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Machine learning model for
predicting epidermal growth
factor receptor expression
status in breast cancer using
ultrasound radiomics
Zhirong Xu1†, Jiayi Ye2†, Huohu Zhong1†, Jiemin Chen1,
Han Wang1, Xiaoqian Zhang1, Guorong Lyu1*

and Shanshan Su1*

1Department of Ultrasound, The Second Affiliated Hospital of Fujian Medical University,
Quanzhou, China, 2Department of Nuclear Medicine, The Second Affiliated Hospital of Fujian Medical
University, Quanzhou, China
Background/objectives: The epidermal growth factor receptor (EGFR) is a

clinically important target, as its expression in patients with breast cancer

influences both overall and disease-free survival. Current methods for

assessing EGFR expression status in a patient are invasive. Therefore, in this

study, we developed a machine learning-based approach utilizing ultrasound

radiomics to non-invasively predict EGFR expression status in patients with

breast cancer.

Methods: Radiomic features were extracted from grayscale and wavelet-

transformed ultrasound images of 321 patients. The dataset was randomly split

into training (n = 225) and test (n = 96) sets at a 7:3 ratio with stratified sampling to

preserve the EGFR+/– ratio. Key predictors were identified using a multi-step

procedure—including reproducibility filtering (ICC > 0.75), univariate F-test

filtering (p < 0.05), and L1-regularized selection via LASSO regression. Seven

machine-learning models were trained. Model interpretability was assessed

using SHAP (Shapley Additive Explanations). In addition to the hold-out

evaluation, we performed stratified 10-fold cross-validation to reduce

selection bias.

Results: The random forest model demonstrated the optimal performance, with

an area under the receiver operating characteristic curve of 0.86 in the training

set and 0.70 in the test set. It significantly outperformed the other models (P <

0.001). The Shapley additive explanation method was used to interpret the

model, revealing that original_ngtdm_Coarseness, original_ngtdm_Strength,

and wavelet.LL_glcm_ClusterProminence were the top predictors. These
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features reflect structural compactness and heterogeneity associated with

EGFR overexpression.

Conclusions: We present a reliable and interpretable tool for non-invasively

assessing EGFR expression status in patients with breast cancer. The most

important predictors captured tumor heterogeneity and microstructural

uniformity, highlighting the biological relevance of radiomic patterns in EGFR-

positive tumors. This model integrates advanced imaging analyses with machine

learning, underscoring the potential of radiomics to advance precision oncology.
KEYWORDS

breast cancer , machine learning, epidermal growth factor receptor ,
ultrasound, radiomics
1 Introduction

Breast cancer is one of the most prevalent malignancies among

women, with an estimated 357,200 new cases recorded annually in

China, accounting for 57.4% of the global incidence (1, 2). Despite

advancements in treatment modalities such as neoadjuvant

chemotherapy, surgery, and adjuvant therapy (3–5), there is a

critical need to refine diagnostic and therapeutic strategies to

enhance patient outcomes. The epidermal growth factor receptor

(EGFR) plays a pivotal role in cell proliferation and differentiation

(6). Its overexpression significantly accelerates metastasis and

recurrence, leading to a marked decrease in overall and disease-

free survival. Therefore, the EGFR is a clinically important

therapeutic target that offers opportunities for innovative

treatment strategies. However, the detection of EGFR

overexpression in breast cancer primarily relies on invasive

procedures, which can increase patient discomfort, procedural

risks, and overall testing costs and complexity (7, 8).

Consequently, there is an urgent need to develop a non-invasive

and efficient method for predicting the risk of EGFR mutations in

patients with breast cancer before treatment. Such an approach

could shorten diagnostic timelines and reduce reliance on invasive

procedures, providing essential guidance for personalized

treatment planning.

