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CT-based radiomics
nomogram for differentiating
dedifferentiated liposarcoma
from well-differentiated
liposarcoma
Ting Yang1†, Ruo-Yu Chen2†, Yi-Fan Ding1, Jing-Yan Wu1,
Ying Li1* and Jin-Wei Qiang1*

1Department of Radiology, Jinshan Hospital of Fudan University, Shanghai, China, 2Department of
Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
Purpose: This study aimed to use radiomics features derived from plain CT scans

to construct a model that can predict the pathological classification of

Retroperitoneal liposarcoma (RLPS) preoperatively, help enhance preoperative

planning and inform tailored treatment strategies.

Methods: This retrospective study involving 114 consecutive RLPS patients from

January 2022 to December 2024. Clinical, pathological, and CT imaging data

were gathered. Radiomics features were extracted from plain CT scans and were

selected through Least Absolute Shrinkage and Selection Operator (LASSO)

regression. A radiomics signature was created, and a nomogram was

developed for predicting dedifferentiated liposarcoma (DDLPS). Performance

of the nomogram was assessed and compared with radiologist evaluation of the

CT imaging. Area under the curve (AUC) and decision curve analysis in both

training and validation sets.

Results: Higher Ki-67 and unclear tumor boundary was established as an

independent predictor for DDLPS. Five radiomics features were identified as

significant predictors. a nomogram was developed by combining these features.

The nomogram showed an AUC of 0.91 (95% CI: 0.84-0.98) and 0.89 (95% CI:

0.73-1.00) in the training and validation set, which outperforming the radiologist

evaluation. Decision curve analysis confirmed that the nomogram provided a

higher net clinical benefit compared to the radiologist.

Conclusions: The radiomics nomogram significantly enhances the preoperative

differentiation of RLPS subtypes.
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Introduction

Liposarcoma is the most common soft tissue sarcoma in adults,

originating from primitive or embryonic lipoblasts (1).

Approximately 10-15% of liposarcomas arise in the retroperitoneal

space, known as retroperitoneal liposarcoma (RLPS), making it the

most common primary retroperitoneal malignancy (2). RLPS can

occur at any age, with a peak incidence in the 60s and 70s, showing no

clear gender or ethnic predilection (3).

RLPS exhibits complex histological components and significant

heterogeneity, which could be sub-categorized as well-differentiated

liposarcoma (WDLPS) and dedifferentiated liposarcoma (DDLPS)

(4). The primary treatment modality is radical surgical resection for

RLPS. However, local recurrence post-surgery is frequent with

poorer prognosis in DDLPS, which is the leading cause of death

in RLPS patients (5). Thus, precise preoperative evaluation of the

pathological subtype is vital for planning individualized treatment

strategies (6).

Non-invasive imaging, including CT and MRI scans, is initially

employed for diagnosing RLPS (7). However, they are difficult to

accurately differentiate DDLPS andWDLPS. A recent meta-analysis

on radiologist evaluation of RLPS showed that the diagnostic

performance demonstrated summary sensitivity and specificity of

only 0.85 and 0.63 for identifying DDLPS from WDLPS (8).

Additionally, CT imaging may not identify the complex

histological features of RLPS, limiting its ability to fully capture

the tumor’s biological behavior (9).

Radiomics involves the extraction of numerous quantitative

features from medical images to characterize tumor attributes,

offering an objective method to assess the spatial heterogeneity of

tumor tissues. A previous study reported that radiomic features could

be used to identify G3 DDLPS from leiomyosarcoma at diagnosis

(10). Recent studies also demonstrated the utility of radiomics in

differentiating RLPS subtypes. For instance, Sudjai et al. found that

radiomics analysis of MRI scans could distinguish these subtypes,

where machine learning models surpassed traditional radiologist

assessments (11). Although radiomics has gained traction for

diagnosing and predicting the grading of various soft tissue tumors,

its application to RLPS remains under-explored (12). These

approaches are particularly effective in detecting dedifferentiated

components, thereby potentially reducing reliance on invasive

diagnostic procedures (13). Evidences also suggested that higher

diagnostic accuracy is likely to be achieved through an integrated

approach combining clinical and imaging scoring systems and/or

radiomics (8). By integrating radiomics features with clinical risk

factors, the radiomics nomogram could predict WDLPS from

retroperitoneal lipomas preoperatively (14). However, to the best of

our knowledge, there is few studies focused on radiomics feature

analyses in differentiating DDLPS from WDLPS.

