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Background: Small cell lung cancer (SCLC) is a highly aggressive and rapidly

progressing form of lung cancer that is difficult to treat. Immunotherapy has

provided encouraging outcomes, but only a small proportion of patients

experience significant benefit. Predicting which patients will respond to

immunotherapy is essential for maximizing treatment effectiveness.

Methods: This retrospective analysis included 319 SCLC patients from multiple

centers in China who underwent immune checkpoint inhibitor (ICI) therapy.

Clinical features and peripheral blood biomarkers were used together to create a

prediction system. This system aims to forecast overall survival (OS) and

progression-free survival (PFS). Univariate and multivariate Cox regression

analyses were used to identify prognostic factors. A nomogram was then

constructed to perform risk stratification. The model’s performance was

evaluated using multiple methods. Time-dependent ROC analysis was applied

to assess its predictive accuracy. Decision curve analysis (DCA) was used to

determine its clinical utility. Additionally, calibration plots were created to

examine the model’s consistency with actual outcomes.

Results: In SCLC patients, age, brain metastasis, cigarettes per day, lnNSE

(Natural Logarithm of Neuron-Specific Enolase), lnAISI (Natural Logarithm of

the Aggregate Immune-Inflammatory Index), and lnCLR (Natural Logarithm of

the CRP-to-Albumin Ratio) were found to be key factors affecting OS. A

nomogram incorporating six variables exhibited excellent discrimination,

calibration, and practical utility in both training and validation cohorts. Notably,

lnAISI and lnCLR, indicators of systemic immune-inflammation, showed

significant predictive value.
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Conclusion: This study developed a convenient and effective multi-factor

survival prediction model based on clinical and hematological markers. The

model provides a tool for personalized management of immunotherapy in

SCLC patients. It offers new insights and practical evidence for precision

treatment in SCLC.
KEYWORDS

small cell lung cancer, multi-center study, prognostic model, blood biomarkers,
immunotherapy
1 Introduction

Lung cancer is the leading cause of death related to cancer

globally. Each year, approximately 1.8 million individuals are

diagnosed, and about 1.6 million lose their lives to this disease

(1). Lung cancer is primarily categorized into two types: non-small

cell lung cancer (NSCLC), comprising 80-85% of cases, and SCLC,

accounting for 10-15% (2). It rapidly expands, disseminates early,

and is associated with a poor prognosis. The five-year survival rate

ranges from 12% to 30% (3–6). The choice of treatment depends on

the stage. Common options include surgery, chemotherapy,

radiotherapy, and immunotherapy (6).

In recent years, immunotherapy for SCLC has gained increasing

attention. SCLC is an aggressive form of lung cancer characterized

by rapid growth and a poor prognosis. For many years, treatment

choices were limited. Combining chemotherapy with immune

checkpoint inhibitors, particularly anti-PD-L1 monoclonal

antibodies, has led to better survival outcomes in patients with

ES-SCLC. This represents a significant shift in treatment. The

pivotal IMpower133 trial revealed that incorporating the anti-PD-

L1 monoclonal antibody atezolizumab into standard chemotherapy

(carboplatin + etoposide) notably extended overall survival from a

median of 10.3 months to 12.3 months, thereby setting immune

combination chemotherapy as the new first-line standard for ES-

SCLC (7). The CASPIAN study later supported this finding,

showing that the combination of durvalumab, an anti-PD-L1

drug, with platinum-based chemotherapy and etoposide also

improved survival (8). However, the effect of immunotherapy is

still limited to a smaller group of patients (9–11). It is crucial to

identify SCLC patients who may respond to ICIs and to discover

predictive biomarkers for ICI treatment (12).

Unlike in NSCLC, tissue biomarkers commonly used in SCLC,

such as PD-L1 expression and TMB, do not consistently provide

reliable predictive value. A meta-analysis of 27 studies involving

2792 SCLC patients found that PD-L1 expression in tumor tissue

was approximately 22%–26%, with no significant correlation to

overall survival (HR = 0.86, 95% CI 0.49–1.50, p = 0.588). Another
Overall survival; PFS,
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study indicated that PD-L1 expression was not correlated with

clinical staging, LDH levels, or various other indicators (13).