Li et al. analyzed ultrasound images of 62 patients with breast

cancer that were interpreted by experienced sonographers and

found that lateral shadows and microlobulated margins were
on tree; EGFR, epidermal

vel co-occurrencematrix;

size zone matrix; HER2,

rrelation coefficient; IHC,

, k-nearest neighbors; LR,

NGTDM, neighborhood

C, receiver operating

t; SVM, support vector

microarray.
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significantly associated with high cytokeratin 5/6 and EGFR

expression (9). However, with conventional ultrasound

techniques, it is challenging to differentiate between basal-like and

normal-like breast cancer subtypes. Recently, the integration of

artificial intelligence in clinical medicine has led to increased

interest in radiomics, which autonomously extracts imaging

features, quantifies tumor heterogeneity, and characterizes

biological properties through high-throughput image analysis

(10). Radiomics has also shown promise in predicting the genetic

subtypes of breast cancer (8, 11–14). Machine learning (ML)

enables computers to identify patterns and acquire knowledge by

leveraging algorithms and mathematical principles, enabling

continuous performance improvements (15–17). Compared to

traditional statistical methods, ML techniques excel at uncovering

hidden information within data, demonstrating superior learning

and generalization capabilities (18). However, the limited

interpretability of ML models represents a major challenge (19).

The underlying mechanisms driving ML decisions can be difficult to

discern, raising concerns about the reliability of the results. In

medical diagnostics, interpretability is crucial because transparent

models enhance the reliability and safety of decision-making

outcomes. Only by ensuring model transparency can decision-

making be deemed more reliable and safer (18). Currently,

predictions of breast cancer genetic subtypes primarily focus on

biomarkers such as estrogen receptor (ER), human epidermal

growth factor receptor 2 (HER2), and cell proliferation index (Ki-

67) (11–13). Although previous studies have explored imaging or

genomic signatures for predicting EGFR expression in other

cancers. To date, no studies have directly applied machine

learning-based radiomics approaches on ultrasound imaging to

predict EGFR expression status in breast cancer, highlighting a

novel research gap addressed by this study (20, 21).

In this study, we developed and evaluated seven ML models—

logistic regression (LR), support vector machine (SVM), k-nearest

neighbors (KNN), random forest (RF), decision tree (DT), naive

Bayes (NB), and neural network (NN)—to identify the optimal risk

prediction model. Additionally, the Shapley additive explanation
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(SHAP) method was employed to quantify the contribution of each

feature variable using both global and local interpretability

approaches, thereby elucidating the key factors associated with

predicting EGFR expression status in patients with breast cancer.

In this study, we aimed to provide a non-invasive and accurate tool

for assessing EGFR expression status. This tool could help optimize

clinical management strategies and enhance patient quality of life.
2 Materials and methods

2.1 Patients and study design

The Ethics Committee of the Second Affiliated Hospital of

Fujian Medical University approved this study (Approval No. 021)

on 26 March 2025, and all patients provided written informed

consent. A retrospective analysis was conducted on female patients

diagnosed with breast cancer through surgical pathology who

underwent EGFR gene testing at our institution between January

2019 and August 2024. The inclusion criteria were 1) patients who

underwent grayscale ultrasound and 2) those who underwent

ultrasound examination within 2 weeks prior to genetic testing.

The exclusion criteria were as follows: 1) patients who received

neoadjuvant chemotherapy, 2) patients who underwent biopsy

before the ultrasound examination, and 3) patients with unclear

ultrasound images. A total of 321 grayscale ultrasound images from

eligible patients were analyzed. These patients were randomly

divided into training (n = 225) and test (n = 96) sets at a 7:3 ratio

(Figure 1). To reduce selection bias beyond a single hold-out split, we

additionally performed stratified 10-fold cross-validation, preserving

the EGFR+/– ratio in each fold. Mean AUC, accuracy, precision,
Frontiers in Oncology 03
recall, and F1-score across folds were computed and reported.

Clinical information of each patient was recorded, including age,

maximum tumor diameter, tumor morphology, taller-than-wide

orientation, presence of microcalcification, posterior acoustic

attenuation, blood flow signals, and EGFR expression status. To

preserve the class distribution (EGFR–:EGFR+ ≈ 2:1), all data

partitions employed stratified sampling.
2.2 EGFR expression analysis

EGFR expression was assessed using immunohistochemistry on

formalin-fixed, paraffin-embedded surgical specimens. Tissue

microarray cores were selected based on representative tumor

areas. EGFR protein expression was evaluated using the EGFR

pharmDx Kit, with scoring based on membranous staining: 0 (no or

weak staining in <10% of cells), 1+ (weak staining in ≥10% of cells),

2+ (moderate staining in ≥10% of cells), and 3+ (strong staining

in ≥10% of cells). Tumors were classified as EGFR-overexpressing

(EGFR+) if they scored 1+, 2+, or 3+, and EGFR-negative (EGFR-)

if they scored 0. These immunohistochemical results were used as

the ground truth labels (EGFR+ vs. EGFR–) for model training.
2.3 ROI segmentation and feature
extraction

All patients underwent an ultrasound examination prior to

surgery. Gray-scale ultrasound images were used for radiomic

feature extraction. The ultrasound images were retrieved from the

Picture Archiving and Communication System and saved in their
FIGURE 1

Flowchart of the patient recruitment process.
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original Digital Imaging and Communications in Medicine format.

