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The worldwide health and economic burden of cancer is substantial,

necessitating urgent, focused prevention and treatment strategies. The

investigation of cancer animal modeling techniques is particularly critical. N-

methyl-N’-nitro-N-nitrosoguanidine (MNNG), a nitrosamine carcinogen, is

extensively utilized in the development of several tumor animal models due to

its ability to replicate the natural onset of cancer. Nonetheless, MNNG exhibits a

propensity for multi-organ carcinogenesis; yet, this aspect remains undiscussed.

The MNNG model exhibits distinct characteristics depending on the route of

administration, yet it also presents inherent limitations such as toxicity,

environmental contamination, and inconsistent modeling outcomes. These

issues necessitate standardized protocols to refine the model, ensuring it

meets the criteria for efficient and precise tumor induction while adhering to

animal welfare principles. This study examines the current applications of MNNG

in gastric cancer models and models of other organs, its carcinogenic

mechanisms, translational relevance to human tumors, and practical

application features, with a particular focus on its use in gastric contexts.

Furthermore, it summarizes and compares the advantages and disadvantages

of various MNNG administration routes, as well as contrasts its carcinogenic

properties with those of other chemical inducers.Through the examination of

drug administration routes, dosage effects, combined modeling strategies, and

model specificity, we endeavored to identify effective methods to enhance the

specificity of target organs by optimizing the administration approach (local

exposure, integration of advanced detection technologies with auxiliary factors).

Furthermore, we encourage researchers to disclose negative results, as this

practice helps improve model stability and accuracy, reduces research costs,

and aligns with animal welfare guidelines.Experimental animals are crucial in

scientific study. Future investigations must develop standardized protocols to

minimize non-target organ damage and examine the interaction mechanisms

between these animals and the tumor microenvironment.
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1 Introduction

Cancer continues to pose a significant global public health

challenge (1). Examining cancer pathophysiology and formulating

prevention measures are fundamental objectives in oncology

research, indicating the essential requirement for suitable tumor

models. N-Methyl-N’-nitro-N-nitrosoguanidine (MNNG), a

nitrosoamine carcinogen, is extensively utilized as a chemical

mutagen in animal cancer models (2). It accurately replicates the

high-risk factor associated with excessive nitrite consumption in

daily life and induces tumors through direct contact.

Adenocarcinoma is the predominant tumor type associated with

mutagenesis, commonly utilized in animal models of stomach

adenocarcinoma, hence offering an optimal experimental

framework for investigating the cancer mechanisms and

therapeutic target development induced by nitrite (3).

In accordance with the 3R principles of animal ethics (4),

Replacement should be the first and foremost consideration when

planning related studies. As a widely used chemical carcinogen for

establishing tumor models, MNNG often involves complex in vivo

microenvironments and systemic disease progression, which are

difficult to fully replicate using in vitro cell cultures. Although recent

years have seen attempts to induce tumors using MNNG in 3D

organoid models (5), the high cost and technical immaturity of

these systems mean that animal studies remain one of the primary

approaches for investigating nitrite-induced primary tumors.

Therefore, under current technological constraints, upholding

animal ethics relies critically on the implementation of Reduction

and Refinement.By adopting more scientific experimental designs,

researchers can maximize the value derived from each animal,

reduce the total number of animals used, and minimize the pain

and stress experienced by animals throughout the study.

Nonetheless, a significant limitation of MNNG in tumor model

establishment is its relatively low specificity. Previous studies have

shown that MNNG promotes carcinogenesis not only in target

organs but also in non-target sites (6), which increases experimental

cost and uncertainty. However, its broad systemic effects across various

organ systems remain poorly characterized. Moreover, MNNG

administration protocols vary considerably across different tumor

models, and even within the same animal species, standardized

methodologies are lacking. MNNG is an extremely potent carcinogen,

and its use entails significant exposure risks as well as potential harm to

the environment.It is therefore essential to comprehensively evaluate the

strengths and limitations of various modeling approaches, promote

adherence to the Reduction and Refinement principles, and ensure that

ethical considerations for animal welfare are fully integrated without

compromising scientific objectives.

2 Research landscape of MNNG and
its implications for cancer
development

MNNG, a nitrosourea compound, mimics dietary nitrite intake

in humans and is widely used to model gastric mucosal
Frontiers in Oncology 02
carcinogenesis (7). N-nitrosamines are strongly associated with

various cancers. Recent studies have extensively utilized MNNG-

induced animal models to investigate tumorigenesis.MNNG

enables the establishment of both in vitro and in vivo models for

esophageal, uterine, lung, and colon cancers (8). Furthermore,

MNNG drives tumor development by dysregulating multiple

signaling pathways, including cellular immunity, oxidative stress,

inflammatory response, glycolysis, apoptosis, autophagy, and

proliferation (9–11). Through its multi-mechanism, multi-stage

complex network, MNNG recapitulates key molecular events in

human carcinogenesis and provides a valuable experimental model

for clinical translation.Based on the MNNG model, numerous

phytochemicals with potential for cancer prevention have been

screened, and their therapeutic targets have been explored, serving

clinical cancer treatment (12).
3 Mechanisms of tumorigenesis
induced by MNNG

The incidence of MNNG-induced tumors is closely associated

with its carcinogenic mechanism. The carcinogenic properties of

MNNG were initially documented by Sugimura and Fujimura, who

effectively induced glandular stomach tumors in rats via prolonged

exposure to MNNG in drinking water (13, 14). Since then, research

into the tumorigenic processes of MNNG has advanced dramatically.

It can induce carcinogenic effects directly, without the need for

bioenzyme metabolism, indicating that exposure to MNNG elevates

cancer risk and is more likely to affect non-target organs. Figures 1, 2

illustrates the schematic diagram of its mechanism.
3.1 DNA alkylation injury

MNNG is a powerful, direct-acting mutagenic nitroso chemical.

Its reactive metabolites (e.g., methyldiazonium ions, CH3N2
+) directly

interact with DNA bases, resulting in alkylation damage and

subsequent gene alterations that promote carcinogenesis.The

primary targets of DNA alkylation are the O6 and N7 positions of

guanine, as well as the N3 position of adenine.Following MNNG

exposure, the primary adduct identified in double-stranded DNA was

N7-methylguanine (N7-MeG) at 67%, along with the minor adducts

N3-methyladenine (N3-MeA) (12%) and O6-methylguanine (O6-

MeG) (7%) (15). The O6-methylguanine (O6-MeG) adduct formed

at the O6 position is the most mutagenic lesion and represents a key

form of DNA damage induced by MNNG (16). During DNA

replication, DNA polymerase misincorporates thymine (T) opposite

O6-MeG, rather than cytosine (C), which is the correct partner for

guanine.Normal cells typically contain a greater number of G-C base

pairs than malignant cells, a phenomenon attributed to the mispairing

of O6-MeG with thymine, which leads to a reduction in methylatable

cytosine residues. Subsequently,O6-MedG can induce sister chromatid

exchanges(SCE), chromosomal aberrations, and further lead to

double-strand breaks, thereby promoting genetic mutations and

tumorigenesis (17, 18). Furthermore, the key MNNG-induced DNA
frontiersin.org

https://doi.org/10.3389/fonc.2025.1681270
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhang et al. 10.3389/fonc.2025.1681270
adduct O6-MeG contributes to mutagenesis by activating proto-

oncogenes or inactivating tumor suppressor genes.Mutations in Ras

family genes, such as H-Ras at codons 12 and 13, result in persistent

proliferative signaling (9, 10). Mutations in tumor suppressor genes,

including TP53 ans P53, can lead to the inactivation of tumor

suppression,hence promoting carcinogenesis (19, 20).
3.2 Failure of the DNA repair mechanism

Approximately 97% of N7-MeG adducts are eliminated from

pyloric mucosa within 48 hours following MNNG exposure,
Frontiers in Oncology 03
possibly attributable to active base excision repair (BER) (21).

Base excision repair (BER) is primarily responsible for repairing

base alkylation damage. DNA glycosylases recognize and excise the

damaged bases, thereby initiating subsequent cleavage and ligation

steps.The repair of O6-MedG is contingent upon the O6-

methylguanine-DNA methyltransferase(MGMT) (16, 22). In

gastric cancer, early upregulation of MGMT promotes DNA

damage repair; however, hypermethylation of its promoter at a

later stage leads to reduced MGMT expression (18, 23, 24).

Inhibition of MGMT function induces G:C to A:T mutations in

the tumor suppressors p53 and PTEN, contributing to human

carcinogenesis (25). The mispaired O6-MeG:T lesion is
FIGURE 1

Mechanism of carcinogenic effects of MNNG on various organs.(Created by figdraw,ID : WPIWUff28f). MNNG directly alkylates DNA bases, primarily
forming mutagenic adducts such as O6-methylguanine (O6-MeG) and N7-methylguanine (N7-MeG). Misincorporation of thymine opposite O6-MeG
during replication results in G→A transition mutations. Inadequate repair of these lesions by mechanisms such as O6-methylguanine-DNA
methyltransferase (MGMT) or mismatch repair (MMR) systems leads to persistent DNA damage. Chronic damage contributes to the activation of
oncogenes (e.g., Ras family genes) and inactivation of tumor suppressors (e.g., TP53), ultimately promoting tumor development in various organs
including the stomach, esophagus, colon, liver, lung, and endometrium.
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recognized by the mismatch repair (MMR) system. This is

supported by the observed upregulation of MMR-related proteins

MSH2 and MSH6 in MNNG-treated cells (26). Deficiencies in this

essential DNA repair mechanism can lead to the accumulation of

mutations, thereby promoting tumor development (27,

28).However, this repair process also could be fatal, as it can lead

to DNA double-strand breaks (29).
3.3 Affecting genetic characteristics of
genes

MNNG induces not only genotoxic effects (gene mutations) but

also profoundly influences gene expression profiles through

epigenetic mechanisms, thereby driving tumorigenesis. DNA

methylation represents a well-characterized epigenetic feature of

MNNG exposure, characterized by the concomitant occurrence of

global hypomethylation and localized promoter hypermethylation

of specific genes, leading to oncogene activation and tumor

suppressor gene silencing (30). For instance, hypermethylation of

the tumor suppressor gene p16 promoter and hypomethylation of

the oncogene hTERT have been documented in MNNG-induced

carcinogenesis (31, 32). Additionally, MNNG can modulate the

epigenome by upregulating phosphorylation of histone H3 at serine

10 and 28 (H3S10p, H3S28p) and downregulating acetylation of

histone H4 at lysine 16 (H4K16ac) (33). Furthermore, METTL3 can

promote gastric carcinogenesis by activating the METTL3/m6A/

miR-1184 axis via an m6A-dependent mechanism, thereby

interfering with the miR-1184/TRPM2 signaling pathway

(34).Recent findings indicate that the demethylase ALKBH5,

which regulates ZKSCAN3 expression via N6-methyladenosine

(m6A) modification, activates VEGFA transcription and facilitates

MNNG-induced gastric cancer cell migration, invasion, cancer stem

cell (CSC) generation, vasculogenic mimicry (VM), and ultimately,

gastric cancer progression (13).
3.4 Influence the molecular mechanism
of tumor

Exposure to MNNG can induce an oxidative stress response.