We hypothesize that radiomics features from plain CT scans

can accurately predict the histopathological classification of RLPS.
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Thus, this study aims to develop a predictive model enabling

differentiation between DDLPS and WDLPS utilizing radiomics

features derived from plain CT scans, and to enhance preoperative

planning and tailor treatment strategies.
Materials and methods

Ethnics

This study was conducted following the principles outlined in

the Declaration of Helsinki and was reviewed and approved by the

Ethics Committee of Jinshan Hospital of Fudan University

(JIEC2025S01). And the patient informed consent was waived

due to the retrospective nature of the study, All the information

of patients is anonymized and replaced by numerical numbers.
Data collection

From January 2022 to December 2024, a retrospective collection

of clinical, pathological, and imaging data was conducted from

consecutive RLPS patients who underwent surgical treatment at

local hospital. The inclusion criteria for this study were (1):

postoperative pathology confirmed RLPS (2); CT examination

within 30 days before surgery (3); no history of other tumors and

metastatic diseases. Exclusion criteria were (1): unclear pathological

diagnosis (2); poor CT image quality, missing or incomplete data.

Ultimately, 114 cases of RLPS were included, with 44 cases of

WDLPS and 70 cases of DDLPS. The patients were randomly

divided into training set and validation set according to a ratio

of 7:3.

Clinical and pathological data include age, gender, marker of

proliferation Ki-67 (Ki-67), cyclin-dependent kinase 4 (CDK4) and

mouse double minute 2 homolog (MDM2) were retrieved from the

electrical records.
CT scanning

This study used a spiral CT (Aquilion ONE TSX-301C, Canon,

Japan) for abdominal examinations. Patients were in a supine

position, head first, with arms raised, aligned to the mid-axillary

line, and scanned after holding their breath post-inhalation. The

scanning range was from the diaphragm to the pubic symphysis.

Scanning parameters were: tube voltage 120 kV, tube current 242

mA, collimation width 16×1.2 mm, pitch 1.0625, scanning time 5–7

s, field of view (FOV) 400 mm×400 mm, and image matrix

512×512. Thin-layer reconstruction was performed using a soft

tissue reconstruction algorithm sequence, with a reconstruction

layer thickness and interval of 1 mm.
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CT imaging evaluation and tumor
segmentation

The CT imaging was fist reviewed by two radiologists (with 3

and 15 years of experience in abdominal imaging). Three CT

features were evaluated (15): tumor margin (clear or unclear),

tumor density (fat-like or mixed with solid masses), and satellite

nodules (positive/negative focal nodular density area). The cases

showed any of unclear tumor margin, mixed tumor density or

positive satellite nodules were considered as DDLPS. In cases of

significant discrepancies, the observations were reviewed by a more

experienced radiologist (with 35 years of experience in abdominal

imaging). All the radiologists were blinded to the clinical and

pathological results.

Then, regions of interest (ROIs) of all cases were delineated

using ITK-SNAP software. CT images were imported into the

software, adjusted to the soft tissue window, and manually

delineated based on axial images along each tumor layer, avoiding

structures like blood vessels and abdominal organs to generate the

volume of interest (VOI). This process was manually completed by

one radiologist. Selecting the most prominent lesion as the main

subject for delineation and preferably choosing the tumor’s central

layer, avoiding adjacent organs and artifacts were payed attention to

reduce potential bias. To assess reproducibility, 30 patients were

randomly selected for ROI delineation by the same radiologist and

another radiologist one month later. Interclass and intraclass

correlation coefficients (ICCs) were calculated to evaluate the

consistency of radiomic feature measurements.
Radiomics data processing and feature
extraction and selection

