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Purpose: This study aimed to use radiomics features derived from plain CT scans
to construct a model that can predict the pathological classification of
Retroperitoneal liposarcoma (RLPS) preoperatively, help enhance preoperative
planning and inform tailored treatment strategies.

Methods: This retrospective study involving 114 consecutive RLPS patients from
January 2022 to December 2024. Clinical, pathological, and CT imaging data
were gathered. Radiomics features were extracted from plain CT scans and were
selected through Least Absolute Shrinkage and Selection Operator (LASSO)
regression. A radiomics signature was created, and a nomogram was
developed for predicting dedifferentiated liposarcoma (DDLPS). Performance
of the nomogram was assessed and compared with radiologist evaluation of the
CT imaging. Area under the curve (AUC) and decision curve analysis in both
training and validation sets.

Results: Higher Ki-67 and unclear tumor boundary was established as an
independent predictor for DDLPS. Five radiomics features were identified as
significant predictors. a nomogram was developed by combining these features.
The nomogram showed an AUC of 0.91 (95% CI: 0.84-0.98) and 0.89 (95% ClI:
0.73-1.00) in the training and validation set, which outperforming the radiologist
evaluation. Decision curve analysis confirmed that the nomogram provided a
higher net clinical benefit compared to the radiologist.

Conclusions: The radiomics nomogram significantly enhances the preoperative
differentiation of RLPS subtypes.

retroperitoneal liposarcoma, radiomics, Ki-67, CT scan, nomogram
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Introduction

Liposarcoma is the most common soft tissue sarcoma in adults,
originating from primitive or embryonic lipoblasts (1).
Approximately 10-15% of liposarcomas arise in the retroperitoneal
space, known as retroperitoneal liposarcoma (RLPS), making it the
most common primary retroperitoneal malignancy (2). RLPS can
occur at any age, with a peak incidence in the 60s and 70s, showing no
clear gender or ethnic predilection (3).

RLPS exhibits complex histological components and significant
heterogeneity, which could be sub-categorized as well-differentiated
liposarcoma (WDLPS) and dedifferentiated liposarcoma (DDLPS)
(4). The primary treatment modality is radical surgical resection for
RLPS. However, local recurrence post-surgery is frequent with
poorer prognosis in DDLPS, which is the leading cause of death
in RLPS patients (5). Thus, precise preoperative evaluation of the
pathological subtype is vital for planning individualized treatment
strategies (6).

Non-invasive imaging, including CT and MRI scans, is initially
employed for diagnosing RLPS (7). However, they are difficult to
accurately differentiate DDLPS and WDLPS. A recent meta-analysis
on radiologist evaluation of RLPS showed that the diagnostic
performance demonstrated summary sensitivity and specificity of
only 0.85 and 0.63 for identifying DDLPS from WDLPS (8).
Additionally, CT imaging may not identify the complex
histological features of RLPS, limiting its ability to fully capture
the tumor’s biological behavior (9).

Radiomics involves the extraction of numerous quantitative
features from medical images to characterize tumor attributes,
offering an objective method to assess the spatial heterogeneity of
tumor tissues. A previous study reported that radiomic features could
be used to identify G3 DDLPS from leiomyosarcoma at diagnosis
(10). Recent studies also demonstrated the utility of radiomics in
differentiating RLPS subtypes. For instance, Sudjai et al. found that
radiomics analysis of MRI scans could distinguish these subtypes,
where machine learning models surpassed traditional radiologist
assessments (11). Although radiomics has gained traction for
diagnosing and predicting the grading of various soft tissue tumors,
its application to RLPS remains under-explored (12). These
approaches are particularly effective in detecting dedifferentiated
components, thereby potentially reducing reliance on invasive
diagnostic procedures (13). Evidences also suggested that higher
diagnostic accuracy is likely to be achieved through an integrated
approach combining clinical and imaging scoring systems and/or
radiomics (8). By integrating radiomics features with clinical risk
factors, the radiomics nomogram could predict WDLPS from
retroperitoneal lipomas preoperatively (14). However, to the best of
our knowledge, there is few studies focused on radiomics feature
analyses in differentiating DDLPS from WDLPS.

We hypothesize that radiomics features from plain CT scans
can accurately predict the histopathological classification of RLPS.
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Thus, this study aims to develop a predictive model enabling
differentiation between DDLPS and WDLPS utilizing radiomics
features derived from plain CT scans, and to enhance preoperative
planning and tailor treatment strategies.

Materials and methods

Ethnics

This study was conducted following the principles outlined in
the Declaration of Helsinki and was reviewed and approved by the
Ethics Committee of Jinshan Hospital of Fudan University
(JIEC2025S01). And the patient informed consent was waived
due to the retrospective nature of the study, All the information
of patients is anonymized and replaced by numerical numbers.

