from 403 laparoscopic hemi-hepatectomy videos across

4 centers to build a comprehensive database of surgical video annotations. Each

frame was labeled for surgical phase, organs, and instruments. The algorithm in

the ISA was retrained using a hybrid deep learning framework integrating

instrument tracking, organ segmentation, and phase classification. We then

established a scoring system for surgical image recognition and evaluated the

algorithm’s recognition accuracy and inter-operator consistency across different

surgical teams.

Results: The upgraded ISA achieved an accuracy of 89% in real-time recognition

of instruments and organs. The programmatic phase classification for

laparoscopic hemi-hepatectomy reached an average accuracy of 91%

(p<0.001), enabling a correct recognition of surgical events. The inter-operator

variability in recognition was reduced to 14.3%, highlighting the potential of AI-

assisted quality control to standardize intraoperative alerts. Overall, the ISA

demonstrated high precision and consistency in phase recognition and

operative field evaluation across all phases (accuracy >87%, specificity ~90% in

each phase). Notably, critical phases (Phase 1 and Phase 5) were identified with an
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exceptional accuracy area under the curve (AUC 0.96 in Phase 1; AUC 0.87 in

Phase 5), indicating that key surgical procedures could be phased with very low

false-alarm rates.

Conclusions: The optimized ISA provides a highly accurate real-time

interpretation of surgical phases and a strong potential to standardize surgical

procedures, thus guaranteeing the outcomes and safety of laparoscopic

hemi-hepatectomy.
KEYWORDS

digital surgery, AI assistance, intraoperative quality control, surgical decision support,
real-time safety evaluation
1 Introduction

Since the first laparoscopic cholecystectomy accomplished by

Philippe Mouret in 1987, minimally invasive techniques have

flourished, allowing an array of surgical procedures from simple

elective to complex comprehensive, such as tumor and organ

removal (1–3). Surgical robots have further polished these

procedures. The da Vinci system, FDA-approved in 2000, offers

3D high-definition vision, wristed instruments, and tremor filtering,

and can markedly increase the precision of surgical procedures (4).

Clinical studies have confirmed that, compared with open surgery,

minimally invasive and robotic surgery boasts a lower perioperative

complication rate (from 15.2% down to 9.8%), a shorter hospital

stay (on average by 2.3 days), and a milder postoperative pain (VAS

reduced by 1.7 points) (5). These advantages have been translated

into a lower morbidity and a faster recovery (6, 7). Meta-analyses

show that laparoscopic approaches can be safely applied in liver

surgery, even among patients with malignant diseases, offering

similar oncological outcomes with less blood loss and shorter

hospitalization, compared to open surgery (8, 9).

However, traditional laparoscopy is still challenged by a

“fulcrum effect” (opposite motion beneath trocar fulcrums) (10),

limited tactile feedback, and a two-dimensional operative view. It is

particularly difficulty to overcome these challenges when dissecting

dense adhesions or structures with complex anatomies (11–14).

Cognitive errors and fatigue of surgeons may affect the surgical

outcomes (15). Therefore, artificial intelligence systems may be

integrated with laparoscopy to bring more surgical benefits (16).

While AI models have demonstrated significant success in

discrete tasks such as tool tracking or anatomical segmentation, a

key challenge remains: integrating these functions into a single,

cohesive system that maintains both high accuracy across multiple

tasks and the real-time inference speed required for clinical utility.

Many existing systems excel at one task but often struggle to

perform comprehensive, multi-faceted analysis without sacrificing

speed (17, 18). To address this gap, we developed and validated an

Intelligent Surgical Assistant (ISA) for laparoscopic hemi-

hepatectomy. Our system is specifically designed to perform
02
simultaneous instrument tracking, organ segmentation, and

surgical phase classification, all while operating at a clinically

viable frame rate. By providing this holistic, real-time analysis, the

ISA aims to deliver timely and relevant feedback to surgeons,

enhancing intraoperative quality control and safety (19).

This ISA has been trained to distinguish six stages on the phase-

labeled videos of laparoscopic hemi-hepatectomy: Phase 1

(intraoperative ultrasound), Phase 2 (first hepatic hilum dissection),

Phase 3 (second hilum dissection), Phase 4 (exposure of the middle

hepatic vein), Phase 5 (post-resection hemostasis on liver cut surface),

and Phase 0 (non-critical steps). In clinical settings, ISA processes the

incoming laparoscopic video frame-by-frame at ≥30 FPS, meanwhile

labeling the current phase and offering a clarity score in real time. The

surgeon can thus verify if a critical phase has been satisfactorily

completed. For example, a high clarity score in “Phase 5” indicates a

clear surgical field, in which liver transection is complete and

hemostasis is successful. Conversely, a low clarity score indicates the

presence of smoke or bleeding, warning that the surgeon should pause

to clear them. Using ISA, a surgeon can recognize the phase and check

the field more precisely, thereby ensuring the safety of all procedures.
2 Methods

2.1 Study design and ethics

This observational study involved no additional interventions

beyond standard laparoscopic hemi-hepatectomy. All patient data

were de-identified before analysis in compliance with local data

privacy regulations and the Declaration of Helsinki. Data use was

approved by the Clinical Research Ethics Committee of Xi’an

Jiaotong University, Approval Date: July 15, 2023, Approval No.

