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Background/objectives: The epidermal growth factor receptor (EGFR) is a
clinically important target, as its expression in patients with breast cancer
influences both overall and disease-free survival. Current methods for
assessing EGFR expression status in a patient are invasive. Therefore, in this
study, we developed a machine learning-based approach utilizing ultrasound
radiomics to non-invasively predict EGFR expression status in patients with
breast cancer.

Methods: Radiomic features were extracted from grayscale and wavelet-
transformed ultrasound images of 321 patients. The dataset was randomly split
into training (n = 225) and test (n = 96) sets at a 7:3 ratio with stratified sampling to
preserve the EGFR+/- ratio. Key predictors were identified using a multi-step
procedure—including reproducibility filtering (ICC > 0.75), univariate F-test
filtering (p < 0.05), and L1-regularized selection via LASSO regression. Seven
machine-learning models were trained. Model interpretability was assessed
using SHAP (Shapley Additive Explanations). In addition to the hold-out
evaluation, we performed stratified 10-fold cross-validation to reduce
selection bias.

Results: The random forest model demonstrated the optimal performance, with
an area under the receiver operating characteristic curve of 0.86 in the training
set and 0.70 in the test set. It significantly outperformed the other models (P <
0.001). The Shapley additive explanation method was used to interpret the
model, revealing that original_ngtdm_Coarseness, original_ngtdm_Strength,
and wavelet.LL_glcm_ClusterProminence were the top predictors. These
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features reflect structural compactness and heterogeneity associated with
EGFR overexpression.

Conclusions: We present a reliable and interpretable tool for non-invasively
assessing EGFR expression status in patients with breast cancer. The most
important predictors captured tumor heterogeneity and microstructural
uniformity, highlighting the biological relevance of radiomic patterns in EGFR-
positive tumors. This model integrates advanced imaging analyses with machine
learning, underscoring the potential of radiomics to advance precision oncology.

breast cancer, machine learning, epidermal growth factor receptor,

ultrasound, radiomics

1 Introduction

Breast cancer is one of the most prevalent malignancies among
women, with an estimated 357,200 new cases recorded annually in
China, accounting for 57.4% of the global incidence (1, 2). Despite
advancements in treatment modalities such as neoadjuvant
chemotherapy, surgery, and adjuvant therapy (3-5), there is a
critical need to refine diagnostic and therapeutic strategies to
enhance patient outcomes. The epidermal growth factor receptor
(EGFR) plays a pivotal role in cell proliferation and differentiation
(6). Its overexpression significantly accelerates metastasis and
recurrence, leading to a marked decrease in overall and disease-
free survival. Therefore, the EGFR is a clinically important
therapeutic target that offers opportunities for innovative
treatment strategies. However, the detection of EGFR
overexpression in breast cancer primarily relies on invasive
procedures, which can increase patient discomfort, procedural
risks, and overall testing costs and complexity (7, 8).
Consequently, there is an urgent need to develop a non-invasive
and efficient method for predicting the risk of EGFR mutations in
patients with breast cancer before treatment. Such an approach
could shorten diagnostic timelines and reduce reliance on invasive
procedures, providing essential guidance for personalized
treatment planning.

Li et al. analyzed ultrasound images of 62 patients with breast
cancer that were interpreted by experienced sonographers and
found that lateral shadows and microlobulated margins were

Abbreviations: AUC, area under the ROC curve; DT, decision tree; EGFR, epidermal
growth factor receptor; ER, estrogen receptor; GLCM, gray-level co-occurrence matrix;
GLRLM, gray-level run-length matrix; GLSZM, gray-level size zone matrix; HER2,
human epidermal growth factor receptor 2; ICC, intraclass correlation coefficient; IHC,
immunohistochemistry; Ki-67, cell proliferation index; KNN, k-nearest neighbors; LR,
logistic regression; ML, machine learning; NB, naive Bayes; NGTDM, neighborhood
gray-tone difference matrix; NN, neural network; ROC, receiver operating
characteristic; ROI, regions of interest; RF, random forest; SVM, support vector