Data collection

From January 2022 to December 2024, a retrospective collection
of clinical, pathological, and imaging data was conducted from
consecutive RLPS patients who underwent surgical treatment at
local hospital. The inclusion criteria for this study were (1):
postoperative pathology confirmed RLPS (2); CT examination
within 30 days before surgery (3); no history of other tumors and
metastatic diseases. Exclusion criteria were (1): unclear pathological
diagnosis (2); poor CT image quality, missing or incomplete data.
Ultimately, 114 cases of RLPS were included, with 44 cases of
WDLPS and 70 cases of DDLPS. The patients were randomly
divided into training set and validation set according to a ratio
of 7:3.

Clinical and pathological data include age, gender, marker of
proliferation Ki-67 (Ki-67), cyclin-dependent kinase 4 (CDK4) and
mouse double minute 2 homolog (MDM2) were retrieved from the
electrical records.

CT scanning

This study used a spiral CT (Aquilion ONE TSX-301C, Canon,
Japan) for abdominal examinations. Patients were in a supine
position, head first, with arms raised, aligned to the mid-axillary
line, and scanned after holding their breath post-inhalation. The
scanning range was from the diaphragm to the pubic symphysis.
Scanning parameters were: tube voltage 120 kV, tube current 242
mA, collimation width 16x1.2 mm, pitch 1.0625, scanning time 5-7
s, field of view (FOV) 400 mmx400 mm, and image matrix
512x512. Thin-layer reconstruction was performed using a soft
tissue reconstruction algorithm sequence, with a reconstruction
layer thickness and interval of 1 mm.
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CT imaging evaluation and tumor
segmentation

The CT imaging was fist reviewed by two radiologists (with 3
and 15 years of experience in abdominal imaging). Three CT
features were evaluated (15): tumor margin (clear or unclear),
tumor density (fat-like or mixed with solid masses), and satellite
nodules (positive/negative focal nodular density area). The cases
showed any of unclear tumor margin, mixed tumor density or
positive satellite nodules were considered as DDLPS. In cases of
significant discrepancies, the observations were reviewed by a more
experienced radiologist (with 35 years of experience in abdominal
imaging). All the radiologists were blinded to the clinical and
pathological results.

Then, regions of interest (ROIs) of all cases were delineated
using ITK-SNAP software. CT images were imported into the
software, adjusted to the soft tissue window, and manually
delineated based on axial images along each tumor layer, avoiding
structures like blood vessels and abdominal organs to generate the
volume of interest (VOI). This process was manually completed by
one radiologist. Selecting the most prominent lesion as the main
subject for delineation and preferably choosing the tumor’s central
layer, avoiding adjacent organs and artifacts were payed attention to
reduce potential bias. To assess reproducibility, 30 patients were
randomly selected for ROI delineation by the same radiologist and
another radiologist one month later. Interclass and intraclass
correlation coefficients (ICCs) were calculated to evaluate the
consistency of radiomic feature measurements.

Radiomics data processing and feature
extraction and selection

Radiomics features of the delineated VOIs were extracted and
screened using Pyradiomics (https://pypi.org/project/pyradiomics/)
following the Imaging Biomarker Standardization Initiative (IBSI)
standards (https://arxiv.org/abs/1612.07003). After normalizing all
images, first-order, second-order, and high-order features were
extracted from the VOI images. Features with ICCs less than 0.75
were considered unstable and removed. Then features with Pearson
correlation coefficients greater than 0.9 were considered as
redundant features and eliminated. The remaining features were
further screened using the Least Absolute Shrinkage and Selection
Operator (LASSO) with 10-fold cross-validation to obtain non-zero
coefficient radiomic features. These optimal features were linearly
fitted to generate radiomics scores (radscore) for each cases based
on their respective weighted coefficients.

Radiomics Nomogram Construction

Based on the optimal radiomic features of the training set, a
radiomic model (radscore) was constructed to predict tumor
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pathological subtypes of RLPS. Patients’ clinical data and
radiologist-assessed imaging features were selected as clinical
features using multivariate logistic regression as a clinical model.
A radiomics nomogram was constructed by combining the radscore
and selected clinical features for predicting DDLPS.

Discrimination of the radiomics model,
clinical model, radiologist evaluation and
radiomics nomogram

The radiomics model, clinical model, radiologist evaluation and
radiomics nomogram were validated. The area under the receiver
operating characteristic (ROC) curves (AUC) were calculated to
assess models performance. Calibration curves were drawn after the
Hosmer-Lemeshow test to evaluate the fit and predictive
performance of the radiomics nomogram in both the training and
validation sets.

Clinical application value

To assess the clinical applicability of radiomics nomogram, a
clinical decision curve was used to compare the net clinical benefits
of RLPS patients based on the result of radiologist evaluation and
radiomics nomogram at different probability thresholds.

Statistical analysis

Statistical analyses were conducted using R software (4.4.2, https://
www.r-project.org/). Descriptive statistics for quantitative data were
expressed as mean * standard deviation (SD). The Shapiro-Wilk
test was used to test for normal distribution. Independent sample t-
test compared clinical indicators between the WDLPS and DDLPS
groups. Qualitative data comparisons of clinical and CT feature
used chi-square or Fisher’s exact test. DeLong test for evaluating the
ROC curve performance between different models. A p-value < 0.05
was considered statistically significant.