XJTU1AF2023LSK-429. All patients (aged >18 years) had shown

consent to our videoing surgical procedures for research purposes.

All participating surgeons provided informed consent for the

retrospective use of their surgical videos in workflow evaluation

and frame recognition. Video data were retrospectively collected

between Aug 30, 2023, and Aug 7, 2024.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1678525
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Peng et al. 10.3389/fonc.2025.1678525
2.2 Dataset construction (laparoscopic
hemi-hepatectomy)

This retrospective study included a cohort of 403 patients who

underwent laparoscopic hemi-hepatectomy between August 2023

and August 2024, from which 403 surgical videos were obtained

from four participating centers. The inclusion criteria were: (1)

adult patients (age > 18 years); (2) undergoing elective laparoscopic

hemi-hepatectomy; (3) availability of complete, high-quality

surgical video recordings; and (4) provision of informed consent

for the research use of video data. Exclusion criteria were: (1)

emergency surgeries; (2) procedures converted to open surgery due

to non-oncological reasons (e.g., equipment failure); (3) patients

with prior major upper abdominal surgery; and (4) videos with

significant portions obscured by technical issues or poor quality.

The baseline demographic and clinical characteristics of the patient

cohort are summarized in Table 1.

From these videos, the internal deep learning cohort was

constructed through a rigorous, two-step quality control process.

First, an initial frame selection was conducted by junior surgeons

(PZY, YY, PHQ, MYT, LYT). They were tasked with selecting

representative frames for each key surgical phase, based on

predefined visual criteria designed to ensure anatomical clarity, as

detailed in our scoring system (now Table 2). For instance, frames

selected for Phase 2 (‘First hepatic hilum dissection’) were required

to show a clear exposure of the hilar structures. Each frame selected

in this initial step also had to meet a confidence level exceeding 50%

for clear identification.

These initially selected frames then underwent a second-step

review and supervision by senior surgeons (XJX, GK, LXM, LY).

The senior surgeons’ review protocol was twofold. First, they

qualitatively validated that each frame was a high-quality,

representative example of its designated phase, rejecting images

with visual obstructions such as excessive smoke, blood, or off-

target camera angles. Second, they applied a much stricter

quantitative threshold, excluding any frame with a final

confidence level below 90%. During this stage, images exhibiting

similar surgical features were also reduced to minimize redundancy.

This stringent quality control process resulted in the exclusion of

5,934 frames, with the final 136,927 high-confidence frames being

retained for annotation.
TABLE 1 Baseline characteristics of the patient cohort (N = 403).

Characteristic Value

Age, years (Mean ± SD) 58.4 ± 11.2

Sex (Male), n (%) 282 (70.0%)

BMI, kg/m² (Mean ± SD) 24.1 ± 3.5

Hepatocellular Carcinoma, n (%) 250 (62.0%)

Benign Lesion, n (%) 40 (10.0%)
F
rontiers in Oncology
Summary of baseline demographic and clinical characteristics for the 403 patients included in
the study.
Data are presented as mean ± standard deviation (SD) for continuous variables, and as count
(n) and percentage (%) for categorical variables.
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TABLE 2 Scoring criteria for surgical phases.

Score Description

Phase 0: Non-operative (non-key) phase

2
Clearly identified as a non-critical stage frame, but still of reference
value

1
Some anatomical structure is visible, but none corresponds to any
key surgical phase

0
No recognizable anatomical structure is visible in the frame; the view
is severely occluded

Phase 1: Intraoperative ultrasound inspection

2
The ultrasound probe is in good contact with the liver surface, the
target area under examination is clearly displayed, and the
examination process is fully visible.

1
The ultrasound probe can be seen on the liver surface, but its contact
area or angle is suboptimal, and the key area of examination is not
fully displayed.

0
The ultrasound probe or the area under examination cannot be
identified in the laparoscopic view.

Phase 2: First hepatic hilum dissection

2
The anatomical structures of the first hepatic hilum region are clearly
exposed, and the occlusion band is intact and clearly visible.

1
Some anatomical structures of the first hepatic hilum or the
occlusion band can be seen, but the view is incomplete or unclear.

0
Key structures of the first hepatic hilum are not sufficiently exposed,
and the occlusion band cannot be identified.

Phase 3: Second hepatic hilum dissection

2
The second hepatic hilum region is fully mobilized, and the major
vascular structures (the inferior vena cava and the hepatic vein
confluence) are clearly visible with well-defined boundaries.