Following MNNG treatment, levels of reactive oxygen species

(ROS) increase, while the activity of antioxidant enzymes SOD,

CAT, and GSH-Px significantly decreases in both blood and gastric

tissues (35). This enhances mitochondrial oxidative damage and

promotes cell division, which is one of the primary mechanisms of

mutagenesis.Concurrently, this process activates DAMPs,

triggering the NLRP3 inflammasome and amplifying the

inflammatory response. It is widely recognized that MNNG

exposure induces inflammation in the gastric mucosa. In tissues

subjected to chronic exposure, the expression levels of

inflammatory factors such as IL-6, IL-18, IL-1b, TNF-a, and NF-

kB are elevated (36). Similarly, the levels of Gasdermin D

(GSDMD), NLR family pyrin domain containing 3 (NLRP3), and

Caspase-1 are also upregulated (37), indicating that pyroptosis is
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indeed involved in the inflammatory burst. This aligns with the

progression of inflammation-to-cancer transformation.

O6-MeG secondarily induces DNA double-strand breaks and

triggers apoptosis through upregulation of p53 and Fas/CD95/Apo

−1, accompanied by decreased Bcl-2 and activation of caspase-9 and

caspase-3 (38, 39). However, in the gastric cancer microenvironment,

increased expression of Bcl-2 along with reduced levels of Bax, Bim,

caspase-8, and caspase-3 indicates suppressed apoptosis (40). The

survival of cells that were destined to die,which may accelerate

tumor progression.

MNNG also leads to accumulation of p62 and engages the PI3K/

AKT/mTOR pathway downstream (41), contributing to malignant

processes such as cell proliferation, migration, and invasion. MNNG

can suppress normal autophagy and promote the epithelial-

mesenchymal transition (EMT) and cell proliferation. Long-term

exposure to MNNG reduces the expression of autophagy-related

proteins including Beclin-1, LC3-I/II, and ATG5 (42).

Furthermore, following MNNG intervention, regulation of

MMP2, MMP9, VEGF, VEGFR1, TIMP-2, and RECK promotes

angiogenesis (43), tumor invasion, and metastasis. Many

phytochemicals have been found to exhibit preventive effects

against tumor formation in MNNG-induced tumor models.

Tumor development is multidimensional and involves synergistic

activity across multiple pathways; the mechanisms underlying

MNNG-induced carcinogenesis are not yet fully elucidated and

remain under active investigation.
4 Utilization of MNNG in various
tumor models

4.1 MNNG in gastrointestinal models

4.1.1 Animal models associated with gastric
cancer

In gastric cancer models, MNNG predominantly induces well-

differentiated intestinal-type adenocarcinomas (44, 45). Beyond the

previously outlined mechanisms of MNNG carcinogenesis, there

are specific characteristics in the mechanism by which MNNG

results in gastric adenocarcinoma. It selectively alkylates pyloric

gland cells (46), leading to lesions primarily confined to the pyloric

region (47, 48), potentially attributable to enhanced carcinogen

accessibility to proliferative cells in the gastric antrum (49).

Research indicates that the prevalence of O6-MedG-positive cells

diminishes systematically from the pylorus to the corpus,

forestomach, duodenum, and esophagus (50).

Male rats demonstrate elevated tumor induction rates (up to 88%)

compared to female rats (51–53) and are favored. Strains exhibiting

increased vulnerability including Wistar-Kyoto, Wistar, Sprague-

Dawley (SD), and ACI rats (54–56). Tumor induction rates are

often elevated in rats younger than 12 weeks and weighing < 120 g.

4.1.1.1 MNNG-induced models: single-agent approach

MNNG can be delivered through free drinking and intragastric

gavage in the development of gastric cancer models. Free drinking
frontiersin.org
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refers to rats ingesting MNNG at a certain concentration dissolved

in drinking water ad libitum. The concentration of MNNG free

drinking water, the administration period and the success rate of

modeling are shown in Table 1. Generally, tumors generated by

MNNG require an extended period for development. MNNG must

be administered in drinking water for a duration of 8-10 weeks to

effectively begin adenoma developmen (66). Within 30 weeks of

administration, there may be a positive correlation between MNNG

induction success and time of administration.Notably, prolonging

exposure to 40 weeks at this concentration unexpectedly decreased

the incidence to 43.8% (65).

It has been reported that the incidence of MNNG-induced

tumors at 32 weeks was actually lower than that at 24 weeks (32).

Therefore, we consider 24–30 weeks to be a relatively ideal

treatment window when administering MNNG via drinking

water.Although high doses of MNNG can induce a higher tumor

incidence, increasing its concentration does not lead to a

proportional rise in modeling success. This is likely because rats

have a sensitive sense of smell, and higher concentrations of MNNG

may reduce their water intake.A concentration of 100 mg/mL may

be an optimal choice for drinking water administration, though

further experimental validation is needed to confirm

this hypothesis.
Frontiers in Oncology 05
However, we also observed substantial heterogeneity in tumor

induction rates even under repeated experiments using the same

administration protocol. Although higher doses of MNNG

generally lead to relatively higher success rates in tumor

induction, significant variability remains across studies.

Certain scholars have noted that the ingestion of MNNG at a

concentration of 100 mg/L through drinking water results in an

actual cumulative intake of 150 mg to 250 mg, which is insufficient

to promote tumor formation; the cumulative MNNG dose required

for tumor induction is 300 mg (72). These conflicting observations

may indicate considerable instability in the modeling process when

MNNG is administered via drinking water, likely related to its

susceptibility to degradation under room temperature conditions,

which could represent a potential limitation. Furthermore, the lack

of reported details in some experimental datasets,such as the age

and weight of the animals, housing conditions, diet and water

source, manufacturer and storage conditions of MNNG, as well as

mortality rates during the experiment,has also hindered a

standardized analysis.

Unrestricted drinking modeling more accurately reflects the

normal pathological progression and can generate cancer models

that align with the adenocarcinoma development pattern observed

in humans. It possesses significant reference value and serves as an
TABLE 1 Overview of MNNG free drinking water technology in gastric cancer model.

MNNG dosing
groups

Dosage of
MNNG

Duration
(Wks)

Incidence
(%)

Co-factor
Animal
strains

Repeated
verification

Quote

Low-
dosage

25 mg/mL 25 60 None Wistar male rats Have (57)

25 mg/mL 25 30 None Wistar male rats Have (58)

25 mg/mL
50 mg/mL

32
22.2
29.6

None Wistar male rats Have (59)

50 mg/mL 25 72 None Wistar male rats Have (60)

50 mg/mL 25 30 None Wistar male rats Have (61)

Middle-dosage

83 mg/mL 26 50 None Wistar male rats Not (62)

83 mg/mL 24 30 None Wistar male rats Have (63)

83mg/mL
8;
16;
26

37.5
43
28

None Wistar male rats Not (64)

High-dosage

100mg/mL 8 40.6 None
Sprague-Dawley

male rats
Have (65)

100mg/mL 8 26.7 None Wistar male rats Not (66)

100mg/mL 8 10 None Wistar male rats Not (67)

100mg/mL 17 60 Diet with 8%NaCl Wistar male rats Not (45)

100mg/mL 24 73.3 None Wistar male rats Not (68)

100mg/mL 25 80 None Wistar male rats Not (69)

100mg/mL 28 84.2 None Wistar male rats Not (70)

100mg/mL 30 64.3 None
Sprague-Dawley

male rats
Not (71)

100mg/mL 32 44.4 None Wistar male rats Not (59)

100mg/mL 40 43.8 0.9%Nacl Wistar male rats Not (65)
fron
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exemplary modeling method. This method is currently prevalent,

and its value resides in its straightforward execution, which can

successfully mitigate harm inflicted by mechanical procedures such

as surgery or intragastric gavage on rats, hence decreasing the

mortality rate. Nevertheless, the free drinking method possesses

certain drawbacks. MNNG is light-sensitive and necessitates storage

at 2-8°C; while employing shade treatment, elevated interior

temperatures may potentially lead to gradual degradation at

ambient temperature. Unrestricted access to drinking water does

not ensure the daily water consumption of each rat, and elevated

concentrations of MNNG inhibit water intake (6, 73). Residual

MNNG effluent presents environmental disposal difficulties.

Extended modeling durations elevate the possible dangers of

operator exposure.

Intragastric gavage is a frequently employed modeling

technique. The drug concentration is often established at 150-250

mg/mL and the compound is delivered directly into the stomach.

The induction of tumors is positively correlated with the dosage.

Elevating gavage concentration from 50 mg/kg to 100 mg/kg

augmented the incidence of forestomach squamous cell

carcinoma from 21% to 30%, and glandular stomach dysplasia to

52%. The success rate of model construction by the intragastric

gavage approach is elevated, and it is occasionally combined with

NaCl to enhance the success rate. Two doses of 200 mg/kg/bw

resulted in a 100% success rate (74–77). This page compiles data on

commonly utilized gavage doses and their high success rates in

recent years for researchers’ reference, as illustrated in Table 2.

The acute LD50 for MNNG in 10% DMSO administered via

gavage is 90 mg/kg (75), and a dosage of 100 mg/kg resulted in 52%

immediate death. It should be noted that gavage administration

involves high-dose delivery over a short period, which may lead to

acute toxicity and mortality in animals. Although this risk appears

to be closely linked to the solvent used, employing aqueous or olive

oil solutions can significantly reduce such potential harm.

Intragastric gavage models demonstrate an elevated incidence

of forestomach tumors (12%) (84, 85), potentially rendering them

suboptimal for studies on glandular gastric adenocarcinoma. This

may be attributed to the proximity of the specifications and

maximum length of the gastric needle to those of the

forestomach, complicating access to the anatomical location of

the glandular stomach. The intragastric gavage approach offers

the benefit of precise regulation of daily MNNG intake in

experimental animals, hence enhancing the model’s success rate.