Although TMB has been explored in SCLC, data is limited and

testing is inconsistent, so there is still no clinical guidance. In this

context, blood inflammation markers like SIRI, AISI, NLR, PLR,

and LDH have gained attention due to their easy detection and

dynamic monitoring advantages (14–19). Numerous meta-analyses

and multicenter studies demonstrate a strong association between

elevated NLR and reduced PFS and OS in SCLC patients, while the

predictive significance of PLR is variable. Furthermore, both LDH

and PLR exhibit potential as predictive markers. Several studies

have found that high LDH levels are related to OS in SCLC patients

(20). However, current studies often focus on single inflammation

markers or clinical variables and lack integrated prediction models

that combine multiple blood biomarkers with clinical features.

There has also been limited systematic evaluation of their clinical

applicability, which restricts their use in precision treatment.

Therefore, it is urgent to explore multi-factor prediction tools that

integrate clinical features and blood biomarkers to optimize

immune treatment risk stratification and dynamic efficacy

monitoring in SCLC patients.

This study analyzed data from 319 SCLC patients treated with

immune checkpoint inhibitors across various centers in China. We

combined patients’ baseline clinical features with peripheral blood

biomarkers to build a prognostic model for OS and PFS in patients

receiving immunotherapy. This model can guide early risk

stratification and help optimize treatment, supporting the shift of

SCLC care from empirical therapy to precision medicine.

2 Methods

2.1 Participant group

Data for this study were retrospectively collected from SCLC

cases diagnosed between January 1, 2019, and April 1, 2025, from

four centers in China: Tianjin Chest Hospital, Fujian Provincial

Hospital, and Qingdao Municipal Hospital, Tianjin Fourth Central

Hospital. Patients were eligible if they were 18 years or older, had

pathologically or cytologically confirmed SCLC, and had an ECOG

performance status ranging from 0 to 1. Additionally, they must
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have received at least one dose of an immune checkpoint inhibitor.

The study included 319 patients.

To ensure reliable and interpretable results, we excluded

patients with: (1) other active cancers affecting survival, (2) active

infections, (3) liver, kidney, or bone marrow dysfunction, or (4)

incomplete follow-up data, including missing survival status

or time.
2.2 Data acquisition and study endpoints

Demographic and clinical baseline data were gathered for each

enrolled patient. Factors considered were age, sex, smoking history,

and prevalent comorbidities like hypertension, coronary heart

disease, and diabetes. Tumor characteristics and the extent of

disease at the first diagnosis were also recorded. We paid

particular attention to distant metastases, including those in the

brain, bone, and liver. Brain metastases were confirmed by three

senior physicians using the patient’s medical history, brain MRI, or

head CT. Bone metastases were identified with a combination of

PET-CT and radionuclide bone scans. Liver metastases were

evaluated using abdominal CT imaging.

Baseline peripheral blood tests were taken before treatment

started. Hematologic markers assessed included neuron-specific

enolase (NSE), LDH, carcinoembryonic antigen (CEA), albumin,

and counts of neutrophils, lymphocytes, and monocytes.

Additionally, C-reactive protein (CRP, mg/L) levels and

calculated inflammatory indices were also measured. The

aggregate immune-inflammatory index (AISI) was defined as:

AISI = neutrophil count × platelet count × monocyte count/

lymphocyte count.

The CRP-to-albumin ratio (CLR) was calculated as: CLR = C-

reactive protein (CRP) level/albumin level.

Missing variables were not excluded. Instead, we used multiple

imputation to handle missing data and reduce bias. Specifically, in

the training cohort, CRP had 11 missing values (4.64%), LDH had 7

missing values (2.95%), and no other variables had missing data.

Since the proportion of missing data in our study was less than 5%,

no sensitivity analysis was performed. The main outcomes assessed

were OS and PFS.
2.3 Model development and evaluation

Patients from Tianjin Chest Hospital were used as the training

cohort. Patients from Fujian Provincial Hospital, Tianjin Fourth

Central Hospital, and Qingdao Municipal Hospital formed the

external validation cohort. The primary outcomes of the study

were survival status and duration.