machine; SHAP, Shapley additive explanation; TMA, tissue microarray.
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significantly associated with high cytokeratin 5/6 and EGFR
expression (9). However, with conventional ultrasound
techniques, it is challenging to differentiate between basal-like and
normal-like breast cancer subtypes. Recently, the integration of
artificial intelligence in clinical medicine has led to increased
interest in radiomics, which autonomously extracts imaging
features, quantifies tumor heterogeneity, and characterizes
biological properties through high-throughput image analysis
(10). Radiomics has also shown promise in predicting the genetic
subtypes of breast cancer (8, 11-14). Machine learning (ML)
enables computers to identify patterns and acquire knowledge by
leveraging algorithms and mathematical principles, enabling
continuous performance improvements (15-17). Compared to
traditional statistical methods, ML techniques excel at uncovering
hidden information within data, demonstrating superior learning
and generalization capabilities (18). However, the limited
interpretability of ML models represents a major challenge (19).
The underlying mechanisms driving ML decisions can be difficult to
discern, raising concerns about the reliability of the results. In
medical diagnostics, interpretability is crucial because transparent
models enhance the reliability and safety of decision-making
outcomes. Only by ensuring model transparency can decision-
making be deemed more reliable and safer (18). Currently,
predictions of breast cancer genetic subtypes primarily focus on
biomarkers such as estrogen receptor (ER), human epidermal
growth factor receptor 2 (HER2), and cell proliferation index (Ki-
67) (11-13). Although previous studies have explored imaging or
genomic signatures for predicting EGFR expression in other
cancers. To date, no studies have directly applied machine
learning-based radiomics approaches on ultrasound imaging to
predict EGFR expression status in breast cancer, highlighting a
novel research gap addressed by this study (20, 21).

In this study, we developed and evaluated seven ML models—
logistic regression (LR), support vector machine (SVM), k-nearest
neighbors (KNN), random forest (RF), decision tree (DT), naive
Bayes (NB), and neural network (NN)—to identify the optimal risk
prediction model. Additionally, the Shapley additive explanation

frontiersin.org


https://doi.org/10.3389/fonc.2025.1683164
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Xu et al.

(SHAP) method was employed to quantify the contribution of each
feature variable using both global and local interpretability
approaches, thereby elucidating the key factors associated with
predicting EGFR expression status in patients with breast cancer.
In this study, we aimed to provide a non-invasive and accurate tool
for assessing EGFR expression status. This tool could help optimize
clinical management strategies and enhance patient quality of life.

2 Materials and methods
2.1 Patients and study design

The Ethics Committee of the Second Affiliated Hospital of
Fujian Medical University approved this study (Approval No. 021)
on 26 March 2025, and all patients provided written informed
consent. A retrospective analysis was conducted on female patients
diagnosed with breast cancer through surgical pathology who
underwent EGFR gene testing at our institution between January
2019 and August 2024. The inclusion criteria were 1) patients who
underwent grayscale ultrasound and 2) those who underwent
ultrasound examination within 2 weeks prior to genetic testing.
The exclusion criteria were as follows: 1) patients who received
neoadjuvant chemotherapy, 2) patients who underwent biopsy
before the ultrasound examination, and 3) patients with unclear
ultrasound images. A total of 321 grayscale ultrasound images from
eligible patients were analyzed. These patients were randomly
divided into training (n = 225) and test (n = 96) sets at a 7:3 ratio
(Figure 1). To reduce selection bias beyond a single hold-out split, we
additionally performed stratified 10-fold cross-validation, preserving
the EGFR+/- ratio in each fold. Mean AUC, accuracy, precision,

Patients was recruited from January
2019 and August 2024
(n=490)

Y

10.3389/fonc.2025.1683164

recall, and Fl-score across folds were computed and reported.
Clinical information of each patient was recorded, including age,
maximum tumor diameter, tumor morphology, taller-than-wide
orientation, presence of microcalcification, posterior acoustic
attenuation, blood flow signals, and EGFR expression status. To
preserve the class distribution (EGFR—:EGFR+ = 2:1), all data
partitions employed stratified sampling.

2.2 EGFR expression analysis

EGEFR expression was assessed using immunohistochemistry on
formalin-fixed, paraffin-embedded surgical specimens. Tissue
microarray cores were selected based on representative tumor
areas. EGFR protein expression was evaluated using the EGFR
pharmDx Kit, with scoring based on membranous staining: 0 (no or
weak staining in <10% of cells), 1+ (weak staining in 210% of cells),
2+ (moderate staining in >10% of cells), and 3+ (strong staining
in 210% of cells). Tumors were classified as EGFR-overexpressing
(EGFR+) if they scored 1+, 2+, or 3+, and EGFR-negative (EGFR-)
if they scored 0. These immunohistochemical results were used as
the ground truth labels (EGFR+ vs. EGFR-) for model training.