MNNG solutions are freshly created, reducing waste and decreasing

environmental and operator exposure. Nonetheless, the drawback

of intragastric gavage is that it necessitates a high level of expertise

from the experimental team. Prolonged, high-dose gavage

administration is likely to have deleterious effects, including

esophageal damage and gastrointestinal distension in rats,

potentially leading to increased mortality (86).
4.1.1.2 MNNG-induced models: combination approach

Owing to the protracted lengthand inconsistent efficacy of

MNNG in isolation, composite modeling techniques have gained

prominence in recent years, especially in the investigation of the
Frontiers in Oncology 06
therapeutic mechanisms of natural medicines targeting stomach

precancerous conditions (87). The efficacy of modeling is generally

assessed by pathological indicators such as CAG, IM, and Dys

identified in stomach mucosa. Table 3 enumerates various

composite modeling methodologies and their corresponding

model types. Combined modeling approaches enhance model

stability and, to some extent, compensate for the limitations of

single-factor models. They also take into account animal welfare

concerns, making them better aligned with the 3R principles

(Replacement, Reduction, and Refinement).Despite variations in

modeling cycles and outcomes, potentially due to supplementary

modeling techniques, medication compositions, and laboratory

settings, the results remain significant references for researchers.

Although numerous studies utilize MNNG-induced

precancerous lesions as their endpoint, the specific modeling

periods vary significantly—ranging from 12 to 28 weeks. This

variation is not merely random inconsistency, but rather a

reflection of differences in model design, the dynamic progression

of precancerous lesions, variations in experimental protocols, and

subtle discrepancies in evaluation criteria. The lack of a

standardized approach has led to the use of varying combinations

and concentrations of N-nitroso compounds, making it difficult to

critically compare conclusions across studies.Furthermore,

pathological changes themselves vary in severity. Time points

such as 12–16 weeks may capture the initial stages of

precancerous pathways, emphasizing “mild” or “early” lesions,

while time points around 24–28 weeks may approach the critical

transition between precancerous lesions and neoplastic states,

highlighting “severe” or “high-grade” pathology. However, most

studies only report changes in pathological status without detailing
TABLE 2 Overview of MNNG Intragastric Gavage Technique for Gastric
Cancer Models.

MNNG
Dose &
Schedule

Co-
Factors

Incidence
(%)

Repeated
verification

Animal
strains

250 mg/kg/
bw, single

dose
None (78) 82.4 Not

BD-VI
male rats

200 mg/kg/
bw, Days 0

& 14

1ml NaCl
daily × 6w

(77);
1ml sat.
NaCl 3x/
wk × 4w
(74);

1mg sat.
NaCl 2x/
wk × 3w
(79);

None (80)

100 Have
Wistar
male rats

150 mg/kg/
bw, Days 0

& 14

S-NaCl
every 3

days × 3w
(81)

100 Have
Wistar
male rats

150 mg/kg/
bw, 3 doses
(2wk apart)

None (82,
83)

100 Have
Wistar
male rats
fro
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the extent of these alterations, leaving readers confused when

confronted with inconsistent results. This underscores an urgent

need for greater data standardization.

MNNG is frequently utilized in conjunction with NaCl, ethanol,

bile acids, ammonia water, ranitidine, or dietary modifications to

reduce modeling duration and enhance efficacy. Zhu Y et al. given

MNNG at a dosage of 200 mg/kg, every 15 days, in conjunction with

40% ethanol (1 mL) every 3 days, with a 3-day fasting regimen,

successfully created a model of precancerous gastric lesions in rats

during a 20-week period (95). ChunYue Yu et al. (99) employed a

methodology that included ad libitum consumption of MNNG

solution (100 mg/mL) and a diet supplemented with 0.05%

ranitidine, alongside irregular feeding and administration of a 2%

sodium salicylate solution (0.5 mL per 100 g body weight), to

effectively create a gastric cancer model.
4.1.1.2.1 NaCl

While it can not induce cancer, it can amplify the

carcinogenicity of MNNG, simulating high-salt diets. Rats

provided with 10% sodium chloride in their drinking water

consume 1.2 to 1.5 times more than those without sodium

chloride (100), and this increase is dose-dependent (101).

Alongside the application of MNNG for modeling, the weekly

administration of 0.1 mL of 10% sodium chloride solution

effectively established the Dys model after 28 weeks (91, 102).

Moreover, NaCl consumption can significantly mitigate the

decrease in water intake induced by high-concentration MNNG

solutions in animals. The factors contributing to NaCl’s role in

tumorigenesis can be delineated as follows: 1) Decreases gastric

mucus viscosity, compromising the mucosal barrier (99, 103); 2)

Elevates ornithine decarboxylase (ODC) activity and replicative

DNA synthesis (RDS), indicators of tumor promotion (101); 3)
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Augments lipid peroxidation associated with gastric epithelial

proliferation (103, 104).

4.1.1.2.2 Bile acids

Simulate harm caused by bile reflux. The incorporation of 0.2%

taurocholic acid into the diet elevated antral tumor formation from

25% (with MNNG alone) to 72% (105). Various bile salts exert a

stimulating influence on the stomach mucosa (106). Bile salts

influence the ion channels of gastric mucosal cells, allowing

hydrogen ions from the lumen to penetrate the mucosa, so

compromising the stomach epithelial barrier and facilitating the

absorption of possible carcinogens (107). Sodium deoxycholic acid

is currently employed to replicate the irritative effects of bile reflux

on gastric mucosa, diminish its barrier function, induce

inflammatory responses, and facilitate the development of gastric

cancer models.

4.1.1.2.3 Ammonia water

Helicobacter pylori is designated as a Group I carcinogen

associated with the onset of stomach cancer. This bacteria

exhibits robust urease activity, converting urea in the stomach

into ammonia. Intragastric gavage of Hp bacterial water can

improve the success rate of model development (108, 109).

Nonetheless, as HP is a biological pathogen, it necessitates a high

degree of technical proficiency from laboratory professionals and

particular environmental conditions. The application of ammonia

water in modeling can replicate the high-ammonia conditions and

harmful effects associated with H. pylori (Hp) infection, resulting in

chronic gastritis. The amalgamation of ammonia water with

MNNG can markedly elevate the occurrence of the model (63,

110). In trials, ammonia water is often provided freely at

concentrations of 0.05% to 0.1% on fasting days.
TABLE 3 Overview of Combination Modeling Protocols for Gastric Precancerous Lesions and Cancer.

MNNG Dose
& Schedule

Co-Factors
Duration
(Wks)

Model
Outcome

Repeated
verification

Animal strains

Free drinking water
(200 mg/mL)

Irregular feeding
15 (88),16

(89)
24 (90)

IM + Dys Have
Sprague-Dawley male rats (88,
90);Sprague-Dawley rats (89);

Free drinking water
(150 mg/mL)

Weekly 0.1 mL 10% NaCl x 20w 28 (91) Dys Have Sprague-Dawley male rats

Free drinking water
(180 mg/mL)

Intragastric 2% Sodium Salicylate (1mL/100g) 24 (92) CAG Not Wistar male rats

Free drinking water
(200 mg/mL)

0.03% Ranitidine feed; Fasting (q/2d); Gavage 40%
Ethanol (10 ml/kg/d)

26 (93)
CAG + IM +

Dys
Not Sprague-Dawley male rats

Intragastric Gavage
(200 mg/kg/15d)

Gavage 40% Ethanol (1 mL/q3d) + Fasting (q/3d)
16 (94)
20 (95)

IM Have Wistar male rats

Free drinking water
(170 mg/mL)

0.03% Ranitidine feed; Fasting (q/3d); Gavage 2%
Sodium Salicylate

12 (96) IM Not Sprague-Dawley male rats

Free drinking water
(100 mg/mL)

Alternating gavage: 20% Ethanol & 50°C Hot Saline +
Ranitidine (2.25g/L, 2mL/d); Irregular feeding

28 (97) IM Not Sprague-Dawley male rats

Free drinking water
(100 mg/mL)

0.3% Ranitidine feed; Fasting; Gavage 150g/L 56°C
NaCl + 30% Ethanol

16-24 (98) IM + Dys Not Wistar male rats
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4.1.1.2.4 Ranitidine

Moreover, a low-acidic environment can expedite the

advancement of stomach cancer (111). An elevation in gastric pH

can augment the methylation of MNNG (112). Consequently, it is

recommended to utilize the acid-suppressing medication Ranitidine

together with modeling. It is essential to recognize that, given the

half-life of Ranitidine, to maintain its efficacy in suppressing

stomach acid secretion, it is often incorporated at a concentration

of 0.03% to 0.05% into rat meal for ad libitum consumption and

must be maintained in a dry, cool environment.

4.1.1.2.5 Alcohol

An ethanol solution replicates the actual danger associated with

alcohol consumption, a significant risk factor for stomach cancer, and

can facilitate the dissolution of MNNG solutions. It is frequently

employed in combination to augment MNNG consumption, with

20% glycolic acid markedly elevating both the occurrence and

quantity of MNNG (113). Research indicates that ethanol

concentrations of 11% can inhibit tumor formation (114). Elevated

quantities of 20%-40% ethanol solution are generally delivered via

gavage, necessitating vigilant monitoring of the animal’s condition to

avert asphyxiation resulting from intoxication.

4.1.1.2.6 Sodium salicylate

Prolonged use of non-steroidal anti-inflammatory medicines

(NSAIDs) has been extensively researched for its enduring

detrimental effects on the gastric mucosa. Sodium salicylate, a

frequently utilized pharmaceutical in modeling protocols, can

induce harm to vascular endothelial cells, resulting in an

inflammatory milieu (115). It also impedes prostaglandin synthesis,

compromising the protective barrier of the stomach mucosa. The

standard dosage in modeling methods is 2% sodium salicylate. To

augment its efficacy, it is frequently paired with an erratic diet.

Following a day of fasting, the medication is delivered via gavage to

enhance contact duration with the gastrointestinal mucosa.

4.1.1.2.7 Others

Furthermore, the amalgamation of heated saline and intragastric

gavage can replicate the irritation induced by high-temperature food

on the gastric mucosa and is frequently employed in modeling

procedures. An irregular diet, as a primary approach of dietary

intervention, can elevate the likelihood of irregular eating patterns.