We first performed univariate Cox proportional hazards

regression on all clinical and laboratory variables. Variables with

a p-value less than 0.1 were retained for multivariate analysis to

ensure potential predictors were not prematurely excluded. A

prognostic model was developed using multivariate Cox

regression, selecting final variables based on statistical significance
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and clinical judgment. To account for multiple testing, p-values

were adjusted using the Benjamini-Hochberg (BH) method for false

discovery rate (FDR) control. A nomogram was developed to

visually represent the model, whose discrimination, calibration,

and clinical utility were assessed in both the training and

validation cohorts. We performed time-dependent ROC analysis

to assess the model’s predictive accuracy over time. Calibration

plots were generated to examine how well the predicted survival

probabilities matched the actual outcomes. Additionally, decision

curve analysis (DCA) was used to evaluate the clinical utility of the

model in predicting overall survival at both 12 and 24 months. Risk

stratification was carried out with X-tile software using risk scores

from the nomogram. Patients were categorized into high-risk and

low-risk groups. Kaplan–Meier curves were used to compare the

survival outcomes between the two groups, with the log-rank test

applied for significance. Additionally, we conducted subgroup

survival analysis to assess the stability of the risk model in

patients with ES-SCLC and LS-SCLC disease. Finally, to compare

the model’s discrimination with that of individual biomarkers, we

calculated time-dependent AUC values for the integrated model

and for three single indicators: lnNSE, lnAISI, and lnCLR.
2.4 Statistical analysis

Categorical variables were presented as frequencies and

proportions. For comparisons between groups, the Mann–

Whitney U test was utilized for continuous data, while either the

chi-square test or Fisher’s exact test was applied for categorical data,

depending on the context. All statistical analyses and visualizations

were conducted using RStudio (version 4.2.1).
3 Results

3.1 Initial characteristics

The training cohort comprised 237 patients, and the validation

cohort included 82 patients. In the training cohort, the median OS

was 12.0 months (IQR: 6.0–19.1), while the median PFS was 8.73

months (IQR: 4.77–16.17). In the validation cohort, the median OS

was 12.62 months (IQR: 7.0–18.45), and the median PFS was 10.18

months (IQR: 4.75–14.38). The two sets showed no significant

differences in demographic characteristics, disease stage,

comorbidities, laboratory results, or survival outcomes. The

similarities show that the two datasets are suitable for further

examination (Table 1).

Clinical characteristics at baseline for SCLC patients in the

training cohort, stratified by survival status, are summarized in

Supplementary Table S1. Compared with survivors, patients who

died were older (p = 0.017) and more often male (p = 0.026). They

also had higher levels of serum NSE, LDH, CRP, and inflammation-

related indices (AISI and CLR) as well as lower lymphocyte counts.

These results suggest that systemic inflammation and tumor burden

are closely related to worse prognosis.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1680624
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Mu et al. 10.3389/fonc.2025.1680624
TABLE 1 Baseline clinical characteristics of small cell lung cancer patients in the training and external validation cohorts.

Variables
Total
(N=319)

Training cohort
(N=237)

Validation cohort
(N=82)

P value

Age, year, median (IQR) 66 (60, 71) 66 (60, 71) 66 (59.25, 70) 0.466

Gender, n (%) 0.912

Female 59 (18.5) 43 (18.14) 16 (19.51)

Male 260 (81.5) 194 (81.86) 66 (80.49)

VALG, n (%) 0.166

LS−SCLC 156 (48.9) 110 (46.41) 46 (56.1)

ES−SCLC 163 (51.1) 127 (53.59) 36 (43.9)

Brain metastasis, n (%) 40 (12.54) 28 (11.81) 12 (14.63) 0.638

Bone metastasis, n (%) 72 (22.57) 59 (24.89) 13 (15.85) 0.125

Liver metastasis, n (%) 29 (9.09) 21 (8.86) 8 (9.76) 0.984

Smoking years, median (IQR) 40 (20,40) 40 (20, 40) 32.5 (10, 40) 0.075

Cigarettes per day, median (IQR) 20 (5, 20) 20 (10, 20) 20 (0, 20) 0.48

Quit smoking, n (%) 55 (17.24) 41 (17.3) 14 (17.07) 1

Hypertension, n (%) 131 (41.07) 100 (42.19) 31 (37.8) 0.571

CHD, n (%) 44 (13.79) 34 (14.35) 10 (12.2) 0.763

Diabetes, n (%) 66 (20.69) 50 (21.1) 16 (19.51) 0.883

NSE, ng/ml, median (IQR) 21.6 (14.15, 53.4) 21.4 (15, 41.9) 21.66 (11.94, 212.18) 0.739

LDH, U/L, median (IQR) 212 (177.5, 268.5) 212 (178, 276) 210 (173.25, 247.75) 0.241

CEA, ng/ml, median (IQR) 3.35 (2.23, 6.58) 3.61 (2.22, 6.68) 3.02 (2.26, 5.33) 0.368

WBC,10^9/L, median (IQR) 7.06 (5.89, 8.65) 7.29 (5.95, 8.58) 6.65 (5.39, 8.96) 0.397