Results
Clinical characteristics

There were 80 cases in the training set, including 31 cases of
WDLPS, 49 cases of DDLPS, and 34 cases in the validation set,
including 13 cases of WDLPS and 21 cases of DDLPS. There were
no significant differences in age, gender, CDK4, MDM2 and satellite
nodules in tumors between WDLPS and DDLPS in both training
and validation sets, while the KI-67, tumor margin and tumor
density were statistically significant in both training and validation
sets. The clinical characteristics of the training and validation sets
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TABLE 1 The clinical characteristics of the training and validation set.

Training set Verification set
Parameters P-value

WDLPS (N = 29) DDLPS (N = 51) WDLPS (N = 15) DDLPS (N = 19)
Radscore 0.440 (0.185) 0.721 (0.242) <0.001 0.394 (0.309) 0.756 (0.188) 0.001
Gender
Female 10 (32.3%) 21 (42.9%) 0.476 5 (38.5%) 10 (47.6%) 0.867
Male 21 (67.7%) 28 (57.1%) 8 (61.5%) 11 (52.4%)
Age 60.0 (11.1) 56.3 (10.9) 0.148 54.8 (11.0) 60.8 (8.41) 0.106
KI67 0.113 (0.104) 0.211 (0.125) <0.001 0.0831 (0.101) 0.105 (0.0854) 0.051
CDK4
Negative 1(3.2%) 1 (2.0%) 1.000 13 (100%) 20 (95.2%) 1
Positive 30 (96.8%) 48 (98.0%) 0 (0%) 1 (4.8%)
MDM2
Negative 2 (6.5%) 7 (14.3%) 0.473 13 (100%) 16 (76.2%) 0.16
Positive 29 (93.5%) 42 (85.7%) 0 (0%) 5 (23.8%)
Tumor margin
Clear 21 (67.7%) 8 (16.3%) <0.001 7 (53.8%) 2 (9.5%) 0.014
Unclear 10 (32.3%) 41 (83.7%) 6 (46.2%) 19 (90.5%)
Tumor density
Fat-like 23 (74.2%) 13 (26.5%) <0.001 9 (69.2%) 4 (19.0%) 0.01
Mixed 8 (25.8%) 36 (73.5%) 4 (30.8%) 17 (81.0%)
Satellite nodules
Negative 23 (74.2%) 29 (59.2%) 0.258 13 (100%) 12 (57.1%) 0.019
Positive 8 (25.8%) 20 (40.8%) 0 (0%) 9 (42.9%)
Radiologists
DDLPS 12 (38.7%) 43 (87.8%) <0.001 6 (46.2%) 20 (95.2%) 0.004
WDLPS 19 (61.3%) 6 (12.2%) 7 (53.8%) 1 (4.8%)

DDLPS, dedifferentiated liposarcoma; MDM2, Mouse Double Minute 2; WDLPS, well-differentiated liposarcoma

are shown in Table 1. The work flow of this study is shown Radiomics features selection

in Figure 1.

A total of 107 radiomics features were extracted, and 5 optimal
radiomics features were selected. The radscore was calculated as
Radscore = 0.76755 + 0.03428xshape_SurfaceArea
+0.03798xshape_VoxelVolume+0.13445xfirstorder_10Percentile
+0.11145xglem_Imcl + 0.06222xglrlm_GrayLevelNonUniformity.

CT imaging evaluation

For the training set, among WDLPS cases, radiologists classified

19 cases (61.3%) correctly as WDLPS and 12 cases (38.7%)
incorrectly as DDLPS. For DDLPS cases, radiologists correctly
identified 43 cases (87.8%) as DDLPS, while 6 cases (12.2%) were
incorrectly classified as WDLPS. For the validation set, among
WDLPS cases, radiologists classified 7 cases (53.8%) correctly as
WDLPS and 6 cases (46.2%) incorrectly as DDLPS. For DDLPS
cases, radiologists correctly identified 20 cases (95.2%) as DDLPS,
while 1 cases (4.8%) were incorrectly classified as WDLPS. Two
cases demonstration is shown in Figure 2.
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The corelations of radiomics features and the clinical features is
shown in Figure 3.

Radiomics nomogram construction
The radiomics model (radscore) was constructed to predict the

pathological classification of DDLPS. Multivariate logistic
regression analysis showed that Ki-67 and tumor margin were
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Continuous collection of data from 114
patients with RLPS

Inclusion criteria:
(1) Postoperative pathology confirmed

retroperitoneal liposarcoma.
(2) CT examination within 30 days before || /E"Ch‘sm“ criteria: \

surgery. (1) Unclear pathological

diagnosis.
(3) No history of other tumors and ) )
metastatic diseases. N (2) Poor CT image quality,
missing or incomplete
K / data.
N
114 RLPS including 70 DDLPS
44 WDLPS
Random assignment at
aratio of 7:3
, l
[ Training set (n=80) ] [ Validation set (n=34) ]
4 Y Y
! : l
radiomics clinical radiomics
signature features nomogram
FIGURE 1

The work flow of this study.