The aforementioned conditions, in conjunction with substances like

sodium salicylate and ethanol, can be amplified by doing stomach

lavage post-fasting to augment their stimulating effects.

MIWA H et al. (116) documented the dynamic pathological

alterations in the gastric mucosa of rats following unrestricted

consumption of a 100mg/mL MNNG aqueous solution, which

corresponds with the pathological course of gastric cancer as

delineated by the Correa model. Kogure K et al. (64) discovered

that MNNG delivery resulted in three phases of gastric mucosal

alterations. The first stage is predominantly manifested as gastric

mucosal injury and atrophy. By the eighth week, superficial erosion

and significant atrophy were evident in the antral mucosa. By week

16, significant surface erosion and minor dysplastic glands were
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noted in the antrum. The second phase is characterized by intestinal

metaplasia and dysplasia. Beginning in week 18, irregular atypical

glands commenced development near the erosion edges and the

pylorus. At week 24, the antral surface epithelium exhibited

papillary hyperplasia, characterized by the presence of irregular

and atypical glands. The final stage is gastric carcinoma. By week 26,

hyperplasia of the surface epithelium and pyloric glands was noted

in both the minor and larger curvatures of the antrum, with or

without atypia. Between weeks 25 and 32, adenocarcinoma and

spindle cell sarcoma were identified, alongside submucosal

sarcomas exhibiting atypical gland invasion in the lesser curvature

of the antrum. This aligns with prior research (117), which

indicated that 12 weeks post-MNNG exposure, the mucosal layer

of rat gastric tissue thinned, signifying superficial gastritis; after 24

weeks of MNNG treatment, the gastric mucosa displayed

considerable inflammatory cell infiltration, diminished gland size,

and reduced gland quantity, leading to a diagnosis of chronic

atrophic gastritis (CAG); after 36 weeks of MNNG treatment, the

gastric mucosa in the rats revealed inflammatory granulomas or

ulcer-like lesions, with glands contracting due to vacuolar goblet

cells, and the pathological alteration was atrophic gastritis with

intestinal metaplasia (IM). Following 48 weeks of MNNG exposure,

the glandular architecture was obliterated, and the pathology

exhibited irregular morphologies. The peribasilar membrane is

encircled by numerous inflammatory cells of diverse sizes,

categorized as dysplasia (Dys). Qiu-yue Li and colleagues (118)

discovered that following 12 weeks of MNNG exposure in rats, the

stomach mucosal epithelial cells were partially substituted by

intestinal-type epithelial cells. After 20 weeks, the stomach

mucosa commenced atrophy, progressively deteriorating to

moderate or severe stages. The detailed characteristics of the three

stages of gastric mucosal alterations induced by MNNG

administration are summarized in Table 4.

A comparison of the characteristics of different drug

administration methods is presented in Table 5. The selection of a

modeling approach involves multi-dimensional trade-offs. In terms

of organ specificity, there is currently no ideal tumor model that fully

meets all criteria. Compared to other methods, the gavage +

combined modeling approach may represent a preferable option.

However, from the perspective of animal welfare and simulating the

natural progression of disease in humans, free drinking + combined

modeling might be a more desirable alternative. The choice of an

appropriate modeling strategy should be comprehensively weighed

according to research objectives. Given the substantial burden of

cancer worldwide, investigating the mechanisms and therapeutic

targets of precancerous lesions and states has become a research

focus,areas where combined modeling approaches are widely applied.
4.1.1.3 Similarities and differences between human
andMNNG-induced gastric cancer

From an etiological perspective, MNNG can mimic the damage

caused by nitrites to the gastric mucosa, which is similar to nitrite-

induced human gastric cancer (120). Moreover, when combined

with factors such as ethanol, high salt intake, dietary habit changes,

nonsteroidal anti-inflammatory drugs (NSAIDs), and Helicobacter
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pylori infection, MNNG can simulate a more complex environment

resembling human tumor development. After MNNG intervention,

rats develop inflammatory responses in the gastric mucosa, with

pathological manifestations similar to human intestinal-type gastric

cancer (116, 117). The histological progression follows the pattern

of “chronic superficial gastritis -chronic atrophic gastritis -

intestinal metaplasia - dysplasia - tumor,” making it a commonly

used model for studying precancerous lesions.

Mutations in genes such as Bcl-2, COX-2, H-ras, and p53 have

been documented in both human and MNNG-induced gastric

tumors (121). However, the expression of oncogenes such as Ki-

ras and b-catenin does not increase in MNNG-induced rats (122),

suggesting that these genes are not major drivers in MNNG-

induced rat gastric cancer or in human gastric cancer.

Additionally, no microsatellite instability (MSI) is observed. Many

genes involved in immune responses are upregulated, along with

genes related to extracellular matrix (ECM) remodeling, while genes

associated with gastric differentiation are downregulated (123). The

upregulation of immune/inflammatory response genes is consistent

with findings in human gastric cancer. Thus, based on molecular

expression profiles, MNNG may serve as a suitable model for

differentiated gastric cancer (123).

However, the molecular mechanisms by which MNNG mimics

human gastric cancer have certain limitations. While p53 mutations

occur in 36–40% of differentiated human gastric cancers, their

incidence in rats is very low (122, 124). Moreover, no common

human gastric cancer mutations, such as Ki-ras mutations, K-sam

amplification, or c-erbB-2 gene amplification, have been detected in

MNNG-induced rats (123). The cell cycle regulatory gene Cyclin
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D1, which is typically upregulated in human gastric cancer, is

downregulated in rat models, showing an opposite trend. Genes

associated with lymph node metastasis in human gastric cancer

(e.g., Rbp4, Igf2, Fn1) are not significantly upregulated in rats,

indicating a lower potential for lymph node metastasis in MNNG-

induced rat gastric cancer. Additionally, promoter CpG island

(CGI) methylation of tumor suppressor genes such as CDH1 (E-

cadherin), CDKN2A (p16), MLH1, and RASSF1A (19), which is

commonly reported in human gastric cancer, has not been observed

in MNNG-induced rats.

Overall, while the disease background of MNNG-induced

tumors is relatively simple and may not fully replicate the

complex microenvironment of tumor development, MNNG

remains a valuable chemically-induced model for studying human

differentiated gastric cancer in terms of epigenetics ,

histopathological features, and molecular immune responses.

4.1.2 Animal models associated with colon
cancer

MNNG is a powerful topical carcinogen commonly employed

to cause colon cancer, namely well-differentiated adenocarcinomas,

situated in the distal colon (125, 126). Intrarectal Instillation: This is

the conventional technique, facilitating targeted induction in the

distal colon and rectum.Sterile circumstances expedite tumor

development and elevate incidence relative to typical

surroundings (127, 128). So BT et al. (129) developed colon

cancer in all 30 rats with intrarectal administration of MNNG (2

mg/kg) biweekly for 250 days. Kannen V and Frajacomo FT (130,

131) administered four doses of MNNG (5 mg/mL, 0.5 mL/dose)
TABLE 4 The stages of gastric mucosal lesion development induced by MNNG.

Dosage
Route of

Administration
Time

Pathological
alterations

Time
Pathological
alterations

Time Pathological alterations Quote

100 mg/l via Drinking Water 2M
Atrophy and

erosion of gastric
mucosal tissue

4M

Mild intestinal
metaplasia, focal

degenerative changes in
mucosal glands, marked
lymphoid infiltration,

and granuloma
formation

6-8M

Adenomatoid proliferation, poorly
differentiated adenocarcinoma,
mucosal atrophy with stromal
fibrosis and hyalinization

(119)

50-83 mg/
ml

via Drinking Water 8W

Erosion and
atrophy of the

mucosal surface in
the antral cavity

16-
24W

Glandular dysplasia,
papillary hyperplasia of
the surface epithelium,
and irregular atypical
glandular hyperplasia

25-
31W

Atypical hyperplasia of surface
epithelium and pyloric glands,
adenocarcinoma, spindle cell

sarcoma, signet-ring cell carcinoma
(SRCC), and submucosal sarcoma
with atypical glandular infiltration

(64)

100 mg/l via Drinking Water
12-
24W

Thinning and
atrophy of the
gastric mucosal

layer, with reduced
number and size

of glands

36W

Inflammatory
granulomas or

ulcerative lesions with
intestinal metaplasia in
the gastric mucosa

48W
Irregular glandular architecture with

cellular dysplasia
(117)

100-
200mg/mL

via Drinking Water 1M
Inflammatory
changes in the
gastric mucosa

3M

Gastric mucosal
epithelial cells were
partially replaced by

intestinal-type epithelial
cells in rats

5M-
8M

Rod-shaped atypical proliferating
cells were observed in the gastric
mucosa, exhibiting hyperchromatic

and enlarged nuclei, and an
increased nuclear-to-cytoplasmic

ratio

(118)
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biweekly for two weeks, resulting in the induction of colon cancer

within 8-10 weeks. Weekly intrarectal administration of MNNG (1-

3 mg/rat) for 20 weeks in male F344 rats resulted in colorectal

cancer, comprising 57% adenomas and 43% adenocarcinomas (132,

133). MNNG induces pre-neoplastic lesions such as aberrant crypt

foci (ACF) (134). Histologically, it induces goblet cell depletion and

lymphocytic infiltration (135). We observed that F433 mice (98)

exhibited a significantly higher mutagenesis rate of 89% compared

to other models using the same modeling method, which may be

directly attributed to differences in animal strains.

MNNG, a direct carcinogen that does not necessitate metabolic

activity, elevates p53 protein levels with sustained exposure, signifying

active epithelial proliferation (98). Intrarectal injection preferentially

promotes cancer at the site of exposure, closely resembling natural

development. Intrarectal administration of MNNG represents a stable
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method for inducing colorectal cancer, with higher total dosage

correlating to increased tumor induction rates and correspondingly

elevated mutagenesis, as detailed in Table 6. Nonetheless, the

modeling cycle is protracted, and precisely determining the dosage

for rectal delivery poses difficulties. It is essential to maintain the

animals in an inverted position for one minute post-administration to

avert the reagent from reverting to the anus and compromising the

modeling effect (145, 146).

4.1.3 Animal models associated with esophageal
cancer

Esophageal cancer (EC) ranks as the eighth most prevalent

cancer worldwide and the sixth in terms of death, with esophageal

squamous cell carcinoma (ESCC) being the predominant variant

(147). Exposure to nitrosamines constitutes a substantial risk factor
TABLE 5 Comparison of characteristics of different administration methods in MNNG gastric cancer related models.