Neutrophils, 10^9/L, median (IQR) 4.42 (3.31, 5.95) 4.52 (3.49, 5.8) 4.1 (3, 6.28) 0.233

Lymphocytes, 10^9/L, median (IQR) 1.71 (1.34, 2.1) 1.7 (1.39, 2.07) 1.75 (1.28, 2.2) 0.858

Monocyte, 10^9/L, median (IQR) 0.45 (0.36, 0.62) 0.46 (0.36, 0.61) 0.44 (0.33, 0.64) 0.737

Albumin, g/L, median (IQR) 40.5 (38.3, 42.85) 40.3 (38, 42.6) 41.15 (39, 43.32) 0.07

CRP, mg/L, median (IQR) 12.1 (4.85, 35) 12.8 (5.05, 33.3) 10.5 (3.93, 43.5) 0.867

PNI, Mean ± SD 49.44 ± 5.34 49.27 ± 5.17 49.94 ± 5.79 0.353

AISI, median (IQR) 323.26 (175.71, 625.33) 332.24 (178.29, 616.53) 305.75 (159.58, 676.18) 0.723

CLR, median (IQR) 7.11 (2.58, 23.2) 7.16 (2.8, 21.13) 6.1 (2.03, 29.78) 0.891

lnNSE, median (IQR) 3.07 (2.65, 3.98) 3.06 (2.71, 3.74) 3.08 (2.48, 5.36) 0.736

lnAISI, Mean ± SD 5.75 ± 0.92 5.76 ± 0.85 5.73 ± 1.09 0.784

lnCLR, median (IQR) 1.96 (0.95, 3.14) 1.97 (1.03, 3.05) 1.81 (0.71, 3.39) 0.891

PFS status, n (%) 249 (78.06) 185 (78.06) 64 (78.05) 1

PFS months, median (IQR) 9 (4.73, 15.18) 8.73 (4.77, 16.17) 10.18 (4.75, 14.38) 0.710

OS status, n (%) 224 (70.22) 168 (70.89) 56 (68.29) 0.762

OS months, median (IQR) 12.27 (6.06, 18.95) 12 (6, 19.1) 12.62 (7, 18.45) 0.542
F
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VALG, Veterans Administration Lung Cancer Study Group; LS-SCLC, Limited-Stage Small Cell Lung Cancer; ES-SCLC, Extensive-Stage Small Cell Lung Cancer; CHD, Coronary Heart Disease;
NSE, Neuron-Specific Enolase; LDH, Lactate Dehydrogenase; CEA, Carcinoembryonic Antigen; WBC,White Blood Cell count; CRP, C-reactive Protein; PNI, Prognostic Nutritional Index; AISI,
Aggregate Index of Systemic Inflammation; CLR, C-reactive Protein-to-Lymphocyte Ratio; PFS, Progression-Free Survival; OS, Overall Survival.
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3.2 Cox regression analysis for single and
multiple variables

Table 2 displays the univariate and multivariate Cox regression

analysis results for overall survival in small cell lung cancer patients.

Univariate analysis identified several variables associated with patient

prognosis, such as age (p < 0.001), VALG (p = 0.008) brain

metastases (p = 0.002) and liver metastases (p =0.016), cigarettes

per day (p = 0.004), and the logarithmic values of NSE (p < 0.001),

LDH (p < 0.001), AISI (p < 0.001), and CLR (p < 0.001). To ensure

that potential predictive factors are not prematurely excluded, we

retained variables with a p-value less than 0.1 for multivariate

analysis. The multivariate analysis demonstrated that age (HR:

1.022, 95% CI: 1.001-1.043, p = 0.040), brain metastasis (HR: 1.967,

95%CI: 1.238-3.128, p = 0.004), Cigarettes per day (HR: 1.019, 95%

CI: 1.006-1.033, p = 0.006), lnAISI (HR: 1.228, 95%CI: 1.001-1.505, p

= 0.049), lnCLR (HR: 1.407, 95%CI: 1.220-1.624, p < 0.001), and

lnNSE (HR: 1.358, 95%CI: 1.136-1.623, p = 0.001) were independent
Frontiers in Oncology 05
indicators of worse survival outcomes, even after the Benjamini-

Hochberg (BH) multiple testing correction (Figure 1A, Table 2).