Radiomics features of the delineated VOIs were extracted and

screened using Pyradiomics (https://pypi.org/project/pyradiomics/)

following the Imaging Biomarker Standardization Initiative (IBSI)

standards (https://arxiv.org/abs/1612.07003). After normalizing all

images, first-order, second-order, and high-order features were

extracted from the VOI images. Features with ICCs less than 0.75

were considered unstable and removed. Then features with Pearson

correlation coefficients greater than 0.9 were considered as

redundant features and eliminated. The remaining features were

further screened using the Least Absolute Shrinkage and Selection

Operator (LASSO) with 10-fold cross-validation to obtain non-zero

coefficient radiomic features. These optimal features were linearly

fitted to generate radiomics scores (radscore) for each cases based

on their respective weighted coefficients.
Radiomics Nomogram Construction

Based on the optimal radiomic features of the training set, a

radiomic model (radscore) was constructed to predict tumor
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pathological subtypes of RLPS. Patients’ clinical data and

radiologist-assessed imaging features were selected as clinical

features using multivariate logistic regression as a clinical model.

A radiomics nomogram was constructed by combining the radscore

and selected clinical features for predicting DDLPS.
Discrimination of the radiomics model,
clinical model, radiologist evaluation and
radiomics nomogram

The radiomics model, clinical model, radiologist evaluation and

radiomics nomogram were validated. The area under the receiver

operating characteristic (ROC) curves (AUC) were calculated to

assess models performance. Calibration curves were drawn after the

Hosmer-Lemeshow test to evaluate the fit and predictive

performance of the radiomics nomogram in both the training and

validation sets.
Clinical application value

To assess the clinical applicability of radiomics nomogram, a

clinical decision curve was used to compare the net clinical benefits

of RLPS patients based on the result of radiologist evaluation and

radiomics nomogram at different probability thresholds.
Statistical analysis

Statistical analyses were conducted using R software (4.4.2, https://

www.r-project.org/). Descriptive statistics for quantitative data were

expressed as mean ± standard deviation (SD). The Shapiro-Wilk

test was used to test for normal distribution. Independent sample t-

test compared clinical indicators between the WDLPS and DDLPS

groups. Qualitative data comparisons of clinical and CT feature

used chi-square or Fisher’s exact test. DeLong test for evaluating the

ROC curve performance between different models. A p-value < 0.05

was considered statistically significant.
Results

Clinical characteristics

There were 80 cases in the training set, including 31 cases of

WDLPS, 49 cases of DDLPS, and 34 cases in the validation set,

including 13 cases of WDLPS and 21 cases of DDLPS. There were

no significant differences in age, gender, CDK4, MDM2 and satellite

nodules in tumors between WDLPS and DDLPS in both training

and validation sets, while the KI-67, tumor margin and tumor

density were statistically significant in both training and validation

sets. The clinical characteristics of the training and validation sets
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are shown in Table 1. The work flow of this study is shown

in Figure 1.
CT imaging evaluation

For the training set, amongWDLPS cases, radiologists classified

19 cases (61.3%) correctly as WDLPS and 12 cases (38.7%)

incorrectly as DDLPS. For DDLPS cases, radiologists correctly

identified 43 cases (87.8%) as DDLPS, while 6 cases (12.2%) were

incorrectly classified as WDLPS. For the validation set, among

WDLPS cases, radiologists classified 7 cases (53.8%) correctly as

WDLPS and 6 cases (46.2%) incorrectly as DDLPS. For DDLPS

cases, radiologists correctly identified 20 cases (95.2%) as DDLPS,

while 1 cases (4.8%) were incorrectly classified as WDLPS. Two

cases demonstration is shown in Figure 2.
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Radiomics features selection

A total of 107 radiomics features were extracted, and 5 optimal

radiomics features were selected. The radscore was calculated as

Radsco r e = 0 . 76755 + 0 .03428×shape_Sur f a c eArea

+0.03798×shape_VoxelVolume+0.13445×firstorder_10Percentile

+0.11145×glcm_Imc1 + 0.06222×glrlm_GrayLevelNonUniformity.