An ultrasound diagnostician with 10 years of experience (Reader

A), who was blinded to clinical information, treatment methods,

clinical outcomes, and pathological data, manually delineated the

regions of interest (ROI) of the tumors using 3D Slicer software

(version 4.11, https://www.slicer.org/). The tumor was identified

based on the largest cross-sectional plane for ROI delineation and

feature extraction. Two weeks after the initial delineation, Reader A

and another ultrasound diagnostician with 15 years of experience

(Reader B) randomly selected 30 images for ROI delineation to

evaluate both inter- and intra-observer reproducibility of

ultrasound radiomic feature extraction. Radiomic features with an

intraclass correlation coefficient (ICC) greater than 0.75 were

considered highly reliable and retained for model construction.

Annotation information was removed from all images before

delineation, and the results were saved in an ROI (nrrd) format.

High-order texture features with low ICC (<0.75) were excluded

due to their sensitivity to boundary placement, indicating poor

inter-observer reproducibility. Dice similarity between

segmentations was not computed, as the focus was on feature-

level reliability rather than spatial overlap.
2.4 Radiomic feature extraction and
selection

Ultrasound radiomic features were extracted from the two-

dimensional ROIs in each patient’s ultrasound images using the

open-source Python package Pyradiomics (version 3.8.8). Radiomic

features were extracted from the original images without wavelet or

LoG filtering. A multi-step feature selection pipeline was

implemented to reduce overfitting and improve model

generalizability. The feature selection process in the training set

involved the following steps: (i) retain features with ICC > 0.75 from

inter- and intra-observer tests; (ii) apply z-score normalization to all

features; (iii) perform a univariate F-test (p < 0.05) to identify

features with significant group differences as a preliminary

dimensionality-reduction step; and (iv) apply L1-regularized

logistic regression (LASSO) with 10-fold internal cross-validation

as the final selector. A significance threshold of p < 0.05 was used

without Bonferroni correction, as the subsequent LASSO step

provides further regularization.

As a sensitivity analysis, we performed an ablation that removed

step (iii) and applied LASSO directly; performance remained

comparable to the full pipeline (see Supplementary Table S1),

indicating that conclusions do not hinge on the univariate pre-filter.

In total, 464 features were extracted from each image, including

shape features, first-order statistics, gray-level co-occurrence matrix

(GLCM) features, gray-level run-length matrix (GLRLM) features,

gray-level size zone matrix (GLSZM) features, and neighborhood

gray-tone difference matrix (NGTDM) features.
Frontiers in Oncology 04
2.5 Model construction

Seven commonly used ML algorithms were used to construct

predictive models for the training set: LR, SVM, KNN, RF, DT, NB,

and NN. Model performance was evaluated using receiver operating

characteristic (ROC) curves and the area under the ROC curve

(AUC). The AUC values were compared between models using the

DeLong test. Additionally, accuracy, precision, the F1 score, and

recall were calculated to provide a comprehensive assessment of

model performance. Model construction and evaluation were

performed using Python version 3.8.0 (Python Software

Foundation; Beaverton, OR, USA). Figure 2 illustrates

the workflow.

To mitigate potential selection bias and address class imbalance

(EGFR−: EGFR+ ≈ 2:1), we applied stratified 10-fold cross-

validation, ensuring class proportions were preserved in each fold.

We also tested a soft-voting ensemble (RF + SVM + DT), which

showed comparable performance to the best individual classifier

(see Supplementary Table S2). Classifier hyperparameters are

summarized in Supplementary Table S3.
2.6 Model interpretation with SHAP

The SHAP method, a game-theory-based method, provides

valuable insights into the influence of individual features by

quantifying their contributions to model predictions. This method

provides both global and sample-level insights into model behavior.