1
Some anatomical structures in the second hepatic hilum region are
exposed, but key structures are only partially visible or unclear.

0
Major structures in the second hepatic hilum region are not exposed
and cannot be identified.

Phase 4: Middle hepatic vein exposure

2
The middle hepatic vein is fully dissected and clearly exposed, and its
entire course is clearly visible.

1
The approximate location of the middle hepatic vein can be
discerned, but it is not completely or clearly displayed.

0
The middle hepatic vein is not seen in the surgical field, and its
anatomy is not exposed.

Phase 5: Electrocautery on transection surface after isolated diseased liver

2
The entire liver transection surface is unobstructed and clearly
displayed, and all points requiring electrocautery hemostasis are
clearly visible and have been treated.

1
Part of the liver transection surface is clearly shown, but some local
areas are still obstructed or blurred, and details of the electrocautery
treatment are not fully visible.

0
After resection, the liver transection surface is not clearly displayed,
and the electrocautery hemostasis sites are difficult to identify
For each phase, frames are categorized by visual clarity: Score 2 implies that the relevant
anatomy or task is clearly exposed (e.g., in Phase 1 the ultrasound probe fully contacts the liver
surface). Score 1 indicates incomplete or unclear exposure of key elements, and Score 0
indicates no recognizable structures.
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Each of the retained frames was annotated with segmentation

masks in distinct colors using LabelMe software, highlighting

critical areas such as liver parenchyma (primary target), biliary

structures, major blood vessels, surgical instruments, and

background structures (Figure 1B). The inter-operator

consistency of the review process was assessed using Fleiss’

Kappa. To quantify this, we calculated the coefficient on a

randomly selected subset of 10% of the annotated frames, yielding

a Kappa value of 0.88 (p < 0.001), indicating almost

perfect agreement.

Each annotated frame was then labeled according to the surgical

phase, with the dataset stratified to ensure representation of the five

primary surgical stages (Phases 1-5). To enhance the model’s

generalizability, the study incorporated 10-fold cross-validation

(Figure 2). This technique divided the dataset into 10 subsets,

with each subset serving as the test set once, while the remaining

nine subsets were used for training. This approach facilitated

multiple rounds of training and testing, ensuring robust

performance across diverse datasets.
2.3 Training ISA using AI models

We designed a deep learning model of hybrid segmentation and

multi-task joint learning (Figure 3). Input frames (1920×1080
Frontiers in Oncology 04
resolution) were first processed by a “Split-and-Branch” semantic

segmentation module to identify and mask the key anatomical

structures. The resultant mask was fused with the original image

and fed into a pre-trained ResNet-50 backbone to extract deep

features (2048-dimensional from the Conv5_x stage). The ResNet’s

layers (Conv1 to Conv5_x) were run to extract features in a

hierarchical sequence: upper layers to capture low-level edges and

textures, while deeper layers to model complex organs and

instruments. The segmentation mask emphasizes salient regions,

allowing ResNet to selectively catch instrument shapes or liver

tissue textures.

The model’s architecture was intentionally designed for

computational efficiency to ensure its utility in a real-time clinical

setting. This efficiency is primarily achieved through a shared

feature extractor and lightweight prediction branches. By using a

single ResNet-50 backbone to generate shared features for all

downstream tasks, we effectively avoid the redundant

computations that would arise from running multiple

independent models.

From these shared backbone features, two lightweight fully-

connected branches simultaneously (1) determine the surgical

phase (Phases 0–5) (Figure 1C) and (2) score the image clarity.

We trained the model in PyTorch on an NVIDIA Tesla V100 GPU,

achieving an average inference latency of approximately 52 ms per

frame (corresponding to 19.2 FPS as reported in Table 3), which
FIGURE 1

Integrated dataset and ISA model overview. (A) The dataset construction pipeline. The dataset was sourced from 403 surgical videos, and the
process included frame extraction, annotation by junior surgeons, and final review by experts. (B) The development framework of the Intelligent
Surgical Assistant (ISA) model with separate branches for identifying surgical instruments and anatomical structures. Example outputs are shown as
expert-annotated masks (Expert data), compared to the model’s predicted segmentation (AI data) for both tasks. (C) The classification performance
across five surgical phases: Phase 1 (Endoscopic ultrasound examination), Phase 2 (First hepatic hilum anatomy), Phase 3 (Second hepatic portal
anatomy), Phase 4 (Anatomy of the hepatic portal vein), and Phase 5 (Observation of hemostasis at the resection site after removal of the diseased
liver). (D) The significance of the detection results: this advanced algorithmic system enables whole-process quality control, accurately identifies
critical sites (arrow), and contributes to safer surgical procedures and faster postoperative recovery. The model achieves an AUC of 0.959,
demonstrating a robust discriminatory capability.
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was sufficient for generating intraoperative real-time feedback. The

phase classification branch output a probability distribution over

the 6 phases, while the quality branch predicted a scalar clarity score

reflecting visibility (smoking, bleeding, etc.). We employed joint

loss optimization in both tasks, so that the shared features could

benefit both phase recognition and clarity assessment.