Spearman correlation analysis showed weak positive correlations

between Age and Brain metastasis (r = 0.13, p = 0.049), Age and

lnCLR (r = 0.13, p = 0.049), Brain metastasis and lnNSE (r = 0.14, p =

0.028), lnNSE and lnCLR (r = 0.20, p = 0.002), and a moderate

positive correlation between lnAISI and lnCLR (r = 0.53, p < 0.001).

The VIF values for Age, Cigarettes per day, Brain metastasis, lnNSE,

lnAISI, and lnCLR were 1.078, 1.063, 1.008, 1.213, 1.240, and 1.053,

respectively, indicating no collinearity between these variables and

other independent variables (Supplementary Figure S3).
3.3 Development and assessment of the
nomogram

A nomogram incorporating six independent risk factors was

developed to predict 1-year and 2-year OS in SCLC patients
TABLE 2 Results of univariate and multivariate Cox regression analyses for overall survival.

Variables

Univariate COX regression Multivariate COX regression

HR (95% CI) P value HR (95% CI)
P value
(unadjusted)

P value
(BH adjusted)

Age 1.039 (1.019–1.060) <0.001 1.022(1.001-1.043) 0.040 0.048

Gender

Female Reference – Reference – –

Male 1.400 (0.908–2.160) 0.128 0.950 (0.592-1.332) 0.827 0.886

VALG

LS−SCLC Reference – Reference – –

ES−SCLC 1.522 (1.117–2.074) 0.008 1.029 (0.766-1.345) 0.886 0.886

Brain metastasis 2.047 (1.310–3.198) 0.002 1.967(1.238-3.128) 0.004 0.008

Bone metastasis 1.367 (0.973–1.921) 0.072 1.167 (0.81-1.673) 0.444 0.525

Liver metastasis 1.858 (1.120–3.082) 0.016 1.554 (0.992-2.217) 0.112 0.183

Smoking years 1.009 (1.000–1.018) 0.062 0.991 (0.979-1.003) 0.153 0.221

Cigarettes per day 1.018 (1.006–1.031) 0.004 1.019(1.006-1.033) 0.006 0.003

Quit smoking 1.009 (0.682–1.491) 0.965

Hypertension 0.713 (0.522–0.974) 0.034 0.716 (0.532-1.03) 0.052 0.115

CHD 1.072 (0.700–1.642) 0.749

Diabetes 0.983 (0.679–1.423) 0.926

CEA 1.002 (0.999–1.004) 0.231

lnNSE 1.512 (1.270–1.801) <0.001 1.358(1.136-1.623) 0.001 0.002

lnLDH 1.877 (1.385–2.545) <0.001 1.299 (0.918-1.73) 0.185 0.240

lnAISI 1.608 (1.328–1.948) <0.001 1.228(1.001-1.505) 0.049 0.049

lnCLR 1.514 (1.336–1.715) <0.001 1.407(1.220-1.624) <0.001 <0.001*
HR, Hazard ratio; CI, Confidence interval; VALG, Veterans Administration Lung Group stage; LS-SCLC, Limited-stage small cell lung cancer; ES-SCLC, Extensive-stage small cell lung cancer;
CHD, Coronary heart disease; CEA, Carcinoembryonic antigen; NSE, Neuron-specific enolase; LDH, Lactate dehydrogenase; AISI, Aggregate index of systemic inflammation; CLR, C-reactive
protein-to-lymphocyte ratio; lnNSE, lnLDH, lnAISI, lnCLR, Natural log-transformed values of the respective variables.
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(Figure 1B). This nomogram is used to predict the OS of SCLC patients

based on six independent variables: lnAISI, age, brain metastasis,

cigarettes per day, lnNSE, and lnCLR. Each variable’s contribution is

translated into a corresponding score. Each feature has a scale, with

higher scores indicating a greater contribution of the variable to poor

survival. The total score is calculated by summing the individual scores

of each variable, and then the total score is converted into predicted

survival probabilities (e.g., OS greater than 12 months and 24 months).

The figure shows the predicted probabilities for OS greater than 24

months and OS greater than 12 months, with corresponding values

(e.g., the probability of OS > 24months is 0.0251, and the probability of

OS > 12 months is 0.246). This model provides an effective tool for

clinicians to personalize treatment and predict the prognosis of SCLC

patients. The nomogram’s predictive accuracy for OS was assessed

using time-dependent ROC curves, calibration plots, and decision

curve analysis in both the training and validation cohorts.
Frontiers in Oncology 06
In the training cohort, time-dependent ROC analysis revealed

AUCs of 0.752 for 1-year OS and 0.736 for 2-year OS (Figure 2A). The

model maintained stable discrimination throughout the follow-up,

with AUC values consistently above 0.7 (Supplementary Figure S1).