Characteristic Free Drinking Intragastric gavage
Intragastric gavage

+Composite modeling
Free Drinking+ Composite

modeling

Core Features
Chronic, continuous, low-
dose exposure; mimics

natural process

High-dose concentrated
administration; focuses on

gastric exposure

Rapid initiation + multiple
promoting factors;Efficient model

establishment

Chronic initiation + multiple promoting
factors;Balances efficiency and natural

exposure

Operational
Difficulty

Low High Higher Moderate

Organ Sensitivity
Poor; broad exposure, may
induce esophageal and small

intestinal tumors

Moderate; may induce
forestomach tumors

Probably High; combined factors
increase incidence of glandular

gastric tumors

Probably High; combined factors enhance
glandular gastric specificity

Common Target
Models

Tumor and precancerous
models

Tumor and precancerous
models

Relatively short Precancerous
models

Relatively short Precancerous models

Model Stability/
Success Rate

Unstable Relatively stable Stable
Possibly better than single method, but
slightly inferior to gavage + combined

method

Modeling Cycle Relatively Long Relatively Long Relatively short Relatively short

Animal Welfare
Moderate;No procedural

stress but long duration and
high multi-tumor burden

Poor; high procedural stress,
acute injury risk, and high

suffering

Moderate (optimizable); short
cycle, good uniformity, reduces

animal use

Better;Avoids gavage stress, shorter cycle
than single-factor administration

MNNG Intake
Control

Poor Good Good
Moderate; multiple factors can

synergistically increase MNNG intake

MNNG
Environmental

Pollution

High; long-term
contamination via water

bottles and bedding, high risk
to staff

Low;MNNG prepared
freshly, minimal

contamination, easy to
disinfect

Low;MNNG prepared fresh,
minimal contamination, easy to

disinfect

High; long-term contamination via water
bottles and bedding, high risk to staff

Others
Requires high storage
conditions for MNNG

– –
Requires high storage conditions for

MNNG

Main Advantages
Closest to natural process; no

procedural stress
Accurate dosing; low

contamination

Good lesion uniformity; high
organ specificity; high research

efficiency

Balances efficiency and animal welfare;
avoids procedural stress; good lesion

uniformity

Main Disadvantages

Unstable model formation;
low efficiency; multi-organ
damage; environmental

pollution

High procedural stress; may
induce forestomach tumors;

poor animal welfare

Complex operation; high
requirements for experimental

design and management

Still poses environmental risk; more
complex than single-factor methods

Suitable
Applications

Chronic toxicity; natural
progression of gastric cancer

Inducing stable measurable
solid tumors; suitable for
anti-cancer drug efficacy

studies

Mechanisms of precancerous
lesions; screening of

chemopreventive drugs; anti-
cancer target research

Multi-factor synergistic carcinogenesis
mechanisms; mimics natural human

environmental lesions with emphasis on
animal welfare
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for the development of esophageal squamous cell carcinoma

(ESCC) (148), and nitrosamine chemicals behave as principal

chemical carcinogens in esophageal cancer models. Suizhi

Cheng’s team (11) discovered that MNNG can activate NF-kB,
leading to the upregulation of inflammatory markers IL-6, IL-8, and

TNF-a, which induces esophageal inflammation in SD mice.

Moreover, MNNG can induce the proliferation of squamous

epithelial cells in the esophageal mucosa of rats and promote the

malignant transformation of human esophageal epithelial Het-1A

cells (149). MNNG demonstrates heightened sensitivity to

adenocarcinoma. N. Yioris et al. (150) injected 5.0 mg/kg of

MNNG to the esophagus of 30 mice during a duration of 37

weeks. The research revealed that 11 animals in the cohort

acquired stomach adenomas, 2 animals got esophageal squamous

cell carcinoma, and 1 animal developed colon adenocarcinoma.

Furthermore, five instances of hepatic cystadenoma and one

instance of esophageal keratinizing papilloma were noted,

indicating that MNNG carcinogenesis may exhibit non-specific

traits for target organs.

The manifestation of EC is a complex process that encompasses

both environmental and genetic influences. MNNG can replicate the

external environmental elements associated with the progression of

esophageal cancer. Moreover, while oral administration is the

predominant technique for inducing esophageal cancer, MNNG

may interact with neighboring organs, including the stomach and

small intestine, resulting in carcinogenic effects. Consequently, it may

serve as a co-inducer of esophageal and gastric cancer. Research

conducted by Mamdooh H Ghoneum et al. demonstrates that
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MNNG serves as a model for esophageal and gastric

adenocarcinoma, revealing that esophageal tissue pathology

predominantly presents as squamous cell carcinoma, whereas gastric

tissue pathology following carcinogen exposure displays glandular

dysplasia and adenocarcinoma (151). Nonetheless, the incidence of

esophageal cancer produced by Methyl benzylnitrosamine (NMBA)

can attain 100% (152). MNNG exhibits inferior organ specificity

compared to the widely utilized chemical inducer NMBA in the EC

model. In practical application, it does not precisely trigger particular

disease types or target organs, and is primarily utilized to provoke

damage and malignant transformation of esophageal epithelial cells.
4.2 MNNG in other system models

4.2.1 Animal models associated with lung cancer
Lung cancer is the malignancy with the greatest global mortality

rate, and adenocarcinoma is one of its most common histological

subtypes (1). MNNG can be employed to create lung cancer models.

Research demonstrates that intravenous administration of MNNG

can provoke the onset of lung cancer in animals (153). Lin Deng et al.

(154) developed an early-stage lung adenocarcinoma (LAC) model by

subcutaneously delivering a 0.4 mg MNNG solution weekly for four

weeks. Tumor development was observed in all 10 animals, with

micro-CT identifying a total of 231 tumors, all histologically verified as

LAC. Additionally, Yan Ping Xie et al. (155) administered 0.4 mg of

MNNG subcutaneously into the dorsal area of forty KM mice, once

weekly for four successive weeks. The mice were categorized into four
TABLE 6 Overview of Intrarectal MNNG Protocols for Colon Cancer Models.

MNNG dosing
groups

MNNG Dose &
Schedule

Co-
Factors

Outcome/
Success Rate

Repeated
verification

Animal strains

Low-
dosage

Single dose: 8 mg/mL,0.5 mL/
dose (Total 4 mg)

0.9%Saline 25% (136, 137) Have
Donryu female rats (136);
Charles River CD-Fischer

rats (137)

4 doses: 5 mg/mL, 0.5 mL/dose,
twice weekly x 2w (Total 10 mg)

None
ACF by 10w (138);

Tumors in 80% by 30w
(134)

Not
Sprague–Dawley male Rats
(138);Wistar male rats

(134)

4 doses: 4 mg/mL, 0.5 mL/dose,
twice weekly x 2w(Total 8 mg)

0.9%Saline
(135, 139);
None (126,

140);

67% (139);
89% (126);

60% by 20w (140);
60% by 24w, 67% by 48w

(135)

Partial verification
Sprague–Dawley male

Rats (135, 139, 140);F344
female rats (126);

Middle-dosage

Dose escalation: 1 mg/wk (3w), 2
mg/wk (6w), 3 mg/wk (11w),

(Total 48mg)
0.9%Saline

100% tumor incidence
(Both in sterile &
conventional) (141)

Not CD Fischer female rats

Daily: 1 mL of 2.5 mg/mL x 14d
(Total 35 mg)

None
40% by 20w, 80% by 40w

(142)
Not Wistar male rats

Daily:0.5ml of 2.5mg/ml x 32d
(Total 40 mg)

None 76% (143) Not Donryu female rats

Twice weekly x 53w: 0.5 mL of
1.25 mg/mL (Total 66.25 mg)

None 87% (144) Not
female inbred strain-2

guinea pigs

High-
dosage

Three times weekly x 25w: 2 mg/
kg (Total 150 mg/kg)

Not
mentioned

97% tumors observed
between days 250-356

(127)
Not Not mentioned
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groups (n=10 per group), and tissue samples were obtained at 14, 18,

24, and 28 weeks, respectively. The research indicated that the

adenomatous proliferation of cancer cells intensified over time, and

the overall tumor count had a positive association with time. At week

28, the mean tumor count per mouse was 10.00 ± 5.64. MNNG

exhibits significant carcinogenic properties and is frequently employed

to produce early forms of lung cancer. Intravenous injection can

effectively produce lung cancer in rats, however the mortality rate is

elevated. Conversely, subcutaneous injection is more secure. MNNG

influences lung tissue by absorption into the bloodstream and

systemic circulation. This technique is straightforward to execute,

maintains the integrity of lung tissue without harm, and prevents the

introduction of confounding variables such as infection. In addition to

localized tumors, low-dose repeated administrations can selectively

generate lung tumors while sparing other organs from tumor

development. Consequently, MNNG functions as a comparatively

optimal drug for the induction of lung cancer models.

4.2.2 Animal models associated with endometrial
cancer

Endometrial cancer is the predominant malignancy of the

female reproductive system, with a persistent upward trend in

incidence and a rising prevalence among younger women (156).

MNNG, a powerful carcinogenic mutagen, is utilized to create

endometrial cancer models (157, 158). MNNG enhances AKT

phosphorylation and PI3K activation through TGF-b activation,

hence augmenting endothelial cell invasiveness (159). T. Tanaka

et al. (158) showed through studies the impact of varying dosages,

administration routes, and cycles on the experimental outcomes. It

was found that intrauterine injection can induce endometrial

adenocarcinoma and other uterine neoplasms. Elevated dosages

may induce pronounced local effects leading to tissue damage and

hindered tumor development, albeit potentially raising tumor

incidence. Cervical and vaginal tumors are the primary focus of

vaginal administration, providing a valuable experimental model

for investigating the prevalence of uterine cancer. Pakkiri Bhavani

et al. (157) employed cotton balls saturated with MNNG (150 mg

diluted in 0.2 ml of olive oil) for vaginal retention biweekly in albino

female Wistar rats. Currently, intracavitary injection and the

placement of absorbent cotton balls into the vagina are the

predominant techniques for delivering MNNG. Vaginal delivery

simulates a natural infection or local exposure, whereas intrauterine

injection may exert a more immediate impact on uterine tissue.

Among these methods, the intravaginal approach with saturated

pellets is most commonly employed in model establishment.