We designed a deep learning model of hybrid segmentation and

multi-task joint learning (Figure 3). Input frames (1920×1080

resolution) were first processed by a “Split-and-Branch” semantic

segmentation module to identify and mask the key anatomical

structures. The resultant mask was fused with the original image

and fed into a pre-trained ResNet-50 backbone to extract deep

features (2048-dimensional from the Conv5_x stage). The ResNet’s

layers (Conv1 to Conv5_x) were run to extract features in a

hierarchical sequence: upper layers to capture low-level edges and

textures, while deeper layers to model complex organs and

instruments. The segmentation mask emphasizes salient regions,

allowing ResNet to selectively catch instrument shapes or liver

tissue textures.

From these shared backbone features, two lightweight fully-

connected branches simultaneously (1) determine the surgical

phase (Phases 0–5) (Figure 1C) and (2) score the image clarity.

We trained the model in PyTorch on an NVIDIA Tesla V100 GPU,
Frontiers in Oncology 05
achieving a millisecond inference (average latency ~52 ms per

frame), which was sufficient for generating intraoperative real-

time feedback. The phase classification branch output a

probability distribution over the 6 phases, while the quality

branch predicted a scalar clarity score reflecting visibility

(smoking, bleeding, etc.). We employed joint loss optimization in

both tasks, so that the shared features could benefit both phase

recognition and clarity assessment.
2.4 Evaluation metrics

We evaluate model performance using standard object

detection metrics. AP50, AP75, and AP50:95 represent the

Average Precision (AP) under Intersection-over-Union (IoU)

thresholds of 0.5, 0.75, and the average from 0.5 to 0.95 (step =

0.05), respectively. AP is computed as the area under the Precision-

Recall (PR) curve:

AP =
Z 1

0
p(r)dr

where p(r)denotes precision at recall r. In addition, APM and

APL measure detection accuracy for medium-sized and large-sized
FIGURE 2

Dual-branch network architecture for joint prediction of stages and quality. (A) The top branch (Segmentation) uses DeepLabv3+ with Xception65
backbone to generate 5-channel outputs highlighting tools and anatomy. (B) The bottom branch (Feature Extraction) passes the image through
ResNet-50 convolutional layers (Conv1–Conv5) to capture contextual information. These outputs are concatenated into a 1920×1080×5 tensor,
which is then processed by two parallel dense “Predicting Branches” ending in softmax layers. By fusing segmentation cues with deep semantic
features, the network robustly predicts the visual quality of each surgical phase.
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objects, respectively, following the COCO evaluation protocol. Frame

rate (FPS) reflects inference speed and computational efficiency.
2.5 Statistical analysis

The performance of the ISA was evaluated according to accuracy,

precision, recall, and F1-score. Phase recognition results were also

summarized in a confusion matrix. To ensure performance was

superior to random assignment, the statistical significance of the phase

classification results was validated using a chi-square test (p < 0.05).
2.6 Clarity scoring system for five key
intraoperative phases of laparoscopic liver
resection

Table 2 defines a three-point system (0–2) for scoring the clarity

in each of the five phases of laparoscopic liver resection, including:
Frontiers in Oncology 06
Phase 1 (intraoperative liver ultrasound), Phase 2 (first porta

hepatis dissection), Phase 3 (second porta hepatis dissection),

Phase 4 (middle hepatic vein exposure), and Phase 5

(electrocoagulation of the liver section surface). Phase 0 was set as

a non-critical background phase. For each phase, a score of 2

represented a full visualization of anatomical structures and an

optimal position of the camera, 1 indicated partial anatomical

exposure or a subopt imal pos i t ion , and 0 denoted

indistinguishable anatomical structures or an obstructed vision

(e.g., smoke, blood, off-target lens). The clinical validity of this

scoring system is rooted in its development by senior hepatobiliary

surgeons and its direct correlation with intraoperative safety. The

criteria for each score were established through expert consensus

based on extensive surgical experience. A high clarity score (Score

2) represents an optimal surgical field, which is a prerequisite for the

safe identification of critical anatomical structures and the

prevention of iatrogenic injury. Conversely, a low score (0 or 1)

signifies a compromised view due to factors like bleeding, smoke, or

suboptimal exposure. Such situations are clinically significant as
TABLE 3 Performance of the model.