2.3 ROl segmentation and feature
extraction

All patients underwent an ultrasound examination prior to
surgery. Gray-scale ultrasound images were used for radiomic
feature extraction. The ultrasound images were retrieved from the
Picture Archiving and Communication System and saved in their

Excluded(n=169):

i Patients who received neoadjuvant therapy(n=40)

......................... >' Patients u

(n=321)

Patients included in this retrospective study

ndergoing biopsy to ultrasound(n=12)
Poor image quality(n=108)

y \i
Training set Test set
(n=225) (n=96)
FIGURE 1
Flowchart of the patient recruitment process.
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original Digital Imaging and Communications in Medicine format.
An ultrasound diagnostician with 10 years of experience (Reader
A), who was blinded to clinical information, treatment methods,
clinical outcomes, and pathological data, manually delineated the
regions of interest (ROI) of the tumors using 3D Slicer software
(version 4.11, https://www.slicer.org/). The tumor was identified
based on the largest cross-sectional plane for ROI delineation and
feature extraction. Two weeks after the initial delineation, Reader A
and another ultrasound diagnostician with 15 years of experience
(Reader B) randomly selected 30 images for ROI delineation to
evaluate both inter- and intra-observer reproducibility of
ultrasound radiomic feature extraction. Radiomic features with an
intraclass correlation coefficient (ICC) greater than 0.75 were
considered highly reliable and retained for model construction.
Annotation information was removed from all images before
delineation, and the results were saved in an ROI (nrrd) format.
High-order texture features with low ICC (<0.75) were excluded
due to their sensitivity to boundary placement, indicating poor
inter-observer reproducibility. Dice similarity between
segmentations was not computed, as the focus was on feature-
level reliability rather than spatial overlap.

2.4 Radiomic feature extraction and
selection

Ultrasound radiomic features were extracted from the two-
dimensional ROIs in each patient’s ultrasound images using the
open-source Python package Pyradiomics (version 3.8.8). Radiomic
features were extracted from the original images without wavelet or
LoG filtering. A multi-step feature selection pipeline was
implemented to reduce overfitting and improve model
generalizability. The feature selection process in the training set
involved the following steps: (i) retain features with ICC > 0.75 from
inter- and intra-observer tests; (ii) apply z-score normalization to all
features; (iii) perform a univariate F-test (p < 0.05) to identify
features with significant group differences as a preliminary
dimensionality-reduction step; and (iv) apply Ll-regularized
logistic regression (LASSO) with 10-fold internal cross-validation
as the final selector. A significance threshold of p < 0.05 was used
without Bonferroni correction, as the subsequent LASSO step
provides further regularization.

As a sensitivity analysis, we performed an ablation that removed
step (iii) and applied LASSO directly; performance remained
comparable to the full pipeline (see Supplementary Table SI),
indicating that conclusions do not hinge on the univariate pre-filter.

In total, 464 features were extracted from each image, including
shape features, first-order statistics, gray-level co-occurrence matrix
(GLCM) features, gray-level run-length matrix (GLRLM) features,
gray-level size zone matrix (GLSZM) features, and neighborhood
gray-tone difference matrix (NGTDM) features.
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2.5 Model construction

Seven commonly used ML algorithms were used to construct
predictive models for the training set: LR, SVM, KNN, RF, DT, NB,
and NN. Model performance was evaluated using receiver operating
characteristic (ROC) curves and the area under the ROC curve
(AUC). The AUC values were compared between models using the
DeLong test. Additionally, accuracy, precision, the F1 score, and
recall were calculated to provide a comprehensive assessment of
model performance. Model construction and evaluation were
performed using Python version 3.8.0 (Python Software
Foundation; Beaverton, OR, USA). Figure 2 illustrates
the workflow.

To mitigate potential selection bias and address class imbalance
(EGFR-: EGFR+ =~ 2:1), we applied stratified 10-fold cross-
validation, ensuring class proportions were preserved in each fold.
We also tested a soft-voting ensemble (RF + SVM + DT), which
showed comparable performance to the best individual classifier
(see Supplementary Table S2). Classifier hyperparameters are
summarized in Supplementary Table S3.