FIGURE 2

Two cases examples of histology confirmed well-differentiated liposarcoma (WDLPS) and dedifferentiated liposarcoma (DDLPS). (A) A WDLPS located
in the upper abdomen, has clear boundaries with fat-like content, pushing the surrounding tissues. (B) A DDPLS located in the right lower abdomen,
with unclear separations from surrounding tissues with solid content invading the right psoas major muscle.
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FIGURE 3

Analysis of radiomics signatures and correlation interactions with clinical features. (A) LASSO regression analysis showing binomial deviance across
different log(lambda) values, with error bars representing confidence intervals. Five radiomics features is selected as the radiomics signatures. (B) Pie
chart shows the distribution of radiomics signatures with their coefficients in liner combining. (C) Correlation network of radiomics signatures and
clinical features for DDLPS illustrates the relationships between clinical variables (green nodes), radiomics signatures (blue nodes), and the DDLPS
outcome (red central node). Red edges represent positive correlations, while blue edges indicate negative correlations. The thickness of each edge

corresponds to the strength of the correlation.

clinical independent risk factors for predicting DDLPS (they were
liner fitted as a clinical model). The radiomics nomogram was
constructed combined the radscore with clinical independent risk
factors to predict DDLPS (Figure 4). Calibration curves showed
good agreement between predicted and observed results of the
radiomics nomogram in both training and validation sets.

Discrimination of the Radiomics Model, Clinical Model,
Radiologist Evaluation and Radiomics Nomogram(Table 2).

AS showed in Table 2, in the training set, the AUC of the radiomics
model was 0.81 (95%CI: 0.71-0.91) with sensitivity and specificity of 0.73
and 0.81. In the validation set, the AUC of the radiomics model was 0.84
(95%CI: 0.67-1.00) with sensitivity and specificity of 0.76 and 0.85.
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In the training set, the AUC of the clinical model was 0.83 (95%
CI: 0.74-0.93) with sensitivity and specificity of 0.88 and 0.68. In the
validation set, the AUC of clinical model was 0.79 (95%CI: 0.64-
0.95) with sensitivity and specificity of 0.90 and 0.62.

In the training set, the AUC of the radiologist evaluation was
0.75 (95%CI: 0.65-0.84) with sensitivity and specificity of 0.88 and
0.61. In the validation set, the AUC of the radiomics nomogram was
0.75 (95%CI: 0.60-0.89) with sensitivity and specificity of 0.95
and 0.54.

In the training set, the AUC of the radiomics nomogram was
0.91 (95%CI: 0.84-0.98) with sensitivity and specificity of 0.87 and
0.88. In the validation set, the AUC of the radiomics nomogram was
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FIGURE 4

Nomogram for predicting the probability of DDLPS recurrence. (A) The nomogram integrates tumor margin, Ki-67 expression, and radscore, and
total points to estimate the DDLPS probability. Each variable is assigned a score on the "Points” scale, and the total score is mapped to a probability
of DDLPS. Calibration curve for the nomogram prediction model for the training set (B) and the validation set (C). The solid blue (red) line represents
the agreement between predicted and observed probabilities, the dashed line represents perfect prediction (ideal), and the gray line indicates bias-

corrected predictions.

4 06 0.8 094 0.975 0.99 0.996

0.6 0.8

Nomogram predicted
0.4

Apparent
— Bias—corrected
-- Ideal

02

T T T T
0.6 08

Actual probability

B= 1000 repetitions, boot Mean absolute error=0.054 n=34

0.89 (95%CI: 0.73-1.00) with sensitivity and specificity of 0.90
and 0.92.

The DeLong test showed better discrimination performance of
radiomics nomogram than the radiologist evaluation both in
training and validation sets (both P<0.001).

Clinical application value

The clinical decision curve showed that under a certain
probability threshold, both the radiomics feature and the imaging
nomogram could effectively predict the pathological classification
of DDLPS and improve the clinical net benefit of patients
compared with the treatment of “total intervention” or “zero
intervention”. Moreover, under most probability thresholds,

Frontiers in Oncology

decision making based on the imaging nomogram results in a
higher clinical net benefit for patients compared to the radiologist
evaluation (Figure 5).

Discussion

This study developed a radiomics nomogram combining
features from plain CT scans (tumor margin), Ki-67 expression
and five significant radiomic features to differentiate between
WDLPS and DDLPS preoperatively. The nomogram
demonstrated strong performance, which was better than
standalone of radiologist evaluation. Decision curve analysis
confirmed that the nomogram significantly improved the net
clinical benefit across various probability thresholds. The study
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TABLE 2 Discrimination performance of radiomics model, clinical model, radiologist’s evaluation, and radiomics nomogram.