4.2.3 Animal models associated with liver cancer
MNNG is categorized as a non-hepatocarcinogen and is rarely

utilized in the development of liver cancer models. Chemical inducers

including aflatoxin B1 (AFB1), carbon tetrachloride (CCl4), and

diethylnitrosamine (DEN) are frequently employed in current

research. MNNG is sometimes co-administered with several

recognized carcinogens to improve the effectiveness of hepatocellular

carcinoma induction or to expedite modeling deadlines. Research

indicates that MNNG can activate oxidative stress responses,
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accelerate aberrant cell proliferation, and serve as an inducer of the

initial phase of hepatocellular carcinoma (160). Prior studies have

shown that administering 80 mg/kg MNNG for seven weeks can

precipitate liver cancer when combined with CCL4 or partial

hepatectomy (PH), significantly augmenting the quantity of

glutathione S-transferase placental (GST-P) positive hepatocyte foci

(161). Research by S.L. Herren et al. indicates that prolonged exposure

to 0.005% MNNG in drinking water does not exhibit carcinogenic

activity specifically affecting the liver (162). T. Ogiso et al. assert that

non-hepatocarcinogens can solely generate tumors in certain target

organs, shown by EHBN-induced bladder cancer andMNNG-induced

gastric adenocarcinoma, without exerting a major promotional

influence on the development of hepatocellular carcinoma (163).

The origin of this paradoxical behavior may be attributed to

variations in dosage and cycles, potentially elucidating why the

carcinogenic effects have yet to materialize.

4.2.4 Animal models associated with skin
Skin tumors represent one of the most prevalent malignant

neoplasms in humans, encompassing a developmental process

characterized by initiation, promotion, and advancement (138,

139). MNNG is frequently employed as an initiator in skin tumor

models and can induce irreversible genetic alterations.

Investigation conducted by I. Rehman et al. proposes that MNNG

facilitates the development of skin tumors by generating mutations in

codon 12 of the Ha-ras and Ki-ras oncogenes (140). J F O’Connell

et al. assert that MNNG functions as both a tumor initiator and a

tumor promoter (141). The tumorigenicity of MNNG significantly

escalates during the dosage range of 0.5 - 5.0 mmol when employed as

a full carcinogen. A dose range of 0.1 to 2.0 mmol can induce

papilloma formation as an initiator, however elevated doses of the

promoter diminish papilloma development. As a promotional agent,

MNNG dosage is positively correlated with the incidence of cancers.

G J Patskan et al. (142) administered 2 mmol of MNNG topically

to the skin of mice. With the prolongation of the treatment time, the

incidence of skin malignancies in the mice progressively escalated,

and in the advanced stages, 20% of the mice had lung metastases.

The carcinogenic potential of MNNG in eliciting skin cancer seems

plausible, and the method of topical delivery is straightforward and

expedient. The dose-effect relationship curve of MNNG is intricate,

with excessive doses potentially elevating mortality. Additionally, in

contrast to the commonly employed two-stage carcinogenesis

protocol utilizing DMBA (7,12-dimethylbenz[a]anthracene) as the

initiator and TPA (12-O-tetradecanoylphorbol-13-acetate) as the

promoter, MNNG exhibits reduced specificity.
4.3 Multi-organ characteristics and
optimization strategies of MNNG in
different models

4.3.1 The relative specificity of MNNG in gastric
cancer-related models

Previous studies have indicated that MNNG exhibits relative

specificity in inducing gastric cancer models (164). Following oral
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administration, the stomach demonstrates the highest level of DNA

alkylation. This may be attributed to MNNG’s stability in the acidic

gastric environment and the fact that the stomach is exposed to the

highest concentration of the compound (165). Studies have shown

that the activity of DNA repair enzymes such as MGMT is relatively

low in the gastrointestinal tract, leading to the accumulation of

alkylation damage (166, 167).

4.3.2 MNNG’s multi-organ properties
As discussed previously, we have examined the application of

MNNG in other organs, which sufficiently demonstrates its

carcinogenic potential across multiple organs.As a direct

alkylating agent, MNNG induces tissue DNA damage without

requiring bioactivation (16). It exhibits first-pass effects and

localized exposure characteristics, with its organ specificity

strongly dependent on the route of administration (168).

Currently, MNNG is most commonly used in gastric cancer and

pre-gastric cancer models, administered by drinking water and

gavage.As a hollow organ connected to multiple parts of the

digestive tract, the stomach allows MNNG solution to come into

contact with various organs when administered in drinking water.

After absorption through the stomach and small intestine, MNNG

can be transported to other tissues and organs via systemic

circulation and enterohepatic recirculation (169). Studies have

reported the development of esophageal sarcomas and tumors in

the stomach, liver, and jejunum following MNNG exposure in

modeling experiments (150). Research by Mamdooh H. Ghoneum

et al. (151) established a comorbid model of esophageal and gastric

cancer using MNNG solution, further confirming its ability to

induce multi-organ injury.

4.3.3 Organ-specific optimization of MNNG in
model applications

Nonetheless, MNNG is not always the optimal choice for

various cancer models. Prioritization of organ-specific

carcinogens: When conditions permit, agents with high

organotypic specificity should be prioritized. For instance, 4-

nitroquinoline 1-oxide (4NQO) and N-nitrosomethylbenzylamine

(NMBA) show stronger specificity for esophageal cancer induction

(170, 171); diethylnitrosamine (DEN) is more suitable for liver

cancer models (172, 173); and 1,2-dimethylhydrazine (DMH) and

its metabolite azoxymethane (AOM) are preferred for modeling

colon cancer (133, 174). In specific organ contexts, these agents may

outperform MNNG in terms of modeling efficiency, duration, and

specificity. A comparative summary is provided in Table 7.

In models of tumors outside the digestive tract, although

MNNG possesses carcinogenic potential, it is not the most

commonly used or specific mutagen. In contrast, MNNG

demonstrates a relatively high application rate and specificity in

inducing gastric cancer. Nevertheless, off-target tumor development

remains a concern (6, 86, 192, 193).Consequently, a significant

scientific challenge exists in improving the efficacy of these

medicines to selectively produce malignancies in the designated

organ.While ensuring modeling efficiency, there is an urgent need

to explore how to optimize the modeling approach to achieve higher
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specificity, better model stability, and more comprehensive animal

welfare protection.

When experimental funding allows, the use of gene knockout

models in combination with MNNG can be employed to enhance

organ sensitivity (194). Optimizing the modeling timeline by

selecting MNNG as the initiating factor and other modeling

methods as promoting factors can not only more classically

simulate different stages of carcinogenesis but also avoid the

drawback of long-term MNNG application inducing multi-organ

tumors (195). If a tendency for multi-organ tumor development is

observed during the process, the promoting factors can be

withdrawn to create a window period for further investigation.

Furthermore, monitoring during the process should be

optimized.Incorporating contemporary technologies is essential.

Employing periodic blood tests to monitor early tumor

biomarkers and evaluate potential liver damage induced by

MNNG (152, 153), facilitating prompt modifications to dosage

and scheduling. The endoscopic examination facilitated rapid

evaluation, enabling direct visualization to detect model

advancement and mitigate excessive exposure (154, 155). Multi-

Parametric MRI (MP-MRI) serves as an effective instrument for the

detection, localization, and characterization of primary tumors in

experimental animals (192).CT and PET are also considered to be

effective monitoring methods (196).

Employ more precise drug administration methods to avoid off-

target effects: Utilize localized administration techniques such as

intragastric infusion or other targeted delivery approaches to

enhance specificity.Utilizing these strategies can capitalizing on

specific agents where feasible, precisely regulating dosage and

administration for multi-organ carcinogens, and employing

advanced monitoring facilitates the early identification of

carcinogenesis and metastasis. This proactive strategy enables

researchers to intervene and ultimately reduce the incidence of

off-target cancers in other organs.Promote the establishment of

standardized model protocols.Animal models exhibit intrinsic

limits. Literature reviews indicate considerable variability in

model development, with the absence of essential experimental

data significantly compromising the integrity of model assessments

and study findings. A prior study of more than 250 publications

linked to animal models revealed that less than 60% of the articles

specifically documented at least three animal characteristics

(gender, strain, weight, age) and the number of animals utilized

(197). Significantly, blinded experiments were exceedingly

uncommon. Document and publicly disclose detai led

experimental parameters, including animal age (in weeks), body

weight, housing conditions, MNNG concentration, administration

method, MNNG supplier and storage conditions, as well as diet and

water specifications. Define clear criteria for successful model

establishment, using pathological findings as the gold standard

and categorizing lesions based on severity (198). Transparently

report negative outcomes: Accurately document and publish animal

mortality rates, incidents of multi-organ tumors, and cases of acute

intoxication during experiments. Avoid redundant experiments by

maximizing the utility of existing data, ensuring its value is

fully leveraged.
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5 MNNG defects and optimization

MNNG is classified as a Group I carcinogen, exhibits both

cytotoxic and genotoxic effects (199, 200). Its cytotoxicity may arise

through non-mutagenic mechanisms, and the dominant outcome—

cell death or mutagenic carcinogenesis—largely depends on

exposure concentration and duration (201). Therefore, balancing

MNNG-induced mutagenesis and cell death remains a critical

challenge. Additionally,MNNG demonstrates dose- and time-

dependent hepatotoxicity (202). The severe cytotoxicity,

genotoxicity, and hepatotoxicity of MNNG can lead to premature

death in experimental animals,for instance, due to acute toxicity

rather than cancer development,which complicates the assessment

of its carcinogenicity. Additionally, direct exposure to MNNG may

pose risks to laboratory personnel and the environment. Optimizing

dose-dependent threshold effects is essential to maximizing tumor

induction efficiency while minimizing animal mortality.The

scientific value of MNNG must be carefully weighed against its

potential hazards to ensure it is utilized in a safe and controlled
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manner, maximizing its research benefits while minimizing harm.

This balance remains an important topic for further discussion.

Another limitation of MNNG lies in the difficulty of fully

replicating the natural human carcinogenic process through its

administration route and dosage. Except for occupational

exposures, human contact with carcinogens is typically localized,

long-term, and low-dose. In addition to nitrosamines, factors such

as Hp infection also contribute to carcinogenesis. Therefore,

mechanistic insights or preventive strategies derived solely from

MNNG-based models may have limited extrapolation to

human contexts.