2.6 Model interpretation with SHAP

The SHAP method, a game-theory-based method, provides
valuable insights into the influence of individual features by
quantifying their contributions to model predictions. This method
provides both global and sample-level insights into model behavior.
In this study, we applied the SHAP method to interpret the
constructed ML models, addressing the “black-box” challenges
commonly associated with these algorithms. All analyses were
conducted using SHAP software (version 0.44.1). Feature
importance plots and summary plots were generated, and
representative cases were selected to create SHAP force plots,
thereby enhancing our understanding of the model predictions.

2.7 Statistical analyses

All statistical analyses were conducted using R (version 4.3.3;
https://www.r-project.org) and Python (version 3.8.0). Continuous
variables are expressed as mean with standard deviation, whereas
categorical variables are reported as frequency and percentage. The
clinical characteristics of the EGFR+ and control groups were
compared using f-tests for continuous variables and chi-square
test (or Fisher’s exact test when appropriate) for categorical
variables. Seven ML algorithms were employed to construct
predictive models, and their performances were evaluated using
ROC curves. The SHAP analysis was applied to investigate the
contributions of different variables to risk prediction. Statistical
significance was defined as P < 0.05 for all analyses.
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FIGURE 2
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ROI segmentation Radiomics features Radiomics features ML mod.el Model performance
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First-order features T-test analysis SVM
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GLDM | | e
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\ / \
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Overall workflow of the study. ROI, region of interest; ICC, inter- and intra-class correlation coefficient; LASSO, least absolute shrinkage and
selection operator; ROC, receiver operating characteristic; SHAP, Shapley additive explanation.

3 Results
3.1 Clinicopathological data

In total, 321 patients with breast cancer were included in the
study, of whom 111 (34.6%) had EGFR+ status and the remaining
210 (65.4%) had EGFR- status. There were no significant differences
between the groups in terms of age, maximum tumor diameter,
irregular shape, height-to-width ratio, presence of
microcalcifications, posterior shadowing, or blood flow signals
(Table 1). No statistically significant differences were found based
on t-test for continuous variables and chi-square test for
categorical variables.

3.2 Feature selection

A total of 464 radiomic features were extracted from the breast
cancer ultrasound images of each patient. Among these, 335
features exhibited inter- and intra-observer ICC values of >0.75,
indicating good consistency and suitability for further analysis.
After consistency testing, t-tests were conducted on these 335
features, resulting in the retention of 16 features. Finally, the
LASSO regression method with 10-fold cross-validation was
applied, yielding eight features for constructing the radiomics
model (Figure 3). The Least Absolute Shrinkage and Selection
Operator (LASSO) regression with 10-fold cross-validation was
used to select the most informative features from the 16 features
that passed the univariate test. Figure 3A displays the binomial
deviance of the LASSO regression across log(A) values, with the
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optimal value selected via 10-fold cross-validation. Figure 3B
illustrates the coefficient profiles of features as a function of A.
Eight features with non-zero coefficients at the optimal A were
selected for model construction. This sensitivity to boundary
placement has also been reported in phantom and repeatability
studies, where GLCM and GLRLM features showed reduced
robustness compared to first-order and shape features (22, 23).

3.3 Model performance

The selected features were input into the seven ML models. The
performance of these models was evaluated using ROC curves for
both the training and test sets (Figure 4; Table 2). In the training set,
the LR model achieved an AUC of 0.74. Delong’s test indicated that
the RF model had the highest AUC, significantly outperforming the
LR, SVM, DT, KNN, NB, and NN models (P < 0.001). In the test set,
the RF model (AUC = 0.70) outperformed the SVM model (AUC =
0.60, P < 0.05). Radar plots were used to visualize the relative
importance of selected features across different models. However,
no significant differences were observed between the RF model and
the LR, KNN, DT, NB, and NN models (P > 0.05). Although several
between-model differences on the hold-out test were not statistically
significant, cross-validation showed that RF delivered balanced
performance with a higher mean Fl-score (0.54 %= 0.12) on
average, supporting its selection as the final model. Beyond the
7:3 hold-out test (RF AUC = 0.76; F1 = 0.58), stratified 10-fold
cross-validation yielded consistent performance (AUC 0.82 + 0.08;
F1 0.54 £ 0.12), supporting model robustness (Supplementary
Table S4).
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TABLE 1 Comparison of clinical and ultrasound characteristics of the patients.