Data sets Models C 95%Cl SPE SEN NPV PPV P*
Radscore 0.81 0.71-0.91 0.81 0.73 0.66 0.86 0.019
Clinical model 0.83 0.74-0.93 0.68 0.88 0.78 0.81 0.023
Training set
Radiologists 0.75 0.65-0.84 0.61 0.88 0.76 0.78 <0.001
Nomogram 091 0.84-0.98 0.87 0.88 0.82 091 -
Radscore 0.84 0.67-1.00 0.85 0.76 0.69 0.89 0.020
Clinical model 0.79 0.64-0.95 0.62 0.90 0.80 0.79 0.193
Validation set
Radiologists 0.75 0.60-0.89 0.54 0.95 0.87 0.77 0.013
Nomogram 0.89 0.73-1.00 0.92 0.90 0.86 0.95 -

*Compared with nomogram; AUC, area under the curve; CI, confidence interval; SPE specificity; SEN, sensitivity; NPV, negative predictive value; PPV, positive predictive value.

Clinical decision curve analysis

@ Radiologist
@ Nomogram
@ Treatall
@ Treat none
© _
o
< 4
S
=
T
e
3
@
3
z
N
o
e J
S

0.0 02 04 06 08 1.0

High Risk Threshold

Clinical decision curve analysis

Radiologist
Nomogram
Treat all

Treat none

0.6
J

0.4

Net Benefit

0.2
|

0.1

r T T T T 1
B 0.0 02 04 0.6 08 1.0
High Risk Threshold

FIGURE 5

Clinical decision curve analysis (DCA) for evaluating the net benefit of different prediction models. DCA comparing the predictive performance of the
\the nomogram (blue line), the radiologist evaluation (red line), and the “treat all as DDLPS" (purple line) and “treat none as DDLPS" (gray line)
strategies. The nomogram demonstrates a higher net benefit across a range of thresholds compared to the radiologist evaluation in both (A) training

and (B) validation set.
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highlights the potential of combining radiomics with clinical
biomarkers to enhance preoperative diagnosis and aid in
treatment planning for patients with RLPS.

Preoperative evaluation of the pathological classification of
RLPS is crucial for selecting appropriate treatment strategies and
significantly influences prognosis and recurrence risk. In this study,
we identified Ki-67 expression as an independent clinical predictor
for distinguishing between WDLPS and DDLPS, which is in
accordance with previous studies (6). Ki-67, a well-established
proliferation marker in clinical practice (16), which is emphasized
in prior studies of DDLPS (17). Preoperative sampling for Ki-67
expression may complement the assessment of tumor
heterogeneity. Moreover, integrating Ki-67 into the radiomics
model emphasizes the importance of using both biological and
imaging markers to refine diagnostic accuracy.

Tumor margin is found important in differentiating DDLPS
from WDLPS. As previous study reported that WDLPS typically
presents with well-defined, clear margins, while DDLPS often shows
irregular or poorly defined borders due to the presence of more
aggressive and infiltrative areas (1). Tumor density also provides
valuable insights, as WDLPS tends to exhibit a homogeneous fat-
like density, characteristic of its well-differentiated adipose tissue
composition (18). In contrast, DDLPS is more likely to present with
mixed densities, including areas of solid masses interspersed with
fat, reflecting its more aggressive nature and the presence of non-
fatty, dedifferentiated tissue (18). Other study reported that DDLPS
often showing positive satellite nodules due to its tendency to
invade surrounding tissues, whereas WDLPS typically does not
present with these nodular foci (3). Satellite nodules was not found
difference between WDLPS and DDLPS, which might be because
non-contrasted CT was used in this study and satellite nodules
would be more clearly visible under contrasted CT. However, our
study’s reliance on plain CT imaging highlights the accessibility and
cost-effectiveness of this approach. While contrast-enhanced CT are
commonly used in soft tissue sarcoma diagnosis, plain CT scans are
widely available and circumvent the risks associated with contrast
agents, such as allergic reactions or nephrotoxicity. This makes our
radiomics nomogram particularly beneficial in resource-limited
settings or for patients with contraindications to contrast agents.