The localized effects of MNNG contribute to its limited organ

specificity, making it challenging to establish pure and organ-

specific tumor models. While tumors form in target organs such

as the stomach (e.g., gastric adenocarcinoma), concurrent

neoplasms or damage often occur in other sites, including

forestomach, esophagus, lung adenocarcinoma, liver injury, or

colonic lesions. The coexistence of multiple tumor types alters the

host’s immune status and metabolic environment, complicating the
TABLE 7 Organ-specific evaluation of different modeling drugs.

Specific
organs

Reagent

Organ
Specificity

Compared to
MNNG

Mutational Signatures Translational Relevance Quote

Gastric
Cancer

MNNG high

The formation of DNA adducts O6-meG
and N7-meG induces G:C to A:T transition
mutations,; mutations in key genes such as

p53

The tumors induced by mimicking dietary
nitrosamine intake closely recapitulate the

pathological morphology and molecular alterations
of human gastric cancer.

(175,
176)

Mnu intermediate

The O6-meG and N7-meG lesions mediate
and predispose to G:C to A:T transition

mutations;
Induction of DNA hypomethylation in the

MGMT promoter region

Mimicry of dietary nitrosamine exposure
(18, 177,
178)

Colon
Cancer

AOM high

The reactive intermediates (such as
diazomethane) produced during AOM
metabolism can directly alkylate DNA,

resulting in O6-meG-mediated G:C > A:T
transition mutations;

Mutations in key genes such as K-ras and
p53.

Simulating the multistage evolution process of
human sporadic CRC and its key molecular

features

(179–
181)

Esophageal
Cancer

NMBA high
Point mutation at codon 12 of Ha-ras

(GGA→GAA, Gly→Glu);
Mutations in exons 5 and 7 of p53

The lesion sequence closely resembles that of
human ESCC

(182–
184)

Lung
Cancer

NNK high

Activation of the KRAS proto-oncogene,
with G12D (GGA→GAC, Gly→Asp) and
G12C (GGA→TGC, Gly→Cys) mutations;
Formation of O6-meG, leading to G:C→A:T

transition mutations

Simulating tobacco smoke-induced tissue lesions in
humans

(185–
187)

Liver
Cancer

DEN high

Mutations include C→A transversions;
C→T and T→C transitions.;

Mutations in the CTNNB1 (b-catenin) gene
and TP53 gene

Simulating the multistage pathological evolution
process of human Hepatocellular Carcinoma

(177,
188, 189)

Skin Cancer DMBA high

A highly specific A→T transversion at
codon 61 of the HRAS gene (Q61L,

Gln→Leu).
Mutations in the Hras, Kras, Rras2, and

Trp53 genes

It is widely used to screen and validate a large
number of natural or synthetic chemopreventive

agents, evaluating their inhibitory effects at different
stages of carcinogenesis (initiation, promotion,

progression)

(190,
191)
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tumor microenvironment of interest. This complexity compromises

the precision, reproducibility, and reliability of intervention studies.

Moreover, multi-tumor incidence increases suffering in

experimental animals. Nevertheless, optimizing time–dose

thresholds and employing combination modeling approaches may

enhance its relative specificity and reduce off-target organ damage.

Additionally, organoid models—which mimic the complex

crosstalk among diverse cell types within tissues—may help

overcome the nonspecificity associated with MNNG exposure

(5, 199).

Secondly, the environmental and ecotoxicological impact of

MNNG represents a critical concern. Improper storage, handling, or

disposal during experimental procedures may lead to MNNG leakage

into the environment. Highly water-soluble, MNNG can enter water

cycles and soil systems through sewage and waste disposal. As a
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genotoxic and cytotoxic agent, it induces DNA mutations and may

bioaccumulate, thereby threatening ecological stability.

Due to the toxic nature of MNNG, its potential for

environmental contamination, and the specific requirements of

tumor research, it is necessary to optimize animal welfare

protection policies during experiments. Rigorous ethical review is

required. Prioritizing human safety involves strict toxic waste

disposal procedures for MNNG to prevent environmental

pollution. Researchers must be fully informed of MNNG’s

carcinogenic risks and implement rigorous protective measures to

minimize exposure. When handling the agent, personnel must wear

masks, gloves, head coverings, and goggles if necessary. They should

also be trained in the safe preparation, administration, and disposal

of MNNG-contaminated items such as water bottles and cages.

Laboratories must classify and label MNNG with the correct hazard
FIGURE 2

Molecular mechanisms underlying MNNG-promoted tumorigenesis.(Created by figdraw,ID : IPAYSa222a). MNNG induces DNA damage and
mutations in key genes such as TP53 and Ras. It also modulates gene expression through epigenetic mechanisms including DNA methylation,
histone modifications, and m6A RNA methylation. MNNG induces a sharp increase in reactive oxygen species (ROS), leading to oxidative stress and
mitochondrial damage. This, in turn, triggers the release of damage-associated molecular patterns (DAMPs). The DAMPs then activate the NLRP3
inflammasome, which promotes caspase-1-mediated pyroptosis and the cleavage and maturation of pro-inflammatory cytokines, resulting in the
secretion of mature IL-1b and IL-18.Concurrently, elevated ROS activates the NF-kB signaling pathway. NF-kB activation drives the transcription of
pro-inflammatory genes (including those encoding pro-IL-1b and pro-IL-18) and epithelial-mesenchymal transition (EMT)-related genes, thereby
further amplifying the inflammatory response and promoting EMT.These effects collectively cause dysregulation of critical signaling pathways,
including PI3K/AKT/mTOR, resulting in suppressed apoptosis and autophagy. Key markers such as Bcl-2, Bax, Beclin-1, LC3, and ATG5 are altered.
Moreover, MNNG enhances cell proliferation, migration, invasion, and angiogenesis via VEGFA.
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identifiers, and experimental waste containing MNNG must be

treated as high-risk toxic waste.Personnel must receive advance

training to master key techniques including oral gavage, rectal

administration, and vaginal inoculation to avoid causing

unnecessary suffering to animals due to operational errors (203).

Administration strategies should be optimized based on target

organs, and the maximum tolerable dose of the carcinogen should

be determined. Continuous monitoring and timely adjustments to

the experimental protocol are essential. Analgesics must be

administered when necessary to alleviate pain, and all

observations should be accurately recorded.Humane endpoints

must be established: for animals bearing a single tumor, the

average diameter should generally not exceed 1.2 cm in mice or

2.5 cm in rats—or 1.5 cm and 2.8 cm, respectively, under certain

conditions. If multiple tumors are present (e.g., on contralateral

flanks), the size of each should be proportionally smaller and must

not exceed the maximum burden of a single tumor (196). Animals

showing signs of cachexia or a weight loss exceeding 20% of normal

adult body weight require immediate intervention. No animal

should be allowed to die naturally from suffering.
6 Discussion

Spontaneous animal tumor models provide a notable advantage:

their genesis and course closely resemble human tumors, displaying

similar histological complexity and heterogeneity to true human

malignancies (192, 204). Despite certain limitations, MNNG

remains widely used as a straightforward and effective chemical

carcinogen in studies investigating spontaneous tumors and

precancerous lesions.Future efforts should focus on enhancing the

organ-specific sensitivity and stability of the MNNG-induced model,

mitigating associated risks in its application, reducing the number of

experimental animals used, and minimizing suffering throughout the

experimental process.

Nevertheless, these enhancements are inadequate for

progressing model development. Researchers must offer

experimental results with thorough and comprehensive

information to ensure reproducibility in future studies and

optimize model utilization. Considering that laboratory animals

bear considerable scientific obligations and utilize important

research funding (205), the lack of high-fidelity, repeatable

models will hinder contemporary scientific advancement. We can

only honor the lifelong commitment of experimental animals to

scientific progress by maximizing their value.
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132. Nascimento-Gonçalves E, Mendes BAL, Silva-Reis R, Faustino-Rocha AI,
Gama A, Oliveira PA. Animal models of colorectal cancer: from spontaneous to
genetically engineered models and their applications. Vet Sci. (2021) 8:59. doi: 10.3390/
vetsci8040059

133. Neto I ́, Rocha J, Gaspar MM, Reis CP. Experimental murine models for
colorectal cancer research. Cancers (Basel). (2023) 15:2570. doi: 10.3390/
cancers15092570

134. Maurin N, Forgue-Lafitte M-E, Levy P, Zimber A, Bara J. Progression of tumors
arising from large ACF is associated with the MUC5AC expression during rat colon
MNNG carcinogenis. Int J Cancer. (2007) 120:477–83. doi: 10.1002/ijc.22302

135. Zusman I, Zimber A, Madar Z, Nyska A. Morphological, histochemical and
immunohistochemical differences between tumorous and adjacent tissues in chemically
induced colon cancer in rats. Acta Anat (Basel). (1992) 145:29–34. doi: 10.1159/
000147338

136. Narisawa T, Reddy BS, Weisburger JH. Effect of bile acids and dietary fat on
large bowel carcinogenesis in animal models. Gastroenterol Jpn. (1978) 13:206–12.
doi: 10.1007/BF02773665

137. Narisawa T, Magadia NE, Weisburger JH, Wynder EL. Promoting effect of bile
acids on colon carcinogenesis after intrarectal instillation of N-methyl-N’-nitro-N-
nitrosoguanidine in rats. J Natl Cancer Inst. (1974) 53:1093–7. doi: 10.1093/jnci/
53.4.1093
frontiersin.org