10.3389/fonc.2025.1683164

EGFR

Characteristics P-value

Negative (n = 210) Positive (n = 111)
Age (year, X + SD) 51.39 + 12.38 49.71 £ 11.30 1.187 0.236
?fna;‘“;“;’ :;meter 2115 + 9.14 20.10 + 9.29 0.976 0330
Irregular shape 2.328 0.127
Negative (n, %) 69, 21.5 46, 14.3
Positive (n, %) 141, 43.9 65, 20.2
Taller than wide 2.061 0.151
Negative (n, %) 168, 52.3 81, 25.2
Positive (n, %) 42,13.1 30,9.3
Microcalcification 2.748 0.097
Negative (n, %) 122, 38.0 75,23.4
Positive (n, %) 88, 27.4 36, 11.2
Shadow 0.498 0.481
Negative (n, %) 137, 42.7 68,21.2
Positive (n, %) 73,22.7 43, 13.4
CDFI 1.329 0.249
Negative (n, %) 105, 32.7 63, 19.6
Positive (n, %) 105, 32.7 48, 15.0

EGFR, epidermal growth factor receptor; CDFI, color Doppler flow imaging. P-values were computed using the Mann-Whitney U test.

An exploratory soft-voting ensemble achieved performance

3.4 Model interpretability
comparable to RF (10-fold AUC 0.73 + 0.10 vs. RF 0.82 + 0.08;

hold-out AUC both 0.76), suggesting limited incremental benefit on
this dataset (Supplementary Table S2). The radar plots in Figure 5

We calculated the SHAP values for each ultrasound radiomic
feature in the RF model. The SHAP feature importance scatter plot
(Figure 6A) illustrates the distribution of SHAP values for each
feature, with each point representing the SHAP value of a sample

illustrate model performance metrics (AUC, accuracy, precision,
recall, and Fl-score) across classifiers, highlighting that Random
Forest and XGBoost achieved the best overall generalization on  and the color indicating the feature value (e.g., high or low). As

both training and test sets. shown in the plot, original_ngtdm_Coarseness and
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FIGURE 3
LASSO coefficient profiles of the risk factors. (A) Distribution of the coefficients of 16 features after LASSO regression. (B) Cross-validation curve
used to determine the optimal regularization parameter (A). LASSO, least absolute shrinkage and selection operator.
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FIGURE 4

B

ROC curves assessing the performance of ML models for predicting EGFR status in patients with breast cancer. (A, B) ROC curves of the ML models
in the (A) training set and (B) test set. AUC, area under the curve; EGFR, epidermal growth factor receptor; ML, machine learning; ROC, receiver

operating characteristic.

original_ngtdm_Strength exhibit the widest distribution of SHAP
values, highlighting their significant influence on the prediction
model. The gradient from blue to red reflects the magnitude of the
feature values, with high values represented in red and low values in
blue, emphasizing the nonlinear effect of these features on the
prediction output. The SHAP feature importance bar chart
(Figure 6B) ranks the features according to their absolute
mean SHAP values, reflecting their relative importance in the
model’s overall predictions. The top-ranked features,
original_ngtdm_Coarseness and original_ngtdm_Strength, were
identified as the primary drivers of the model’s predictions.
Among the selected features, texture features such as
original_ngtdm_Coarseness, original_ngtdm_Strength, and

Frontiers in Oncology

wavelet.LL_glem_ClusterProminence, as well as 2D shape features
like original_shape2D_PerimeterSurfaceRatio, demonstrated
significant differences between EGFR+ and EGFR- tumors.
Specifically, EGFR+ tumors exhibited lower values in
original_ngtdm_Coarseness (0.00105 vs. 0.00153, p = 0.0012),
original_ngtdm_Strength (5.06 vs. 7.55, p = 0.0015),
and PerimeterSurfaceRatio (0.119 vs. 0.140, p = 0.0178),
indicating finer texture and more compact tumor structures
compared to EGFR- tumors (Supplementary Table S5). Other
features, such as wavelet.LL_glcm_ClusterProminence and
wavelet. HL_gldm_DependenceVariance, also contributed
significantly, whereas lower-ranked features had smaller
contributions. Figure 7 presents two representative patients: one
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TABLE 2 Comparison of the performance of machine learning models in training and test sets.