Algorithm AP50 AP75 AP50:95 APM APL Frame rate

Ours 95.2%* 65.4%* 62.1%* 54.3% 64.8%* 19.2*

SurgeNet (27) 92.8% 61.7% 58.9% 55.6%* 61.2% 17.5

TransUNet (28) 90.5% 58.9% 56.3% 52.8% 57.9% 15.3

EATFormer (29) 88.3% 56.2% 53.7% 50.1% 55.3% 13.8

EndoViT (30) 86.1% 53.8% 51.2% 47.6% 52.7% 11.6

DeepLabv3+ (31) 83.9% 51.5% 48.9% 45.2% 50.4% 10.1
FIGURE 3

Flowchart of ISA development and evaluation. ISA refers to the Artificial Intelligence model constructed in this study for intraoperative phase
recognition during laparoscopic hepatectomy. The flowchart outlines the entire pipeline including patient enrollment, video acquisition, phase-wise
annotation, data screening, and model validation. Patients were divided into internal and external cohorts. Only clips with phase transition (PT)
confidence above 90% were retained for analysis. A 10-fold cross-validation strategy was applied on the internal dataset for performance evaluation.
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they substantially increase the risk of complications. Therefore, this

scoring system serves as a clinically relevant and valid proxy for

quantifying the quality and safety of the operative field in real-time.
3 Results

3.1 Phase classification

The ISA demonstrated an average accuracy of 91% in classifying

the five key phases (p<0.001). Figure 4 presents phase recognition

results for a representative test case, with color-coded ribbons

comparing the model’s predictions to the ground-truth

annotations. Performance details are shown in Table 4 (confusion

matrix). The ISA matched most of the frames with the phase

correctly, with an accuracy of 89.0% in Phase 1 and 90.5% in

Phase 5, indicating its high reliability in phase segmentation.

Misclassifications were rare (<8% for any off-diagonal), primarily

in frames at the transition between two phases. Overall, the model

could clearly distinguish between major procedural steps of

laparoscopic hemi-hepatectomy, with a recall >82% in each phase.

While overall misclassifications were rare (<8% for any off-

diagonal), a closer analysis of the confusion matrix (Table 4) reveals

that the most frequent misclassification occurred between Phase 3

and Phase 0 (11.4%), suggesting that the final moments of the

second hilum dissection can be visually similar to non-critical

operative steps. Similarly, some confusion was observed between

Phase 2 and Phase 0 (8.2%). These specific transition errors

highlight key areas for future model refinement.
Frontiers in Oncology 07
3.2 Spatial focus of the model during key
surgical phases

To investigate the model’s visual attention during critical

operative tasks, we analyzed its multi-level feature extraction

across two representative stages: first hepatic hilum occlusion and

hepatic pedicle dissection (Figure 5). The network gradually

constructed semantic representations by extracting local textures

and anatomical boundaries from raw laparoscopic images. During

the hilum occlusion phase, the activation maps concentrated

around the portal vein and the site of vascular clamping,

successfully capturing the convergence zone of the hepatic triad.

In the pedicle dissection phase, the model’s focus shifted toward the

hepatic artery and bile duct trajectories, aligning well with the

surgeon’s operative field. The final output heatmaps exhibited high-

intensity responses localized precisely over the regions of surgical

manipulation, reflecting accurate anatomical comprehension by the

network. These attention distributions were tightly aligned with

intraoperative targets, suggesting effective feature learning in

anatomically complex environments.
3.3 Image clarity evaluation

Table 5 summarizes the precision, recall, F1-score, specificity,

and overall accuracy of the ISA in judging the image clarity in each

phase. The ISA achieved the highest AUC (0.96) in Phase 1

(Figure 1D), indicating its strongest ability to discriminate Phase

1. By contrast, the lowest AUC (0.87) and lowest accuracy (0.85)
FIGURE 4

Phase recognition results for one laparoscopic hemi-hepatectomy video. For a representative case from the test set, the three color-coded ribbons
illustrate surgical-phase predictions versus ground truth along the temporal axis. The top ribbon shows the ground-truth labels; the middle ribbon
presents the primary model predictions; the bottom ribbon displays the refined predictions after post-processing. The laparoscopic cholecystectomy
(LC) procedure was temporally divided into five phases: (1) Endoscopic ultrasound examination, (2) First hepatic hilum anatomy, (3) Second hepatic
portal anatomy, (4) Anatomy of the hepatic portal vein, and (5) Observation of hemostasis at the section after isolated diseased liver. In the top
ribbon of Figure 5, these phases are sequentially encoded with five distinct colors.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1678525
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Peng et al. 10.3389/fonc.2025.1678525
were observed in Phase 3, indicating its relatively weaker

performance in recognizing the procedures in Phase 3.
3.4 Performances of the ISA across
multiple cohorts

As shown by the results from the validation cohorts

(Figure 6A), the ISA achieved the highest AUC (0.9598) in Phase

1, followed by Phase 5 (0.93), Phase 4 (0.92), Phase 2 (0.9137). In

Phase 0 and Phase 3, the AUCs were slightly lower (0.8839, 0.8776,
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respectively), reflecting the relatively weaker yet still reliable

discriminatory ability of the ISA.