The study underscores the utility of radiomics in identifying
subtle heterogeneity within RLPS tumors, with the selected
radiomics features providing insights into tumor size
(Shape_VoxelVolume), growth patterns (Shape_SurfaceArea),
intensity (Firstorder_l0Percentile, indicate areas of fat, solid,
necrosis or cystic within tumors), and tumor heterogeneity
(GLCM_Imcl and GLRLM_GrayLevelNonUniformity), which are
critical for identifying dedifferentiated regions. For instance,
Shape_SurfaceArea and Shape_VoxelVolume reflect tumor size
and growth patterns, which are directly associated with aggressive
infiltration in DDLPS compared to the more circumscribed
WDLPS. Firstorder_10Percentile is an intensity-based feature,
which captures low-attenuation regions that may correspond to
necrotic, cystic, or fatty components, aligning with the
heterogeneous tissue composition of DDLPS. GLCM_Imcl
reflects local intensity variations and structural complexity,
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consistent with the disorganized cellular and stromal architecture
of DDLPS. GLRLM_GrayLevelNonUniformity mirrors the
biological diversity of tumor microenvironments in
dedifferentiated regions. These results extend and align with
recent research on the role of radiomics in classifying RLPS. The
use of radiomics allows for the identification of these subtle features
that may not be fully appreciated through traditional visual
assessment, thus improving diagnostic accuracy. Several other
studies have explored the use of CT radiomics in identifying
DDLPS and WDLPS, with similar aims but differing
methodologies and findings. One study emphasized the challenges
in distinguishing DDLPS from WDLPS by CT based radiomics,
highlighting the difficulty in visualizing the complex heterogeneity
of these tumors. They showed that radiomics model can predict the
histological type and grade of RLPS with excellent performance
(12). Moreover, studies have explored radiomics for soft tissue
tumors, including liposarcomas, using CT scans, and reported AUC
values of over 0.80 for distinguishing subtypes (10, 19).

Although CT findings such as irregular tumor margins, mixed
densities, and satellite nodules are not exclusive to DDLPS and may
occasionally be seen in WDLPS, prior studies have shown these
features to be significantly more common in dedifferentiated tumors.
WDLPS typically presents as a homogeneous, fat-like mass with well-
circumscribed borders, whereas DDLPS often demonstrates
infiltrative, irregular margins and heterogeneous densities due to
the presence of non-adipose, dedifferentiated tissue (8, 15). Similarly,
focal nodular non-adipose areas have been associated with aggressive
histologic transformation, though their detection is more reliable on
contrast-enhanced CT (3). In our cohort, margin and density
differences reached statistical significance between WDLPS and
DDLPS groups, supporting their inclusion. Importantly, these
qualitative features were not used in isolation but were combined
with Ki-67 expression and radiomics-derived heterogeneity markers,
resulting in a predictive model that outperformed subjective
radiologist assessment. This integrative approach underscores the
added value of radiomics in extracting subtle imaging signatures
beyond conventional CT interpretation (12).

Furthermore, The findings suggest that integrating radiomics
data with clinical biomarkers presents a promising approach for
personalized treatment planning in RLPS patients, supporting the
shift towards precision oncology (20). The combination of Ki-67, CT
features and radiomics features is notably significant, bridging the gap
between imaging and molecular pathology. This synergy allows for a
more comprehensive understanding of tumor biology, thereby
improving diagnostic precision. This aligns with the principles of
precision medicine, where treatment decisions are informed by
multimodal data (21). The nomogram could aid in preoperative
planning by identifying patients with likely DDLPS who may benefit
from more extensive surgical resection, closer follow-up, or
consideration for neoadjuvant therapies. These findings reinforce
the consensus that radiomics, when integrated with clinical
biomarkers, is a potent tool for enhancing the precision of RLPS
diagnosis and treatment planning (22). Furthermore, our model relies
only on plain CT scans, it is particularly suitable for resource-limited
settings or patients contraindicated for contrast-enhanced imaging.
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However, this study has several limitations. Firstly, its retrospective
nature and small sample size might affect the generalizability of the
results. Future research should aim to validate these models in larger,
multicenter cohorts and investigate their potential in predicting
therapeutic responses and long-term outcomes. Second, the model
was exclusively developed for differentiating between WDLPS and
DDLPS, not accounting for other specific pathological subtypes. Lastly,
only plain CT images were used in this study, contrast-enhanced
imaging could provide complementary information not captured in
this study. Future studies might benefit from incorporating enhanced
CT imaging with an expanded data-set.

Conclusions

In conclusion, the integration of radiomics features from plain CT
scans with Ki-67 expression in a nomogram significantly enhances the
preoperative differentiation of RLPS subtypes. This approach could
lead to more precise treatment planning, potentially improving patient
outcomes. Further validation in larger, multi-center studies is necessary
to confirm these findings and extend their applicability.

Data availability statement

The raw data supporting the conclusions of this article will be made
available by the authors, without undue reservation.

Ethics statement

The studies involving humans were approved by the Ethics
Committee of Jinshan Hospital of Fudan University (approval no.
JIEC2025S01). The studies were conducted in accordance with the
local legislation and institutional requirements. The participants
provided their written informed consent to participate in this study.