Sets Models AUC Accuracy Precision Fl-score Recall

Training set RF 0.86 0.76 0.63 0.81 0.71
LR 0.74 0.60 0.47 091 0.62
SVM 0.84 0.67 0.59 022 031
DT 0.76 0.62 0.48 0.97 0.64
KNN 0.72 0.68 0.65 0.22 032
NB 0.69 0.59 0.45 0.78 0.57
NN 0.67 0.68 0.72 0.16 027

Test set RF 0.70 0.62 0.46 0.66 0.54
LR 0.65 0.48 0.81 031 0.77
SVM 0.60 0.58 025 0.12 0.17
DT 0.69 0.53 0.41 0.88 0.55
KNN 0.68 0.70 0.64 0.22 033
NB 0.66 0.56 0.41 0.72 0.52
NN 0.68 0.19 0.67 0.19 0.29

AUCG, area under the curve; RF, random forest; LR, logistic regression; SVM, support vector machine; DT, decision tree; KNN, k-nearest neighbors; NB, naive Bayes; NN, neural network.

Model Performance: Accuracy — Toin Model Performance: ROC-AUC — Toin Model Performance: Precision — Tain
XGBoost T XGBoost T XGBoost e

Naive Biyes

Random Forest Random Forest

Model Performance: F1-score — Trin Model Performance: Recall — Trin

= Test = Test
XGBoost XGBoost

Random Forest

Logistic Regression

Naive Biyes

Random Forest Random Forest

FIGURE 5

Radar charts comparing the performance of seven ML models in predicting EGFR status across five metrics: (A) Accuracy, (B) AUC, (C) Precision,
(D) F1-score, and (E) Recall. Each chart displays the performance in both the training set (solid blue line) and test set (dashed orange line). Models
compared include Logistic Regression, SVM, XGBoost, Random Forest, KNN, Decision Tree, and Neural Network EGFR, epidermal growth factor
receptor; ML, machine learning; AUC, area under the curve.
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FIGURE 6

Interpretability of the ML radiomic model assessed using the SHAP method. (A) SHAP summary plot showing the impact of each feature on the
model's predictions. Individual dots represent patients, with different colors indicating varying levels of influence on the model's output. (B) SHAP bar
chart displaying the importance of each feature based on mean SHAP values. ML, machine learning; SHAP, Shapley additive explanation.

with EGFR-negative (Patient A) and one with EGFR-positive status
(Patient B). For each case, the original grayscale ultrasound image,
ROI segmentation, and SHAP output are shown. The SHAP
visualizations illustrate how specific radiomic features influenced
the model’s prediction at the individual level. Notably, texture-
based descriptors such as original_ngtdm_Coarseness and
original_ngtdm_Strength demonstrated substantial contributions,
reflecting local intensity granularity and uniformity. These radiomic
patterns, including lower coarseness and strength, indicate finer and
more homogeneous texture in EGFR+ tumors. This observation is
consistent with the hypothesis that EGFR-overexpressing tumors
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may exhibit higher cellular density and less architectural
heterogeneity, as also suggested in previous studies (24, 25).

4 Discussion

In this study, we developed and validated an interpretable ML
model using ultrasound radiomic features to predict EGFR
expression status in breast cancer. The random forest (RF) model
achieved the highest performance among seven machine learning
models, with an AUC of 0.86 on the training set and 0.70 on the
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FIGURE 7

Representative examples of two patients with distinct EGFR expression status. Patient (A) (top row): 63-year-old female with EGFR-negative tumor.
Patient (B) (bottom row): 59-year-old female with EGFR-positive tumor. For each case, the original grayscale ultrasound image, manual ROI
segmentation, and SHAP summary output are shown. SHAP values highlight the most influential radiomic features contributing to the model's
prediction for each individual. EGFR, epidermal growth factor receptor; SHAP, Shapley additive explanation.
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hold-out test set. Furthermore, 10-fold stratified cross-validation
confirmed the robustness of the RF model (AUC = 0.82 + 0.08; F1-
score = 0.54 + 0.12), supporting its selection as the final model.
Although the test set AUC was moderate (~0.76), the RF model
consistently outperformed others in recall and Fl-score, metrics
that are crucial for clinical risk stratification. These results are in line
with previous radiomics studies reporting similar performance for
EGEFR prediction in other cancers (26, 27).