https://doi.org/10.1186/s12906-023-04015-7
https://doi.org/10.3389/fphar.2022.933096
https://doi.org/10.1016/j.jep.2023.116925
https://doi.org/10.1016/j.jep.2023.116925
https://doi.org/10.1093/jpp/rgae006
https://doi.org/10.2147/DDDT.S487371
https://doi.org/10.2147/DDDT.S487371
https://doi.org/10.1016/j.jep.2023.117020
https://doi.org/10.1016/j.jep.2023.117020
https://doi.org/10.1016/j.biopha.2020.110036
https://doi.org/10.1093/jnci/55.1.101
https://doi.org/10.1093/carcin/15.7.1429
https://doi.org/10.1155/2019/9310245
https://doi.org/10.1093/carcin/12.12.2201
https://doi.org/10.1016/s0304-3835(97)00197-3
https://doi.org/10.1016/0304-3835(84)90168-x
https://doi.org/10.1002/tcm.1770120404
https://doi.org/10.1016/0278-6915(86)90296-6
https://doi.org/10.1016/0278-6915(86)90296-6
https://doi.org/10.3748/wjg.15.4907
https://doi.org/10.1093/carcin/20.7.1261
https://doi.org/10.1093/carcin/16.3.563
https://doi.org/10.1080/00365521.2019.1663446
https://doi.org/10.1007/BF00284082
https://doi.org/10.1038/bjc.1989.151
https://doi.org/10.1080/01635589609514490
https://doi.org/10.3389/fphys.2021.733979
https://doi.org/10.1097/00004836-199700001-00020
https://doi.org/10.3892/or.2017.5831
https://doi.org/10.1155/2022/1366597
https://doi.org/10.1155/2022/1366597
https://doi.org/10.2739/kurumemedj.47.31
https://doi.org/10.4251/wjgo.v4.i7.156
https://doi.org/10.1007/s00428-001-0571-z
https://doi.org/10.1002/(sici)1098-2744(199905)25:1%3C42::aid-mc5%3E3.0.co;2-f
https://doi.org/10.1002/(sici)1098-2744(199905)25:1%3C42::aid-mc5%3E3.0.co;2-f
https://doi.org/10.1093/carcin/bgg030
https://doi.org/10.1093/carcin/23.10.1729
https://doi.org/10.1093/carcin/23.10.1729
https://doi.org/10.1177/028418517801900510
https://doi.org/10.1093/jnci/56.2.441
https://doi.org/10.1007/BF00400756
https://doi.org/10.1093/jnci/58.4.1103
https://doi.org/10.1093/jnci/50.4.927
https://doi.org/10.1371/journal.pone.0050043
https://doi.org/10.1371/journal.pone.0050043
https://doi.org/10.1249/MSS.0000000000000623
https://doi.org/10.3390/vetsci8040059
https://doi.org/10.3390/vetsci8040059
https://doi.org/10.3390/cancers15092570
https://doi.org/10.3390/cancers15092570
https://doi.org/10.1002/ijc.22302
https://doi.org/10.1159/000147338
https://doi.org/10.1159/000147338
https://doi.org/10.1007/BF02773665
https://doi.org/10.1093/jnci/53.4.1093
https://doi.org/10.1093/jnci/53.4.1093
https://doi.org/10.3389/fonc.2025.1681270
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhang et al. 10.3389/fonc.2025.1681270
138. Che TCH, François S, Bouchet S, Chapel A, Forgue-Lafitte M-E. Early lesions
induced in rat colon epithelium by N-methyl-N’-nitro-N-nitrosoguanidine. Tissue Cell.
(2010) 42:190–4. doi: 10.1016/j.tice.2010.04.002

139. Zusman I, Zimber A, Nyska A. Role of morphological methods in the analysis
of chemically induced colon cancer in rats. Acta Anat (Basel). (1991) 142:351–6.
doi: 10.1159/000147215

140. Zusman I, Madar Z, Nyska A. Individual variability of pathological parameters
in chemically induced rat colon tumors. Acta Anat (Basel). (1992) 145:106–11.
doi: 10.1159/000147350

141. Weisburger JH, Reddy BS, Narisawa T, Wynder EL. Germ-free status and colon
tumor induction by N-methyl-N’-nitro-N-nitrosoguanidine. Proc Soc Exp Biol Med.
(1975) 148:1119–21. doi: 10.3181/00379727-148-38700

142. Yamaguchi A, Ishida T, Nishimura G, Katoh M, Miyazaki I. Investigation of
colonic prostaglandins in carcinogenesis in the rat colon. Dis Colon Rectum. (1991)
34:572–6. doi: 10.1007/BF02049897

143. Nakano H. Histopathological studies on rat colo-rectal carcinoma induced by
N-methyl-N’-nitro-N-nitrosoguanidine. Tohoku J Exp Med. (1973) 110:7–21.
doi: 10.1620/tjem.110.7

144. Narisawa T, Wong CQ, Weisburger JH. Large bowel carcinoma in strain-2
Guinea pigs by intrarectal instillation of N-methyl-N’-nitro-n-nitrosoguanidine. Gan.
(1976) 67:41–6.

145. Greene FL, Lamb LS, Barwick M. Colorectal cancer in animal models–a review.
J Surg Res. (1987) 43:476–87. doi: 10.1016/0022-4804(87)90107-7

146. Rosenberg DW, Giardina C, Tanaka T. Mouse models for the study of colon
carcinogenesis. Carcinogenesis. (2009) 30:183–96. doi: 10.1093/carcin/bgn267

147. Morgan E, Soerjomataram I, Rumgay H, Coleman HG, Thrift AP, Vignat J,
et al. The global landscape of esophageal squamous cell carcinoma and esophageal
adenocarcinoma incidence and mortality in 2020 and projections to 2040: new
estimates from GLOBOCAN 2020. Gastroenterology. (2022) 163:649–658.e2.
doi: 10.1053/j.gastro.2022.05.054

148. Sheikh M, Roshandel G, McCormack V, Malekzadeh R. Current status and
future prospects for esophageal cancer. Cancers (Basel). (2023) 15:765. doi: 10.3390/
cancers15030765

149. Cheng S, Che L, Yang Q, Sun R, Nie Y, Shi H, et al. Folic acid ameliorates N-
methyl-N’-nitro-N-nitrosoguanidine-induced esophageal inflammation via
modulation of the NF-kB pathway. Toxicol Appl Pharmacol. (2022) 447:116087.
doi: 10.1016/j.taap.2022.116087

150. Yioris N, Ivankovic S, Lehnert T. Effect of thermal injury and oral
administration of N-methyl-N’-Nitro-N-nitrosoguanidine on the development of
esophageal tumors in Wistar rats. Oncology. (1984) 41:36–8. doi: 10.1159/000225787

151. Ghoneum MH, Badr El-Din NK, Abdel Fattah SM, Pan D, Tolentino L.
Hydroferrate fluid, MRN-100, provides protection against chemical-induced gastric
and esophageal cancer in Wistar rats. Int J Biol Sci. (2015) 11:295–303. doi: 10.7150/
ijbs.10586

152. Zhou Y, Xia J, Xu S, She T, Zhang Y, Sun Y, et al. Experimental mouse models
for translational human cancer research. Front Immunol. (2023) 14:1095388.
doi: 10.3389/fimmu.2023.1095388

153. Stekar J, Gimmy J. Induction of lung tumours in rats by i.v. injection of N-
methyl-N’-nitro-N-nitrosoguanidine. Eur J Cancer (1965). (1980) 16:395–400.
doi: 10.1016/0014-2964(80)90358-8

154. Deng L, Xiao SM, Qiang JW, Li YA, Zhang Y. Early lung adenocarcinoma in
mice: micro-computed tomography manifestations and correlation with pathology.
Transl Oncol. (2017) 10:311–7. doi: 10.1016/j.tranon.2017.02.003

155. Xie YP, Dong ZH, Du JH, Zang XL, Guo HH, Liu M, et al. The relationship
between mouse lung adenocarcinoma at different stages and the expression level of
exosomes in serum. Math Biosci Eng. (2019) 17:1548–57. doi: 10.3934/mbe.2020080

156. Makker V, MacKay H, Ray-Coquard I, Levine DA, Westin SN, Aoki D, et al.
Endometrial cancer. Nat Rev Dis Primers. (2021) 7:88. doi: 10.1038/s41572-021-00324-
8

157. Bhavani P, Subramanian P, Kanimozhi S. Preventive efficacy of vanillic acid on
regulation of redox homeostasis, matrix metalloproteinases and cyclin D1 in rats
bearing endometrial carcinoma. Indian J Clin Biochem. (2017) 32:429–36. doi: 10.1007/
s12291-016-0605-6

158. Tanaka T, Mori H. Experimental induction of uterine cancer in rats by N-
methyl-N’-nitro-N-nitrosoguanidine. Pathol Res Pract. (1983) 178:20–6. doi: 10.1016/
S0344-0338(83)80081-8

159. Shanmugapriya S, Subramanian P, Kanimozhi S. Geraniol inhibits endometrial
carcinoma via downregulating oncogenes and upregulating tumour suppressor genes.
Indian J Clin Biochem. (2017) 32:214–9. doi: 10.1007/s12291-016-0601-x

160. Lee J, Lim K-T. SJSZ glycoprotein (38 kDa) inhibits cell cycle and oxidative
stress in N-methyl-N’-nitro-N-nitrosoguanidine-induced ICR mice. Anticancer Agents
Med Chem. (2013) 13:647–53. doi: 10.2174/1871520611313040013

161. Kobayashi K, Mutai M, Goto K, Inada K, Tsukamoto T, Nakanishi H, et al.
Effects of carbon tetrachloride administration on initiation of liver cell foci by the non-
hepatocarcinogens N-methyl-N’-nitro-N-nitrosoguanidine (MNNG) and benzo(a)
pyrene (B(a)P). Cancer Lett. (1997) 118:55–60. doi: 10.1016/s0304-3835(97)00222-x
Frontiers in Oncology 20
162. Herren SL, Pereira MA, Britt AL, Khoury MK. Initiation/promotion assay for
chemical carcinogens in rat liver. Toxicol Lett. (1982) 12:143–50. doi: 10.1016/0378-
4274(82)90177-1

163. Ogiso T, Tatematsu M, Tamano S, Hasegawa R, Ito N. Correlation between
medium-term liver bioassay system data and results of long-term testing in rats.
Carcinogenesis. (1990) 11:561–6. doi: 10.1093/carcin/11.4.561

164. Ct G, Pn M. DNA-methylation by nitrosocimetidine and N-methyl-N-nitro-N-
nitrosoguanidine in the intact rat. Chemico-biological Interact. (1982) 40:149–57.
doi: 10.1016/0009-2797(82)90097-7

165. Mirvish SS. Formation of N-nitroso compounds: chemistry, kinetics, and in
vivo occurrence. Toxicol Appl Pharmacol. (1975) 31:325–51. doi: 10.1016/0041-008x
(75)90255-0

166. Wu Z, Dai J, Li J, Zhang Z, Shen X. Exploiting the role of O6-methylguanine-
DNA-methyltransferase (MGMT) in gastrointestinal cancers. Naunyn Schmiedebergs
Arch Pharmacol. (2025) 398:319–27. doi: 10.1007/s00210-024-03365-4

167. Zaidi NH, Potten CS, Margison GP, Cooper DP, O’Connor PJ. Tissue and cell
specific methylation, repair and synthesis of DNA in the upper gastrointestinal tract of
Wistar rats treated with N-methyl-N’-nitro-N-nitrosoguanidine via the drinking water.
Carcinogenesis. (1993) 14:1991–2001. doi: 10.1093/carcin/14.10.1991
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