In this study, we applied the SHAP method to interpret the

constructed ML models, addressing the “black-box” challenges

commonly associated with these algorithms. All analyses were

conducted using SHAP software (version 0.44.1). Feature

importance plots and summary plots were generated, and

representative cases were selected to create SHAP force plots,

thereby enhancing our understanding of the model predictions.
2.7 Statistical analyses

All statistical analyses were conducted using R (version 4.3.3;

https://www.r-project.org) and Python (version 3.8.0). Continuous

variables are expressed as mean with standard deviation, whereas

categorical variables are reported as frequency and percentage. The

clinical characteristics of the EGFR+ and control groups were

compared using t-tests for continuous variables and chi-square

test (or Fisher’s exact test when appropriate) for categorical

variables. Seven ML algorithms were employed to construct

predictive models, and their performances were evaluated using

ROC curves. The SHAP analysis was applied to investigate the

contributions of different variables to risk prediction. Statistical

significance was defined as P < 0.05 for all analyses.
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3 Results

3.1 Clinicopathological data

In total, 321 patients with breast cancer were included in the

study, of whom 111 (34.6%) had EGFR+ status and the remaining

210 (65.4%) had EGFR- status. There were no significant differences

between the groups in terms of age, maximum tumor diameter,

i r r egu la r shape , he ight - to -width ra t io , pr esence of

microcalcifications, posterior shadowing, or blood flow signals

(Table 1). No statistically significant differences were found based

on t-test for continuous variables and chi-square test for

categorical variables.
3.2 Feature selection

A total of 464 radiomic features were extracted from the breast

cancer ultrasound images of each patient. Among these, 335

features exhibited inter- and intra-observer ICC values of >0.75,

indicating good consistency and suitability for further analysis.

After consistency testing, t-tests were conducted on these 335

features, resulting in the retention of 16 features. Finally, the

LASSO regression method with 10-fold cross-validation was

applied, yielding eight features for constructing the radiomics

model (Figure 3). The Least Absolute Shrinkage and Selection

Operator (LASSO) regression with 10-fold cross-validation was

used to select the most informative features from the 16 features

that passed the univariate test. Figure 3A displays the binomial

deviance of the LASSO regression across log(l) values, with the
Frontiers in Oncology 05
optimal value selected via 10-fold cross-validation. Figure 3B

illustrates the coefficient profiles of features as a function of l.
Eight features with non-zero coefficients at the optimal l were

selected for model construction. This sensitivity to boundary

placement has also been reported in phantom and repeatability

studies, where GLCM and GLRLM features showed reduced

robustness compared to first-order and shape features (22, 23).
3.3 Model performance

The selected features were input into the seven ML models. The

performance of these models was evaluated using ROC curves for

both the training and test sets (Figure 4; Table 2). In the training set,

the LR model achieved an AUC of 0.74. Delong’s test indicated that

the RF model had the highest AUC, significantly outperforming the

LR, SVM, DT, KNN, NB, and NNmodels (P < 0.001). In the test set,

the RF model (AUC = 0.70) outperformed the SVM model (AUC =

0.60, P < 0.05). Radar plots were used to visualize the relative

importance of selected features across different models. However,

no significant differences were observed between the RF model and

the LR, KNN, DT, NB, and NNmodels (P > 0.05). Although several

between-model differences on the hold-out test were not statistically

significant, cross-validation showed that RF delivered balanced

performance with a higher mean F1-score (0.54 ± 0.12) on

average, supporting its selection as the final model. Beyond the

7:3 hold-out test (RF AUC = 0.76; F1 = 0.58), stratified 10-fold

cross-validation yielded consistent performance (AUC 0.82 ± 0.08;

F1 0.54 ± 0.12), supporting model robustness (Supplementary

Table S4).
FIGURE 2

Overall workflow of the study. ROI, region of interest; ICC, inter- and intra-class correlation coefficient; LASSO, least absolute shrinkage and
selection operator; ROC, receiver operating characteristic; SHAP, Shapley additive explanation.
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An exploratory soft-voting ensemble achieved performance

comparable to RF (10-fold AUC 0.73 ± 0.10 vs. RF 0.82 ± 0.08;