The corelations of radiomics features and the clinical features is

shown in Figure 3.
Radiomics nomogram construction

The radiomics model (radscore) was constructed to predict the

pathological classification of DDLPS. Multivariate logistic

regression analysis showed that Ki-67 and tumor margin were
TABLE 1 The clinical characteristics of the training and validation set.

Parameters
Training set

P-value
Verification set

P-value
WDLPS (N = 29) DDLPS (N = 51) WDLPS (N = 15) DDLPS (N = 19)

Radscore 0.440 (0.185) 0.721 (0.242) <0.001 0.394 (0.309) 0.756 (0.188) 0.001

Gender

Female 10 (32.3%) 21 (42.9%) 0.476 5 (38.5%) 10 (47.6%) 0.867

Male 21 (67.7%) 28 (57.1%) 8 (61.5%) 11 (52.4%)

Age 60.0 (11.1) 56.3 (10.9) 0.148 54.8 (11.0) 60.8 (8.41) 0.106

KI67 0.113 (0.104) 0.211 (0.125) <0.001 0.0831 (0.101) 0.105 (0.0854) 0.051

CDK4

Negative 1 (3.2%) 1 (2.0%) 1.000 13 (100%) 20 (95.2%) 1

Positive 30 (96.8%) 48 (98.0%) 0 (0%) 1 (4.8%)

MDM2

Negative 2 (6.5%) 7 (14.3%) 0.473 13 (100%) 16 (76.2%) 0.16

Positive 29 (93.5%) 42 (85.7%) 0 (0%) 5 (23.8%)

Tumor margin

Clear 21 (67.7%) 8 (16.3%) <0.001 7 (53.8%) 2 (9.5%) 0.014

Unclear 10 (32.3%) 41 (83.7%) 6 (46.2%) 19 (90.5%)

Tumor density

Fat-like 23 (74.2%) 13 (26.5%) <0.001 9 (69.2%) 4 (19.0%) 0.01

Mixed 8 (25.8%) 36 (73.5%) 4 (30.8%) 17 (81.0%)

Satellite nodules

Negative 23 (74.2%) 29 (59.2%) 0.258 13 (100%) 12 (57.1%) 0.019

Positive 8 (25.8%) 20 (40.8%) 0 (0%) 9 (42.9%)

Radiologists

DDLPS 12 (38.7%) 43 (87.8%) <0.001 6 (46.2%) 20 (95.2%) 0.004

WDLPS 19 (61.3%) 6 (12.2%) 7 (53.8%) 1 (4.8%)
DDLPS, dedifferentiated liposarcoma; MDM2, Mouse Double Minute 2; WDLPS, well-differentiated liposarcoma
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FIGURE 2

Two cases examples of histology confirmed well-differentiated liposarcoma (WDLPS) and dedifferentiated liposarcoma (DDLPS). (A) A WDLPS located
in the upper abdomen, has clear boundaries with fat-like content, pushing the surrounding tissues. (B) A DDPLS located in the right lower abdomen,
with unclear separations from surrounding tissues with solid content invading the right psoas major muscle.
FIGURE 1

The work flow of this study.
Frontiers in Oncology frontiersin.org05

https://doi.org/10.3389/fonc.2025.1683165
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yang et al. 10.3389/fonc.2025.1683165
clinical independent risk factors for predicting DDLPS (they were

liner fitted as a clinical model). The radiomics nomogram was

constructed combined the radscore with clinical independent risk

factors to predict DDLPS (Figure 4). Calibration curves showed

good agreement between predicted and observed results of the

radiomics nomogram in both training and validation sets.

Discrimination of the Radiomics Model, Clinical Model,

Radiologist Evaluation and Radiomics Nomogram(Table 2).