Notably, the ISA achieved AUC values above 0.87 across all

phases of the procedure, indicating a robust and consistent

discriminative capability for key frame identification in surgical

videos irrespective of stage. Moreover, the performances in

recognizing static background and dynamic key phases showed a

notable disparity, suggesting that a higher degree of visual

complexity (i.e., richer visual information) could enable a more

accurate recognition, as shown by that in active surgical scenes, the

ISA showed a stronger performance in reading frames. Overall, the
FIGURE 5

Heatmap visualizations of neural network activations. Heatmap visualizations of neural network activation are shown to illustrate the model’s
response during phase recognition in liver surgery. (A, I) depict the input surgical images. (B–G, J–O) display the corresponding feature maps
extracted by the backbone network, capturing key visual cues relevant to the identification of the first hepatic portal occlusion phase and the
hepatic pedicle dissection phase, respectively. (H, P) present the final output images, highlighting the network’s interpretive focus for accurate
surgical phase classification.
TABLE 4 Confusion matrix of phase prediction (percent).

Accurate phase \ Prediction
phase

Phase 0 Phase 1 Phase 2 Phase 3 Phase 4 Phase 5

Phase 0 96.1% 1.0% 0.6% 0.6% 0.8% 0.9%

Phase 1 6.5% 89.0% 2.0% 1.0% 1.0% 0.5%

Phase 2 8.2% 1.5% 87.5% 1.5% 0.8% 0.5%

Phase 3 11.4% 0.8% 1.8% 83.5% 1.5% 1.0%

Phase 4 7.2% 0.5% 0.6% 1.2% 88.0% 2.5%

Phase 5 6.0% 0.5% 0.5% 0.5% 2.0% 90.5%
The confusion matrix highlights accurate phase identification. High values along the diagonal (e.g., 96.1% for Phase 0, 89.0% for Phase 1, 88.0% for Phase 4, 90.5% for Phase 5) indicate most
frames are correctly classified into their true phase. Off-diagonal percentages are very low (<10%), showing few misclassifications between phases.
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consistently high AUC values at each phase demonstrated the

model’s stable discriminatory ability.
3.5 Performances of the model

As shown in Table 3, our method achieves the best performance

across most evaluation metrics. Specifically, it obtains the highest

values in AP50 (95.2%), AP75 (65.4%), and AP50:95 (62.1%),

outperforming the second-best method SurgeNet by 2–4

percentage points. It also ranks first in APL (64.8%), indicating

better performance in detecting large anatomical structures. While

SurgeNet achieves a slightly higher APM (55.6%), our method

remains competitive at 54.3%, demonstrating consistent

performance across different object scales.

Regarding efficiency, our model achieves a frame rate of 19.2

FPS, significantly faster than other methods such as TransUNet

(15.3 FPS) and DeepLabv3+ (10.1 FPS). This indicates that our

method is not only accurate but also practical for real-time

applications in clinical scenarios.
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The PR performance of our model is detailed in Figures 6B, C.

Figure 6B compares our model to several baselines, demonstrating

that our method consistently maintains higher precision across

varying recall levels. Furthermore, as shown in Figure 6C, our

model maintains robust performance even under stricter IoU

thresholds (e.g., 0.85 and 0.9), reflecting its strong spatial

localization capabilities.

In summary, the results validate the effectiveness and

robustness of our method in terms of both detection accuracy

and inference speed, highlighting its potential for real-world

medical image analysis tasks.
3.6 Temporal phase prediction across the
full surgical timeline

We further evaluated the model’s temporal prediction

performance over the entire course of laparoscopic liver resection,

dividing the procedure into five sequential phases and comparing

model outputs to expert-annotated ground truth. Without post-
FIGURE 6

Evaluation of model classification performance. (A) ROC curves for the classification of all surgical phases (One-vs-Rest). The high AUC values for
each phase demonstrate the model’s robust discriminatory power. (B) PR curves comparing our model’s performance against several baseline
methods, showing that our model consistently achieves higher precision across varying recall levels. (C) PR curves for our model evaluated at
increasingly stringent IoU thresholds (from 0.5 to 0.95), demonstrating robust performance even at high IoU values and reflecting its strong spatial
localization capabilities.
TABLE 5 Classification performance metrics by phase.