hold-out AUC both 0.76), suggesting limited incremental benefit on

this dataset (Supplementary Table S2). The radar plots in Figure 5

illustrate model performance metrics (AUC, accuracy, precision,

recall, and F1-score) across classifiers, highlighting that Random

Forest and XGBoost achieved the best overall generalization on

both training and test sets.
Frontiers in Oncology 06
3.4 Model interpretability

We calculated the SHAP values for each ultrasound radiomic

feature in the RF model. The SHAP feature importance scatter plot

(Figure 6A) illustrates the distribution of SHAP values for each

feature, with each point representing the SHAP value of a sample

and the color indicating the feature value (e.g., high or low). As

shown in the p lo t , or ig ina l_ngtdm_Coarseness and
FIGURE 3

LASSO coefficient profiles of the risk factors. (A) Distribution of the coefficients of 16 features after LASSO regression. (B) Cross-validation curve
used to determine the optimal regularization parameter (l). LASSO, least absolute shrinkage and selection operator.
TABLE 1 Comparison of clinical and ultrasound characteristics of the patients.

Characteristics
EGFR

X2/t P-value
Negative (n = 210) Positive (n = 111)

Age (year, X ± SD) 51.39 ± 12.38 49.71 ± 11.30 1.187 0.236

Maximum diameter
(mm, X ± SD)

21.15 ± 9.14 20.10 ± 9.29 0.976 0.330

Irregular shape 2.328 0.127

Negative (n, %) 69, 21.5 46, 14.3

Positive (n, %) 141, 43.9 65, 20.2

Taller than wide 2.061 0.151

Negative (n, %) 168, 52.3 81, 25.2

Positive (n, %) 42, 13.1 30, 9.3

Microcalcification 2.748 0.097

Negative (n, %) 122, 38.0 75, 23.4

Positive (n, %) 88, 27.4 36, 11.2

Shadow 0.498 0.481

Negative (n, %) 137, 42.7 68, 21.2

Positive (n, %) 73, 22.7 43, 13.4

CDFI 1.329 0.249

Negative (n, %) 105, 32.7 63, 19.6

Positive (n, %) 105, 32.7 48, 15.0
EGFR, epidermal growth factor receptor; CDFI, color Doppler flow imaging. P-values were computed using the Mann-Whitney U test.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1683164
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Xu et al. 10.3389/fonc.2025.1683164
original_ngtdm_Strength exhibit the widest distribution of SHAP

values, highlighting their significant influence on the prediction

model. The gradient from blue to red reflects the magnitude of the

feature values, with high values represented in red and low values in

blue, emphasizing the nonlinear effect of these features on the

prediction output. The SHAP feature importance bar chart

(Figure 6B) ranks the features according to their absolute

mean SHAP values, reflecting their relative importance in the

model ’s overall predictions. The top-ranked features,

original_ngtdm_Coarseness and original_ngtdm_Strength, were

identified as the primary drivers of the model’s predictions.

Among the selected features, texture features such as

original_ngtdm_Coarseness, original_ngtdm_Strength, and
Frontiers in Oncology 07
wavelet.LL_glcm_ClusterProminence, as well as 2D shape features

like original_shape2D_PerimeterSurfaceRatio, demonstrated

significant differences between EGFR+ and EGFR− tumors.

Specifically, EGFR+ tumors exhibited lower values in

original_ngtdm_Coarseness (0.00105 vs. 0.00153, p = 0.0012),

original_ngtdm_Strength (5.06 vs. 7.55, p = 0.0015),

and PerimeterSurfaceRatio (0.119 vs. 0.140, p = 0.0178),

indicating finer texture and more compact tumor structures

compared to EGFR− tumors (Supplementary Table S5). Other

features, such as wavelet.LL_glcm_ClusterProminence and

wavelet.HL_gldm_DependenceVariance, also contributed

significantly, whereas lower-ranked features had smaller

contributions. Figure 7 presents two representative patients: one
FIGURE 4

ROC curves assessing the performance of ML models for predicting EGFR status in patients with breast cancer. (A, B) ROC curves of the ML models
in the (A) training set and (B) test set. AUC, area under the curve; EGFR, epidermal growth factor receptor; ML, machine learning; ROC, receiver
operating characteristic.
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TABLE 2 Comparison of the performance of machine learning models in training and test sets.