AS showed in Table 2, in the training set, the AUC of the radiomics

model was 0.81 (95%CI: 0.71-0.91) with sensitivity and specificity of 0.73

and 0.81. In the validation set, the AUC of the radiomics model was 0.84

(95%CI: 0.67-1.00) with sensitivity and specificity of 0.76 and 0.85.
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In the training set, the AUC of the clinical model was 0.83 (95%

CI: 0.74-0.93) with sensitivity and specificity of 0.88 and 0.68. In the

validation set, the AUC of clinical model was 0.79 (95%CI: 0.64-

0.95) with sensitivity and specificity of 0.90 and 0.62.

In the training set, the AUC of the radiologist evaluation was

0.75 (95%CI: 0.65-0.84) with sensitivity and specificity of 0.88 and

0.61. In the validation set, the AUC of the radiomics nomogram was

0.75 (95%CI: 0.60-0.89) with sensitivity and specificity of 0.95

and 0.54.

In the training set, the AUC of the radiomics nomogram was

0.91 (95%CI: 0.84-0.98) with sensitivity and specificity of 0.87 and

0.88. In the validation set, the AUC of the radiomics nomogram was
FIGURE 3

Analysis of radiomics signatures and correlation interactions with clinical features. (A) LASSO regression analysis showing binomial deviance across
different log(lambda) values, with error bars representing confidence intervals. Five radiomics features is selected as the radiomics signatures. (B) Pie
chart shows the distribution of radiomics signatures with their coefficients in liner combining. (C) Correlation network of radiomics signatures and
clinical features for DDLPS illustrates the relationships between clinical variables (green nodes), radiomics signatures (blue nodes), and the DDLPS
outcome (red central node). Red edges represent positive correlations, while blue edges indicate negative correlations. The thickness of each edge
corresponds to the strength of the correlation.
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0.89 (95%CI: 0.73-1.00) with sensitivity and specificity of 0.90

and 0.92.

The DeLong test showed better discrimination performance of

radiomics nomogram than the radiologist evaluation both in

training and validation sets (both P<0.001).
Clinical application value

The clinical decision curve showed that under a certain

probability threshold, both the radiomics feature and the imaging

nomogram could effectively predict the pathological classification

of DDLPS and improve the clinical net benefit of patients

compared with the treatment of “total intervention” or “zero

intervention”. Moreover, under most probability thresholds,
Frontiers in Oncology 07
decision making based on the imaging nomogram results in a

higher clinical net benefit for patients compared to the radiologist

evaluation (Figure 5).
Discussion

This study developed a radiomics nomogram combining

features from plain CT scans (tumor margin), Ki-67 expression

and five significant radiomic features to differentiate between

WDLPS and DDLPS preoperat ive ly . The nomogram

demonstrated strong performance, which was better than

standalone of radiologist evaluation. Decision curve analysis

confirmed that the nomogram significantly improved the net

clinical benefit across various probability thresholds. The study
FIGURE 4

Nomogram for predicting the probability of DDLPS recurrence. (A) The nomogram integrates tumor margin, Ki-67 expression, and radscore, and
total points to estimate the DDLPS probability. Each variable is assigned a score on the “Points” scale, and the total score is mapped to a probability
of DDLPS. Calibration curve for the nomogram prediction model for the training set (B) and the validation set (C). The solid blue (red) line represents
the agreement between predicted and observed probabilities, the dashed line represents perfect prediction (ideal), and the gray line indicates bias-
corrected predictions.
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TABLE 2 Discrimination performance of radiomics model, clinical model, radiologist’s evaluation, and radiomics nomogram.