In the external validation cohort, the model performed slightly better,

with AUCs of 0.792 and 0.771 for 1-year and 2-year OS, respectively

(Figure 2B). Calibration analysis showed that the predicted OS closely

matched the observed outcomes. In the training cohort, the

calibration plots for both 1-year and 2-year survival closely followed

the 45-degree reference line (Figures 2C, D). The external validation

cohort also showed excellent calibration (Figures 2E, F). DCA showed

that the nomogram provided greater net clinical benefit compared to

treating all patients or none. The model demonstrated a consistently

higher net benefit across various threshold probabilities for 1-year and

2-year overall survival in both the training and validation cohorts

(Figures 2G, H).
FIGURE 1

Forest plot and nomogram for overall survival prediction. (A) Multivariate Cox regression forest plot showing hazard ratios (HR) and 95% confidence
intervals (CI) for prognostic variables; (B) Nomogram based on the final Cox model to predict the probabilities of 12-month and 24-month overall
survival. Red lines indicate an example patient’s point allocations and predicted survival probabilities. *p < 0.05, **p < 0.01, and ***p < 0.001.
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FIGURE 2

Comprehensive evaluation of the nomogram model’s predictive performance for OS. (A) Time-dependent ROC curves at 12 and 24 months in the
training cohort; (B) Time-dependent ROC curves at 12 and 24 months in the validation cohort; (C, D) Calibration plots for predicting 12-month
(C) and 24-month (D) OS in the training cohort; (E, F) Calibration plots for predicting 12-month (E) and 24-month (F) OS in the validation cohort;
(G, H) Decision curve analysis (DCA) for assessing net benefit at 12 and 24 months in the training (G) and validation (H) sets.
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3.4 Risk stratification and survival analysis

Each patient’s total risk score was calculated using the weighted

coefficients of six prognostic factors from the final model. X-tile

software identified an optimal cutoff value of 0.732 (Supplementary

Figure S2), categorizing patients into low-risk and high-risk groups.

Risk scores were ranked in ascending order, and a clear stratification

pattern was observed (Figure 3B). Figure 3A shows the survival status

of all patients. Blue dots indicate patients alive at the last follow-up,

and red dots indicate those who had died. The vertical axis indicates

the total survival duration. Patients classified as high-risk exhibited

reduced survival rates and increased mortality.

We created a heatmap using the six model variables to explore

the correlation between risk levels and variable expression

(Figure 3C). All variables were standardized using Z-score

transformation. The heatmap indicated that the high-risk group

had increased lnAISI, lnCLR, and lnNSE levels, suggesting

heightened systemic inflammation and tumor burden. These

patients were older, had a higher smoking rate, and exhibited an

increased incidence of brain metastases. In contrast, the low-risk

group displayed more favorable biomarker and clinical profiles.

The prognostic performance of the risk assessment model was

evaluated using KM survival analysis for OS and PFS in both the

training and external validation cohorts. In the training cohort, the

high-risk group showed significantly worse OS and PFS, with clearly
Frontiers in Oncology 08
distinct survival curves (Figures 3D, E). Log-rank tests indicated

significant differences (p < 0.0001). Similar results were observed in

the validation cohort. The KM curves for OS (Figure 3F) and PFS

(Figure 3G) showed clear separation among the two groups, with

statistically significant differences (OS: p < 0.0001; PFS: p = 0.0002).
3.5 Subgroup analysis

We subsequently examined the prognostic relevance of the

nomogram-based risk scoring model across various clinical stages

of SCLC. Survival analyses for subgroups were conducted in both

the training and external validation cohorts for patients with ES-

SCLC and LS-SCLC. Patients were categorized into high-risk and

low-risk groups using a threshold of 0.732.