Author contributions

TY: Formal analysis, Resources, Data curation, Conceptualization,
Writing - original draft. R-YC: Investigation, Data curation, Writing -

References

1. Lahat G, Anaya DA, Wang X, Tuvin D, Lev D, Pollock RE. Resecta ble well-
differentiated versus dedifferentiated liposarcomas: two different diseases possibly
requiring different treatment approaches. Ann Surg Oncol. (2008) 15:1585-93.
doi: 10.1245/s10434-007-9805-x

2. Blay JY, Honoré C, Stoeckle E, Meeus P, Jafari M, Gouin F, et al. Surgery in
reference centers improves survival of sarcoma patients: a nationwide study. Ann
Oncol. (2019) 30:1143-53. doi: 10.1093/annonc/mdz124

3. Singer S, Antonescu CR, Riedel E, Brennan MF. Histologic subtype and margin of

resection predict pattern of recurrence and survival for retroperitoneal liposarcoma.
Ann Surg. (2003) 238:358-70. doi: 10.1097/01.51a.0000086542.11899.38

Frontiers in Oncology

10.3389/fonc.2025.1683165

review & editing, Methodology, Conceptualization. Y-FD: Data
curation, Writing — original draft, Methodology, Formal analysis. J-
YW: Methodology, Writing - original draft, Formal analysis. YL:
Software, Visualization, Methodology, Writing — review & editing,
Conceptualization. J-WQ: Funding acquisition, Writing - review &
editing, Supervision, Project administration, Conceptualization.

Funding

The author(s) declare financial support was received for the
research and/or publication of this article. The work was founded
by Jinshan District Health Commission (No. JSZK2023A02) to
Jin-Wei Qiang.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative Al statement

The author(s) declare that no Generative AI was used in the
creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this
article has been generated by Frontiers with the support of artificial
intelligence and reasonable efforts have been made to ensure
accuracy, including review by the authors wherever possible.
If you identify any issues, please contact us.

Publisher’'s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

4. Coindre JM, Mariani O, Chibon F, Mairal A, De Saint Aubain Somerhausen N,
Favre-Guillevin E, et al. Most Malignant fibrous histiocytomas developed in the
retroperitoneum are dedifferentiated liposarcomas: a review of 25 cases with
comparison with other Malignant fibrous histiocytomas. Mod Pathol. (2003) 16:256—
62. doi: 10.1097/01.MP.0000056983.78547.77

5. Stoeckle E, Coindre JM, Bonvalot S, Kantor G, Terrier P, Bonichon F, et al.
Prognostic factors in retroperitoneal sarcoma: a multivariate analysis of a series of 165
patients of the French Cancer Center Federation Sarcoma Group. Cancer. (2001)
92:359-68. doi: 10.1002/1097-0142(20010715)92:23.0.CO;2-Y

6. Tseng WW, Pollock RE, Grignol VP. Disease biology is “King” in retroperitoneal
liposarcoma. Ann Surg Oncol. (2021) 28:832-4. doi: 10.1245/s10434-021-10472-6

frontiersin.org


https://doi.org/10.1245/s10434-007-9805-x
https://doi.org/10.1093/annonc/mdz124
https://doi.org/10.1097/01.sla.0000086542.11899.38
https://doi.org/10.1097/01.MP.0000056983.78547.77
https://doi.org/10.1002/1097-0142(20010715)92:23.0.CO;2-Y
https://doi.org/10.1245/s10434-021-10472-6
https://doi.org/10.3389/fonc.2025.1683165
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Yang et al.

7. Meyer M, Ronald J, Vernuccio F, Nelson RC, Ramirez-Giraldo JC, Solomon J,
et al. Reproducibility of CT radiomic features within the same patient: influence of
radiation dose and CT reconstruction settings. Radiology. (2019) 293:583-91.
doi: 10.1148/radiol.2019190928

8. Wilson MP, Haidey J, Murad MH, Sept L, Low G. Diagnostic accuracy of CT and
MR features for detecting atypical lipomatous tumors and Malignant liposarcomas: a
systematic review and meta-analysis. Eur Radiol. (2023) 33:8605-16. doi: 10.1007/
500330-023-09916-2

9. Nakashima Y, Yokoyama Y, Ogawa H, Sakakibara A, Sunagawa M, Nishida Y,
et al. Which modality is better to diagnose high-grade transformation in retroperitoneal
liposarcoma? Comparison of computed tomography, positron emission tomography,
and magnetic resonance imaging. Int J Clin Oncol. (2023) 28:482-90. doi: 10.1007/
510147-022-02287-6

10. Pasquali S, Tadecola S, Vanzulli A, Infante G, Bologna M, Corino V, et al.
Radiomic features of primary retroperitoneal sarcomas: a prognostic study. Eur |
Cancer. (2024) 213:115120. doi: 10.1016/j.¢jca.2024.115120

11. Sudjai N, Siriwanarangsun P, Lektrakul N, Saiviroonporn P, Maungsomboon S,
Phimolsarnti R, et al. Tumor-to-bone distance and radiomic features on MRI
distinguish intramuscular lipomas from well-differentiated liposarcomas. J Orthop
Surg Res. (2023) 18:255. doi: 10.1186/s13018-023-03718-4

12. Arthur A, Orton MR, Emsley R, Vit S, Kelly-Morland C, Strauss D, et al. A CT-
based radiomics classification model for the prediction of histological type and tumour
grade in retroperitoneal sarcoma (RADSARC-R): a retrospective multicohort analysis.
Lancet Oncol. (2023) 24:1277-86. doi: 10.1016/S1470-2045(23)00462-X