Data sets Models AUC 95%CI SPE SEN NPV PPV P*

Training set

Radscore 0.81 0.71-0.91 0.81 0.73 0.66 0.86 0.019

Clinical model 0.83 0.74-0.93 0.68 0.88 0.78 0.81 0.023

Radiologists 0.75 0.65-0.84 0.61 0.88 0.76 0.78 <0.001

Nomogram 0.91 0.84-0.98 0.87 0.88 0.82 0.91 –

Validation set

Radscore 0.84 0.67-1.00 0.85 0.76 0.69 0.89 0.020

Clinical model 0.79 0.64-0.95 0.62 0.90 0.80 0.79 0.193

Radiologists 0.75 0.60-0.89 0.54 0.95 0.87 0.77 0.013

Nomogram 0.89 0.73-1.00 0.92 0.90 0.86 0.95 –
F
rontiers in Oncology
 08
*Compared with nomogram; AUC, area under the curve; CI, confidence interval; SPE specificity; SEN, sensitivity; NPV, negative predictive value; PPV, positive predictive value.
FIGURE 5

Clinical decision curve analysis (DCA) for evaluating the net benefit of different prediction models. DCA comparing the predictive performance of the
\the nomogram (blue line), the radiologist evaluation (red line), and the “treat all as DDLPS” (purple line) and “treat none as DDLPS” (gray line)
strategies. The nomogram demonstrates a higher net benefit across a range of thresholds compared to the radiologist evaluation in both (A) training
and (B) validation set.
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highlights the potential of combining radiomics with clinical

biomarkers to enhance preoperative diagnosis and aid in

treatment planning for patients with RLPS.

Preoperative evaluation of the pathological classification of

RLPS is crucial for selecting appropriate treatment strategies and

significantly influences prognosis and recurrence risk. In this study,

we identified Ki-67 expression as an independent clinical predictor

for distinguishing between WDLPS and DDLPS, which is in

accordance with previous studies (6). Ki-67, a well-established

proliferation marker in clinical practice (16), which is emphasized

in prior studies of DDLPS (17). Preoperative sampling for Ki-67

expression may complement the assessment of tumor

heterogeneity. Moreover, integrating Ki-67 into the radiomics

model emphasizes the importance of using both biological and

imaging markers to refine diagnostic accuracy.

Tumor margin is found important in differentiating DDLPS

from WDLPS. As previous study reported that WDLPS typically

presents with well-defined, clear margins, while DDLPS often shows

irregular or poorly defined borders due to the presence of more

aggressive and infiltrative areas (1). Tumor density also provides

valuable insights, as WDLPS tends to exhibit a homogeneous fat-

like density, characteristic of its well-differentiated adipose tissue

composition (18). In contrast, DDLPS is more likely to present with

mixed densities, including areas of solid masses interspersed with

fat, reflecting its more aggressive nature and the presence of non-

fatty, dedifferentiated tissue (18). Other study reported that DDLPS

often showing positive satellite nodules due to its tendency to

invade surrounding tissues, whereas WDLPS typically does not

present with these nodular foci (3). Satellite nodules was not found

difference between WDLPS and DDLPS, which might be because

non-contrasted CT was used in this study and satellite nodules

would be more clearly visible under contrasted CT. However, our

study’s reliance on plain CT imaging highlights the accessibility and

cost-effectiveness of this approach. While contrast-enhanced CT are

commonly used in soft tissue sarcoma diagnosis, plain CT scans are

widely available and circumvent the risks associated with contrast

agents, such as allergic reactions or nephrotoxicity. This makes our

radiomics nomogram particularly beneficial in resource-limited

settings or for patients with contraindications to contrast agents.

The study underscores the utility of radiomics in identifying

subtle heterogeneity within RLPS tumors, with the selected

radiomics features providing insights into tumor size

(Shape_VoxelVolume), growth patterns (Shape_SurfaceArea),

intensity (Firstorder_10Percentile, indicate areas of fat, solid,

necrosis or cystic within tumors), and tumor heterogeneity

(GLCM_Imc1 and GLRLM_GrayLevelNonUniformity), which are

critical for identifying dedifferentiated regions. For instance,

Shape_SurfaceArea and Shape_VoxelVolume reflect tumor size

and growth patterns, which are directly associated with aggressive

infiltration in DDLPS compared to the more circumscribed

WDLPS. Firstorder_10Percentile is an intensity-based feature,

which captures low-attenuation regions that may correspond to

necrotic, cystic, or fatty components, aligning with the

heterogeneous tissue composition of DDLPS. GLCM_Imc1

reflects local intensity variations and structural complexity,
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consistent with the disorganized cellular and stromal architecture