Sets Models AUC Accuracy Precision F1-score Recall

Training set RF 0.86 0.76 0.63 0.81 0.71

LR 0.74 0.60 0.47 0.91 0.62

SVM 0.84 0.67 0.59 0.22 0.31

DT 0.76 0.62 0.48 0.97 0.64

KNN 0.72 0.68 0.65 0.22 0.32

NB 0.69 0.59 0.45 0.78 0.57

NN 0.67 0.68 0.72 0.16 0.27

Test set RF 0.70 0.62 0.46 0.66 0.54

LR 0.65 0.48 0.81 0.31 0.77

SVM 0.60 0.58 0.25 0.12 0.17

DT 0.69 0.53 0.41 0.88 0.55

KNN 0.68 0.70 0.64 0.22 0.33

NB 0.66 0.56 0.41 0.72 0.52

NN 0.68 0.19 0.67 0.19 0.29
F
rontiers in Oncology
 08
AUC, area under the curve; RF, random forest; LR, logistic regression; SVM, support vector machine; DT, decision tree; KNN, k-nearest neighbors; NB, naive Bayes; NN, neural network.
FIGURE 5

Radar charts comparing the performance of seven ML models in predicting EGFR status across five metrics: (A) Accuracy, (B) AUC, (C) Precision,
(D) F1-score, and (E) Recall. Each chart displays the performance in both the training set (solid blue line) and test set (dashed orange line). Models
compared include Logistic Regression, SVM, XGBoost, Random Forest, KNN, Decision Tree, and Neural Network.EGFR, epidermal growth factor
receptor; ML, machine learning; AUC, area under the curve.
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with EGFR-negative (Patient A) and one with EGFR-positive status

(Patient B). For each case, the original grayscale ultrasound image,

ROI segmentation, and SHAP output are shown. The SHAP

visualizations illustrate how specific radiomic features influenced

the model’s prediction at the individual level. Notably, texture-

based descriptors such as original_ngtdm_Coarseness and

original_ngtdm_Strength demonstrated substantial contributions,

reflecting local intensity granularity and uniformity. These radiomic

patterns, including lower coarseness and strength, indicate finer and

more homogeneous texture in EGFR+ tumors. This observation is

consistent with the hypothesis that EGFR-overexpressing tumors
Frontiers in Oncology 09
may exhibit higher cellular density and less architectural

heterogeneity, as also suggested in previous studies (24, 25).
4 Discussion

In this study, we developed and validated an interpretable ML

model using ultrasound radiomic features to predict EGFR

expression status in breast cancer. The random forest (RF) model

achieved the highest performance among seven machine learning

models, with an AUC of 0.86 on the training set and 0.70 on the
FIGURE 6

Interpretability of the ML radiomic model assessed using the SHAP method. (A) SHAP summary plot showing the impact of each feature on the
model’s predictions. Individual dots represent patients, with different colors indicating varying levels of influence on the model’s output. (B) SHAP bar
chart displaying the importance of each feature based on mean SHAP values. ML, machine learning; SHAP, Shapley additive explanation.
FIGURE 7

Representative examples of two patients with distinct EGFR expression status. Patient (A) (top row): 63-year-old female with EGFR-negative tumor.
Patient (B) (bottom row): 59-year-old female with EGFR-positive tumor. For each case, the original grayscale ultrasound image, manual ROI
segmentation, and SHAP summary output are shown. SHAP values highlight the most influential radiomic features contributing to the model’s
prediction for each individual. EGFR, epidermal growth factor receptor; SHAP, Shapley additive explanation.
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hold-out test set. Furthermore, 10-fold stratified cross-validation

confirmed the robustness of the RF model (AUC = 0.82 ± 0.08; F1-

score = 0.54 ± 0.12), supporting its selection as the final model.

Although the test set AUC was moderate (~0.76), the RF model

consistently outperformed others in recall and F1-score, metrics

that are crucial for clinical risk stratification. These results are in line

with previous radiomics studies reporting similar performance for

EGFR prediction in other cancers (26, 27).

The novelty of this study lies in the integration of ultrasound

radiomics and ML techniques to develop a high-performance RF

model that demonstrates superior performance across multiple

evaluation metrics. This model provides valuable technical

insights for advancing the development of clinical diagnostic

systems. Prior studies have explored EGFR prediction primarily

in non-small cell lung cancer using PET/CT or multiparametric

MRI, achieving AUCs ranging from 0.61 to 0.85. In contrast, our

model achieved comparable or superior performance (AUC = 0.76–

0.82) using cost-effective, non-invasive ultrasound imaging (26–28).