The novelty of this study lies in the integration of ultrasound
radiomics and ML techniques to develop a high-performance RF
model that demonstrates superior performance across multiple
evaluation metrics. This model provides valuable technical
insights for advancing the development of clinical diagnostic
systems. Prior studies have explored EGFR prediction primarily
in non-small cell lung cancer using PET/CT or multiparametric
MR, achieving AUCs ranging from 0.61 to 0.85. In contrast, our
model achieved comparable or superior performance (AUC = 0.76-
0.82) using cost-effective, non-invasive ultrasound imaging (26-28).
This approach may offer a practical alternative for wider clinical
application, particularly in settings lacking advanced
imaging modalities.

In this study, we integrated ultrasound imaging with ML,
validating the potential of ultrasound radiomics in quantifying
tumor heterogeneity. These findings align with those of previous
studies that successfully predicted ER, progesterone receptor,
HER2, and Ki-67 expression statuses in breast cancer using
radiomic analysis (29-31). Notably, by predicting the EGFR
expression status, this study expands the application of radiomics
to the molecular subtyping of breast cancer. Eight key radiomic
features were selected to construct the ultrasound radiomics model:
two NGTDM features, one gray-level dependence matrix feature,
one GLRLM feature, one GLSZM feature, one GLCM feature, one
shape feature, and one first-order statistical feature. These features
included six texture features, one shape feature, and one first-order
statistical feature. The six texture features capture the complexity of
tumor texture, which is critical to identifying and classifying spatial
heterogeneity within tumor lesions (32, 33). This finding
underscores the importance of texture features in predicting high
EGFR expression. Additionally, the RF model developed in this
study provides a comprehensive analysis of tumor characteristics by
integrating texture, shape, and first-order statistical features,
thereby enhancing the accuracy and reliability of tumor
predictions. By combining these diverse feature types, the RF
model captures tumor image information more comprehensively,
leading to more precise predictions and diagnoses. This integrated
analysis offers new perspectives and methodologies for diagnosing
and predicting EGFR mutations in patients with breast cancer,
demonstrating potential for clinical application.

The SHAP values were applied to the RF model to enhance both
predictive performance and interpretability. With these values, we
can evaluate the contribution of each feature to the model’s output
by analyzing all possible feature combinations, providing consistent
and locally accurate attribute values for each feature. The SHAP
analysis of the RF model revealed that original_ngtdm_Coarseness
and original_ngtdm_Strength had the most significant effect on
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EGEFR expression status prediction. These features quantify subtle
variations in tumor texture, which aligns with the recognized
importance of texture features in tumor classification and
prediction in the field of radiomics (34, 35). Using the SHAP
method, we quantified the importance of features and revealed
their nonlinear effects on the model’s decision-making process,
thereby enhancing its transparency and clinical credibility.
Applying these insights to the RF model enables users to better
understand its predictions and the rationale behind its decisions.
The detailed insights and explanations of risk factors presented in
the results provide clinicians with a more informed perspective,
fostering evidence-based decision-making rather than blind reliance
on algorithm outputs. Moreover, individualized explanations help
clinicians understand why the model suggests specific decisions for
high-risk cases, supporting personalized patient management.

Several limitations merit consideration. First, this was a single-
center, retrospective study with a modest sample size and a class
imbalance (EGFR-:EGFR+ = 2:1), which may limit generalizability.
Although we applied stratified sampling, class weighting, and 10-
fold cross-validation to minimize bias, external validation across
multiple institutions is necessary. Second, the manual segmentation
of ROIs introduces subjectivity and may impact reproducibility;
future work should explore automated deep learning-based
segmentation. Lastly, although ensemble learning was explored, it
did not outperform the RF model, potentially due to data scale and
signal-to-noise characteristics.

5 Conclusions

In this study, we developed an interpretable ML model based on
ultrasound radiomic features to predict the EGFR expression status
in breast cancer. The model demonstrated excellent predictive
performance, which was further enhanced using the SHAP
method. The SHAP values improved both global and local
interpretability, providing reliable support for precise and non-
invasive diagnosis. Ultrasound radiomics offers a more cost-
effective and non-invasive alternative to invasive testing methods,
making it particularly suitable for patients who are unable to
undergo such procedures. This approach shows clinical potential
for widespread applications in breast cancer diagnosis and
management. Among the top-ranked SHAP features,
original_ngtdm_Coarseness, original_ngtdm_Strength, and
wavelet.LL_glem_ClusterProminence not only exhibited
significant intergroup differences between EGFR+ and EGFR-
tumors but also reflected texture compactness and heterogeneity,
suggesting a strong association with the underlying biological
mechanisms of EGFR overexpression.
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