Phase vs All Precision Recall Specificity F1 Score Accuracy AUC Best threshold

Phase 0 0.57 0.77 0.89 0.66 0.87 0.88 1.76

Phase 1 0.62 0.89 0.89 0.73 0.89 0.96 1.77

Phase 2 0.54 0.83 0.86 0.66 0.86 0.91 1.72

Phase 3 0.53 0.75 0.87 0.62 0.85 0.87 1.71

Phase 4 0.55 0.85 0.86 0.67 0.86 0.92 1.70

Phase 5 0.63 0.87 0.90 0.73 0.89 0.93 1.82
The ISA achieves high recall (typically 0.83–0.89) and accuracy (>85%) in all phases. Precision ranges from ~0.55 to 0.63, and F1 scores are around 0.66–0.73. Notably, AUC values are 0.88–0.96,
indicating a strong discriminatory power of the ISA in each phase classification.
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processing, the model was able to reproduce the general phase order,

though minor misclassifications occurred at transitional boundaries

—particularly between the second hepatic portal anatomy and portal

vein dissection stages. After applying temporal smoothing and

transition constraints, the predicted phase sequence exhibited

improved continuity, reduced fragmentation, and better alignment

with surgical annotations. In low-motion frames such as post-

resection hemostasis observation, the model maintained stable

predictions, indicating reliable temporal awareness and rhythmic

phase modeling even in visually ambiguous intervals.
3.7 Performance on the independent
external validation cohort

To rigorously assess the model’s generalizability, we evaluated

its performance on a completely independent external validation

cohort, which consisted of 122 surgical videos from a center whose

data was not used for training. The ISA was applied to this unseen

dataset without any retraining or fine-tuning.

On this external cohort, the model demonstrated strong and

consistent performance, achieving an average phase recognition

accuracy of 89.5%, which is comparable to the 91% accuracy

observed in the internal cross-validation. Key performance

metrics, including precision, recall, and F1-score, also remained

robust, confirming that the model did not overfit to the training

data and can generalize effectively to different surgical teams and

environments. The detailed performance on the external cohort is

summarized in Table 6.
4 Discussion

Our development and multi-center validation of the ISA system

directly addresses several key challenges recently highlighted in the

surgical AI literature. While many studies have focused on single-

task excellence, our approach emphasizes a multi-task framework

that maintains real-time performance, a critical requirement for

clinical adoption (20). Furthermore, by creating a large, multi-

center dataset and rigorously validating our model on an

independent external cohort, we contribute to solving the issues

of data scarcity and model generalizability that are frequently cited
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as major hurdles in the field (21). Our work therefore represents a

significant step toward translating AI from a research concept into a

clinically valuable tool, as envisioned by recent reviews (24).

Compared with previous single-task AI systems used in

laparoscopic surgery, such as those focused solely on tool tracking

or static segmentation, the ISA achieves a comprehensive

integration of intraoperative visual information (21). The average

classification accuracy exceeded 89% across key phases, with AUCs

consistently above 0.87. Notably, our approach outperformed

SurgeNet, TransUNet, and EndoViT in both segmentation

accuracy (AP50: 95.2%) and frame rate (19.2 FPS), providing not

only precision but also practical operability in real surgical

environments. These metrics collectively support the reliability of

ISA as a real-time clinical decision support tool (22–24).

From an oncological perspective, achieving precise anatomical

exposure and reliable intraoperative phase control is essential in

liver cancer resection. The ISA’s ability to evaluate phase-specific

image clarity and detect critical procedural transitions (e.g., hilum

dissection and hemostasis) may directly contribute to complete

tumor excision and reduced intraoperative complications. By

alerting the surgeon in real time when visual clarity is

compromised, the system is designed to mitigate the risks of

transecting tissue with inadequate visualization. Whether this

function ultimately translates into a reduced incidence of residual

tumor warrants investigation in future prospective studies.

Although our study did not evaluate long-term oncologic

outcomes, the integration of ISA into hepatobiliary workflows

may ultimately translate into reduced margin positivity and

improved surgical radicality, warranting future investigation.

Despite the promising results, this study has several limitations.

The primary limitation is that our validation is confined to technical

metrics of accuracy and speed, rather than clinical endpoints. While

our system’s ability to accurately identify surgical phases and assess

image clarity suggests a strong potential for improving safety, we

did not measure its direct impact on outcomes such as operative

time, blood loss, or complication rates (24). Therefore, the clinical

benefits of the ISA remain a well-founded hypothesis that requires

rigorous validation in future prospective, randomized controlled

trials. Second, although the dataset is relatively large and multi-

institutional, it may not fully capture the heterogeneity of all

intraoperative environments, especially in complex tumor

resections involving vascular invasion or cirrhotic livers. Third,

the current ISA system relies exclusively on endoscopic video input;

incorporation of multimodal data such as intraoperative ultrasound

or fluorescence imaging may further enhance decision-making

accuracy (25, 26).