This approach may offer a practical alternative for wider clinical

application, particularly in settings lacking advanced

imaging modalities.

In this study, we integrated ultrasound imaging with ML,

validating the potential of ultrasound radiomics in quantifying

tumor heterogeneity. These findings align with those of previous

studies that successfully predicted ER, progesterone receptor,

HER2, and Ki-67 expression statuses in breast cancer using

radiomic analysis (29–31). Notably, by predicting the EGFR

expression status, this study expands the application of radiomics

to the molecular subtyping of breast cancer. Eight key radiomic

features were selected to construct the ultrasound radiomics model:

two NGTDM features, one gray-level dependence matrix feature,

one GLRLM feature, one GLSZM feature, one GLCM feature, one

shape feature, and one first-order statistical feature. These features

included six texture features, one shape feature, and one first-order

statistical feature. The six texture features capture the complexity of

tumor texture, which is critical to identifying and classifying spatial

heterogeneity within tumor lesions (32, 33). This finding

underscores the importance of texture features in predicting high

EGFR expression. Additionally, the RF model developed in this

study provides a comprehensive analysis of tumor characteristics by

integrating texture, shape, and first-order statistical features,

thereby enhancing the accuracy and reliability of tumor

predictions. By combining these diverse feature types, the RF

model captures tumor image information more comprehensively,

leading to more precise predictions and diagnoses. This integrated

analysis offers new perspectives and methodologies for diagnosing

and predicting EGFR mutations in patients with breast cancer,

demonstrating potential for clinical application.

The SHAP values were applied to the RF model to enhance both

predictive performance and interpretability. With these values, we

can evaluate the contribution of each feature to the model’s output

by analyzing all possible feature combinations, providing consistent

and locally accurate attribute values for each feature. The SHAP

analysis of the RF model revealed that original_ngtdm_Coarseness

and original_ngtdm_Strength had the most significant effect on
Frontiers in Oncology 10
EGFR expression status prediction. These features quantify subtle

variations in tumor texture, which aligns with the recognized

importance of texture features in tumor classification and

prediction in the field of radiomics (34, 35). Using the SHAP

method, we quantified the importance of features and revealed

their nonlinear effects on the model’s decision-making process,

thereby enhancing its transparency and clinical credibility.

Applying these insights to the RF model enables users to better

understand its predictions and the rationale behind its decisions.

The detailed insights and explanations of risk factors presented in

the results provide clinicians with a more informed perspective,

fostering evidence-based decision-making rather than blind reliance

on algorithm outputs. Moreover, individualized explanations help

clinicians understand why the model suggests specific decisions for

high-risk cases, supporting personalized patient management.

Several limitations merit consideration. First, this was a single-

center, retrospective study with a modest sample size and a class

imbalance (EGFR–:EGFR+ ≈ 2:1), which may limit generalizability.

Although we applied stratified sampling, class weighting, and 10-

fold cross-validation to minimize bias, external validation across

multiple institutions is necessary. Second, the manual segmentation

of ROIs introduces subjectivity and may impact reproducibility;

future work should explore automated deep learning-based

segmentation. Lastly, although ensemble learning was explored, it

did not outperform the RF model, potentially due to data scale and

signal-to-noise characteristics.
5 Conclusions

In this study, we developed an interpretable ML model based on

ultrasound radiomic features to predict the EGFR expression status

in breast cancer. The model demonstrated excellent predictive

performance, which was further enhanced using the SHAP

method. The SHAP values improved both global and local

interpretability, providing reliable support for precise and non-

invasive diagnosis. Ultrasound radiomics offers a more cost-

effective and non-invasive alternative to invasive testing methods,

making it particularly suitable for patients who are unable to

undergo such procedures. This approach shows clinical potential

for widespread applications in breast cancer diagnosis and

management . Among the top-ranked SHAP features ,

original_ngtdm_Coarseness, original_ngtdm_Strength, and

wavelet.LL_glcm_ClusterProminence not only exhibited

significant intergroup differences between EGFR+ and EGFR−

tumors but also reflected texture compactness and heterogeneity,

suggesting a strong association with the underlying biological

mechanisms of EGFR overexpression.
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