In the training cohort, KM OS curves showed clear separation

between the two risk groups in both stages. Figures 4A (ES-SCLC)

and 4B (LS-SCLC) illustrate that high-risk patients exhibited

significantly reduced survival compared to low-risk patients (log-

rank test, p < 0.0001).The external validation cohort showed a

similar trend. In ES-SCLC, the high-risk group exhibited

significantly poorer overall survival than the low-risk group (p =

0.0033, Figure 4C).In LS-SCLC, the survival curves were clearly

distinct, showing a significant difference between the groups (p =

0.001, Figure 4D).
FIGURE 3

Risk stratification and survival analysis. (A) Survival status plot: patients are ranked by risk score, with red dots indicating death and green dots
indicating survival; the y-axis represents survival time (months); (B) Distribution of risk scores: patients sorted by increasing risk score, with red
indicating high-risk group and green indicating low-risk group; the cutoff (0.732) is indicated by the dashed line; (C) Heatmap of model variables
across patients: rows represent the six final model variables, columns represent patients, and colors indicate relative expression or value levels;
(D, E) Kaplan–Meier curves showing OS and PFS between high-risk and low-risk groups in the training cohort; (F, G) Kaplan–Meier curves showing
OS and PFS between high-risk and low-risk groups in the validation cohort.
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The predictive performance of the final risk model was assessed

against three individual biomarkers (lnNSE, lnAISI, and lnCLR)

through time-dependent ROC analysis at 12 and 24 months.

Figure 4E indicates that the integrated model achieved a 12-

month AUC of 0.752, surpassing lnNSE (0.655), lnAISI (0.662),

and lnCLR (0.727).At 24 months, the model’s AUC remained 0.736,

which also outperformed lnNSE (0.648), lnAISI (0.664), and

lnCLR (0.672) (Figure 4F).These findings indicate that the

integrated model provides better discriminative ability than any

single biomarker.
4 Discussion

SCLC is an aggressive and rapidly progressing lung cancer

subtype, characterized by the poorest prognosis among all types

(21–23). Recently, the combination of immune checkpoint

inhibitors (ICIs) with platinum-based chemotherapy has become the

standard first-line treatment for ES-SCLC. Landmark trials like

IMpower133 and CASPIAN have shown significant enhancements

in OS and PFS; however, the OS benefit is limited, with a five-year

survival rate ranging from 12% to 30% (7, 8). In clinical settings, SCLC

patients exhibit a highly variable response to immunotherapy.

Some patients live longer, while most experience fast disease

progression within a few months. This difference may be related to

factors such as individual immune status, the tumormicroenvironment,

and genetic variations (24, 25). Therefore, identifying patients who will
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benefit most as early as possible is crucial. Developing simple and cost-

effective tools for risk stratification and efficacy prediction is also

necessary. These tools should be widely applicable in clinical practice.

They are important steps toward achieving precision treatment

in SCLC.

This study looked at 319 SCLC patients who received

immunochemotherapy. We combined clinical features and blood

biomarkers to create a survival prediction model. Both univariate

and multivariate Cox regression were used in the analysis. Six

independent predictors of overall survival were identified: age,

brain metastasis, cigarettes per day, lnNSE, lnAISI, and lnCLR.

Using these factors, we built a nomogram to estimate survival

probabilities for 1 year and 2 years. The model showed strong

discrimination, calibration, and clinical utility in both the training

and external validation cohorts.

In this study, lnAISI and lnCLR were identified as independent

risk factors for OS in the multivariate analysis, significantly

enhancing the model. AISI reflects the overall inflammatory and

immune status in the tumor microenvironment by integrating

neutrophils, monocytes, platelets, and lymphocytes (26).

Inflammation associated with tumors significantly contributes to

cancer progression and metastasis by modifying the tumor

microenvironment, enhancing angiogenesis, and facilitating

immune evasion, thereby providing tumor cells with a growth

advantage (27, 28). Inflammation can inhibit T-cell function and

alter the microenvironment to generate pro-tumor cytokines like

IL-6 and TNF-a, thereby diminishing the anti-tumor efficacy of
FIGURE 4

Subgroup analysis and ROC curves of individual indicators. (A, B) Overall survival curves for training cohort (A) ES-SCLC subgroup; (B) LS-SCLC
subgroup; (C, D) Overall survival curves for validation cohort (C) ES-SCLC subgroup; (D) LS-SCLC subgroup; The high-risk group shows significantly
worse survival outcomes than the low-risk group in both sets; (E) ROC curves of the integrated model and individual indicators at 12 months;
(F) ROC curves of the integrated model and individual indicators at 24 months.
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ICIs (29, 30). CLR combines CRP, an inflammation marker, with

lymphocytes, an immune indicator. High CLR levels indicate a state

of “inflammatory activation and immune suppression”, which may

reduce the efficacy of ICIs. Prior research has established a strong

correlation between CLR and prognosis in various solid tumors

(31–33). This study confirms its prognostic significance in

SCLC immunotherapy.