of DDLPS. GLRLM_GrayLevelNonUniformity mirrors the

bio logical d ivers i ty of tumor microenvironments in

dedifferentiated regions. These results extend and align with

recent research on the role of radiomics in classifying RLPS. The

use of radiomics allows for the identification of these subtle features

that may not be fully appreciated through traditional visual

assessment, thus improving diagnostic accuracy. Several other

studies have explored the use of CT radiomics in identifying

DDLPS and WDLPS, with similar aims but differing

methodologies and findings. One study emphasized the challenges

in distinguishing DDLPS from WDLPS by CT based radiomics,

highlighting the difficulty in visualizing the complex heterogeneity

of these tumors. They showed that radiomics model can predict the

histological type and grade of RLPS with excellent performance

(12). Moreover, studies have explored radiomics for soft tissue

tumors, including liposarcomas, using CT scans, and reported AUC

values of over 0.80 for distinguishing subtypes (10, 19).

Although CT findings such as irregular tumor margins, mixed

densities, and satellite nodules are not exclusive to DDLPS and may

occasionally be seen in WDLPS, prior studies have shown these

features to be significantly more common in dedifferentiated tumors.

WDLPS typically presents as a homogeneous, fat-like mass with well-

circumscribed borders, whereas DDLPS often demonstrates

infiltrative, irregular margins and heterogeneous densities due to

the presence of non-adipose, dedifferentiated tissue (8, 15). Similarly,

focal nodular non-adipose areas have been associated with aggressive

histologic transformation, though their detection is more reliable on

contrast-enhanced CT (3). In our cohort, margin and density

differences reached statistical significance between WDLPS and

DDLPS groups, supporting their inclusion. Importantly, these

qualitative features were not used in isolation but were combined

with Ki-67 expression and radiomics-derived heterogeneity markers,

resulting in a predictive model that outperformed subjective

radiologist assessment. This integrative approach underscores the

added value of radiomics in extracting subtle imaging signatures

beyond conventional CT interpretation (12).

Furthermore, The findings suggest that integrating radiomics

data with clinical biomarkers presents a promising approach for

personalized treatment planning in RLPS patients, supporting the

shift towards precision oncology (20). The combination of Ki-67, CT

features and radiomics features is notably significant, bridging the gap

between imaging and molecular pathology. This synergy allows for a

more comprehensive understanding of tumor biology, thereby

improving diagnostic precision. This aligns with the principles of

precision medicine, where treatment decisions are informed by

multimodal data (21). The nomogram could aid in preoperative

planning by identifying patients with likely DDLPS who may benefit

from more extensive surgical resection, closer follow-up, or

consideration for neoadjuvant therapies. These findings reinforce

the consensus that radiomics, when integrated with clinical

biomarkers, is a potent tool for enhancing the precision of RLPS

diagnosis and treatment planning (22). Furthermore, our model relies

only on plain CT scans, it is particularly suitable for resource-limited

settings or patients contraindicated for contrast-enhanced imaging.
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However, this study has several limitations. Firstly, its retrospective

nature and small sample size might affect the generalizability of the

results. Future research should aim to validate these models in larger,

multicenter cohorts and investigate their potential in predicting

therapeutic responses and long-term outcomes. Second, the model

was exclusively developed for differentiating between WDLPS and

DDLPS, not accounting for other specific pathological subtypes. Lastly,

only plain CT images were used in this study, contrast-enhanced

imaging could provide complementary information not captured in

this study. Future studies might benefit from incorporating enhanced

CT imaging with an expanded data-set.
Conclusions

In conclusion, the integration of radiomics features from plain CT

scans with Ki-67 expression in a nomogram significantly enhances the

preoperative differentiation of RLPS subtypes. This approach could

lead to more precise treatment planning, potentially improving patient

outcomes. Further validation in larger, multi-center studies is necessary

to confirm these findings and extend their applicability.
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