In conclusion, the proposed ISA demonstrates high accuracy,

robustness, and real-time responsiveness in phase-specific analysis

during laparoscopic liver surgery. Preliminary feedback from

participating surgeons suggests that the system enhances

intraoperative decision-making, particularly by clarifying critical

transitions such as hemostasis and hepatic hilum dissection. This

study exemplifies how AI can bridge the gap between real-time

endoscopic imaging and surgical decision-making, supporting

procedural consistency and situational awareness.
TABLE 6 Key performance metrics on the external validation cohort
(N=122).

Metric Average value

Phase Recognition Accuracy 89.5%

Area Under the Curve (AUC) 0.90

Precision 0.88

Recall 0.89

F1-Score 0.88
This table presents the core performance metrics of the ISA model on the independent
external validation cohort, which was not used during training, to assess the model's
generalizability.
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However, it is important to acknowledge the model’s potential

limitations and “failure modes,” particularly in challenging clinical

scenarios. As the system relies on visual input, its performance

could be compromised by severe intraoperative bleeding that

completely obscures the camera, extensive adhesions from

reoperations that alter typical anatomy, or rare anatomical

variations not well-represented in the training data. Addressing

these challenges will be a key direction for future model

improvements and is essential for ensuring the system’s reliability

in the full spectrum of surgical situations.

Despite these considerations, with continued optimization and

integration into clinical workflows, the ISA holds strong potential to

improve intraoperative safety and to standardize surgical

procedures—particularly in oncologic contexts where precision

and margin control are critical. Future prospective trials are

warranted to evaluate its clinical impact on operative time,

complication rates, and long-term oncologic outcomes.

Ultimately, the intelligent vision systems demonstrated by ISA

could serve as a foundational component for future integrated

platforms that provide intelligent intraoperative navigation and

quality control in minimally invasive oncologic surgery.
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30. Batić D, Holm F, Özsoy E, Kader A, Daum S, Nolte A, et al. EndoViT:
pretraining vision transformers on a large collection of endoscopic images. Int J
Comput Assisted Radiol Surg. (2024) 19:1085–91. doi: 10.1007/s11548-024-03091-5

31. Chen LC, Zhu Y, Papandreou G, Schroff F, Adam H. (2018). Encoder-decoder
with atrous separable convolution for semantic image segmentation, in: Proceedings of
the European conference on computer vision (ECCV), . pp. 801–18.
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fonc.2025.1678525/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2025.1678525/full#supplementary-material
https://doi.org/10.23736/S2724-5691.23.10126-2
https://doi.org/10.1016/j.suc.2023.10.003
https://doi.org/10.1126/scirobotics.abj2908
https://doi.org/10.1016/j.euf.2024.10.005
https://doi.org/10.1016/S1470-2045(05)70221-7
https://doi.org/10.23736/S2724-5691.21.08764-2
https://doi.org/10.1002/rcs.1495
https://doi.org/10.1016/j.eururo.2012.05.045
https://doi.org/10.1038/s41591-019-0649-2
https://doi.org/10.1097/00000658-199804000-00005
https://doi.org/10.1097/00000658-199804000-00005
https://doi.org/10.1007/s00464-019-07281-0
https://doi.org/10.1016/j.jhep.2015.04.005
https://doi.org/10.1097/SLA.0000000000002072
https://doi.org/10.3322/caac.21819
https://doi.org/10.1097/SLA.0000000000002332
https://doi.org/10.1038/s41746-022-00566-0
https://doi.org/10.1097/SLA.0000000000004351
https://doi.org/10.1016/j.surg.2020.08.016
https://doi.org/10.1007/s00464-022-09108-x
https://doi.org/10.3390/jcm13237108
https://doi.org/10.4240/wjgs.v17.i8.109463
https://doi.org/10.4240/wjgs.v17.i8.109463
https://doi.org/10.1097/SLA.0000000000004594
https://doi.org/10.1007/s00464-020-08168-1
https://doi.org/10.1038/s41746-022-00707-5
https://doi.org/10.1016/j.ijom.2021.07.013
https://doi.org/10.2196/37599
https://doi.org/10.1007/s11263-024-02034-6
https://doi.org/10.1007/s11548-024-03091-5
https://doi.org/10.3389/fonc.2025.1678525
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

	Development of an AI-driven digital assistance system for real-time safety evaluation and quality control in laparoscopic liver surgery
	1 Introduction
	2 Methods
	2.1 Study design and ethics
	2.2 Dataset construction (laparoscopic hemi-hepatectomy)
	2.3 Training ISA using AI models
	2.4 Evaluation metrics
	2.5 Statistical analysis
	2.6 Clarity scoring system for five key intraoperative phases of laparoscopic liver resection

	3 Results
	3.1 Phase classification
	3.2 Spatial focus of the model during key surgical phases
	3.3 Image clarity evaluation
	3.4 Performances of the ISA across multiple cohorts
	3.5 Performances of the model
	3.6 Temporal phase prediction across the full surgical timeline
	3.7 Performance on the independent external validation cohort

	4 Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References