In addition to blood biomarkers, this study found that brain

metastasis and cigarettes per day significantly affected the

effectiveness of immunotherapy. Patients with brain metastasis

had much shorter survival, likely due to the blood-brain barrier

limiting immune cell infiltration and drug delivery. Previous studies

have shown that brain metastasis reduces the effectiveness of PD-

1/PD-L1 inhibitors in NSCLC patients, and our study confirms this

in SCLC (34). Smoking, a major cause of SCLC, may increase TMB,

which enhances tumor immunogenicity. However, long-term

smoking can also cause chronic lung inflammation and create an

immunosuppressive environment, which may reduce the response

to ICIs. These findings suggest that clinicians should consider the

dual impact of smoking burden when evaluating treatment

outcomes (35).

The innovation of this study lies in the first-time application of

lnAISI and lnCLR as independent prognostic factors in the survival

prediction model for SCLC immunotherapy. These markers

sensitively reflect the degree of systemic inflammation and reveal

the functional status of the immune system. Compared to single

markers such as NLR or PLR, lnAISI and lnCLR, when combined

with other common factors in the model, provide a more systematic

and comprehensive assessment of the patient’s immune-

inflammatory status. Furthermore, the study not only developed

the prognostic model using the training cohort but also validated it

through multi-center external cohorts, demonstrating the model’s

wide applicability and reliability across different patient groups.

This approach significantly enhances the clinical utility of the

model, offering stable prognostic evaluations across various

treatment centers and patient backgrounds, thus providing strong

support for personalized immunotherapy management.

Despite its clinical value, this study has some limitations. We

acknowledge the potential biases introduced by the retrospective

design of this study, particularly in terms of patient selection and

data collection. Since retrospective studies are inherently subject to

selection bias, factors such as clinical decision-making, patient

health status, and institutional treatment guidelines may influence

both patient selection and data quality. These factors could

potentially affect the accuracy of the model’s predictions. To

mitigate this, we have made every effort to ensure that the patient

cohort is representative, reducing the impact of selection bias on

our findings. Furthermore, we recognize that there is variability in

immune checkpoint inhibitor treatment regimens between centers,

including differences in drug choice, dosage, and treatment

schedules. These discrepancies can impact treatment outcomes

and may affect the model’s applicability across different centers.

We emphasize this limitation in the discussion and suggest that

future studies should include large-scale, multi-center, prospective

research to validate our model and assess its stability and broad
Frontiers in Oncology 10
applicability under various treatment regimens. Additionally, this

study did not include molecular marker data, such as PD-L1

expression and TMB. Future research could add histological and

molecular markers to create a more detailed prediction model and

improve its accuracy.
5 Conclusion

In summary, this study developed a practical and effective

survival prediction model based on routine clinical features and

hematologic parameters. The study found that age, brain metastasis,

cigarettes per day, lnNSE, lnAISI, and lnCLR are independent

prognostic indicators for overall survival in patients with small

cell lung cancer. The model showed high predictive accuracy and

practical value in both the training and external validation cohorts,

making it a useful tool for personalized immunotherapy

management. Notably, lnAISI and lnCLR are comprehensive

indicators of systemic immune-inflammation status. They reflect

the balance between immune response and inflammation in the

tumor microenvironment, demonstrating clear predictive value.

Additionally, clinical factors like brain metastasis and smoking

burden significantly affect the efficacy of immunotherapy,

underlining the importance of including these factors in

prognosis assessments. Overall, this study offers new evidence and

practical guidance for risk stratification and treatment monitoring

in SCLC patients receiving immunotherapy.
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SUPPLEMENTARY FIGURE 1

Time-dependent area under the curve (AUC) plots evaluating the prognostic

performance of the survival model over time.

SUPPLEMENTARY FIGURE 2

Determination of the optimal cutoff value for the nomogram-derived risk
score using X-tile analysis.

SUPPLEMENTARY FIGURE 3

Correlation heatmap and variance inflation factor (VIF) results for variables.
The upper part shows the correlation heatmap, where each cell displays the

correlation coefficient (r value) between two variables, with the range from -1

to 1. Blue indicates a positive correlation, red indicates a negative correlation,
and white indicates almost no correlation. The asterisks next to the

correlation coefficients represent statistical significance: *** indicates P <
0.001, ** indicates P < 0.01, and * indicates P < 0.05. The lower part shows the

VIF results, where the y-axis represents the VIF value for each variable, used to
assess the degree of multicollinearity among variables.
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