13. Tirotta F, Schut AW, Wemmers D, Klein S, Visser JJ, Hanff DF, et al. Evaluation
of diagnostic accuracy of preoperative CT-based radiomics in primary retroperitoneal
sarcoma. Ann Surg Oncol. (2025) 32(10):7799-807. doi: 10.1245/s10434-025-18040-y

14. XuJ, Miao L, Wang CX, Wang HH, Wang QZ, Li M, et al. Preoperative contrast-
enhanced CT-based deep learning radiomics model for distinguishing retroperitoneal

Frontiers in Oncology

11

10.3389/fonc.2025.1683165

lipomas and well-Differentiated liposarcomas. Acad Radiol. (2024) 31:5042-53.
doi: 10.1016/j.acra.2024.06.035

15. Lu J, Qin Q, Zhan LL, Yang X, Xu Q, Yu J, et al. Computed tomography
manifestations of histologic subtypes of retroperitoneal liposarcoma. Asian Pac ]
Cancer Prev. (2014) 15:6041-6. doi: 10.7314/apjcp.2014.15.15.6041

16. Gerdes J, Lemke H, Baisch H, Wacker HH, Schwab U, Stein H. Cell cycle analysis
of a cell proliferation-associated human nuclear antigen defined by the monoclonal
antibody Ki-67. ] Immunol. (1984) 133:1710-5. doi: 10.4049/jimmunol.133.4.1710

17. Sun P, Ma R, Liu G, Wang L, Chang H, Li Y. Pathological prognostic factors of
retroperitoneal liposarcoma: comprehensive clinicopathological analysis of 124 cases.
Ann Transl Med. (2021) 9:574. doi: 10.21037/atm-21-972

18. Hasegawa T, Seki K, Hasegawa F, Matsuno Y, Shimodo T, Hirose T, et al.
Dedifferentiated liposarcoma of retroperitoneum and mesentery: varied growth
patterns and histological grades-a clinicopathologic study of 32 cases. Hum Pathol.
(2000) 31:717-27. doi: 10.1053/hupa.2000.8222

19. Xu]J, Miao L, Wang CX, Wang HH, Wang QZ, Li M, et al. Preoperative contrast-
enhanced CT-based deep learning radiomics model for distinguishing retroperitoneal
lipomas and well-differentiated liposarcomas. Acad Radiol. (2024) 31:5042-53.
doi: 10.1016/j.acra.2024.06.035

20. Hoadley KA, Yau C, Wolf DM, Cherniack AD, Tamborero D, Ng S, et al.

Multiplatform analysis of 12 cancer types reveals molecular classification within and
across tissues of origin. Cell. (2014) 158:929-44. doi: 10.1016/j.cell.2014.06.049

21. Collins FS, Varmus H. A new initiative on precision medicine. N Engl ] Med.
(2015) 372:793-5. doi: 10.1056/NEJMp1500523

22. Zwanenburg A, Vallieres M, Abdalah MA, Aerts HTWL, Andrearczyk V, Apte A,
et al. The image biomarker standardization initiative: standardized quantitative
radiomics for high-throughput image-based phenotyping. Radiology. (2020)
295:328-38. doi: 10.1148/radiol.2020191145

frontiersin.org


https://doi.org/10.1148/radiol.2019190928
https://doi.org/10.1007/s00330-023-09916-2
https://doi.org/10.1007/s00330-023-09916-2
https://doi.org/10.1007/s10147-022-02287-6
https://doi.org/10.1007/s10147-022-02287-6
https://doi.org/10.1016/j.ejca.2024.115120
https://doi.org/10.1186/s13018-023-03718-4
https://doi.org/10.1016/S1470-2045(23)00462-X
https://doi.org/10.1245/s10434-025-18040-y
https://doi.org/10.1016/j.acra.2024.06.035
https://doi.org/10.7314/apjcp.2014.15.15.6041
https://doi.org/10.4049/jimmunol.133.4.1710
https://doi.org/10.21037/atm-21-972
https://doi.org/10.1053/hupa.2000.8222
https://doi.org/10.1016/j.acra.2024.06.035
https://doi.org/10.1016/j.cell.2014.06.049
https://doi.org/10.1056/NEJMp1500523
https://doi.org/10.1148/radiol.2020191145
https://doi.org/10.3389/fonc.2025.1683165
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

	CT-based radiomics nomogram for differentiating dedifferentiated liposarcoma from well-differentiated liposarcoma
	Introduction
	Materials and methods
	Ethnics
	Data collection
	CT scanning
	CT imaging evaluation and tumor segmentation
	Radiomics data processing and feature extraction and selection
	Radiomics Nomogram Construction
	Discrimination of the radiomics model, clinical model, radiologist evaluation and radiomics nomogram
	Clinical application value
	Statistical analysis

	Results
	Clinical characteristics
	CT imaging evaluation
	Radiomics features selection
	Radiomics nomogram construction
	Clinical application value

	Discussion
	Conclusions
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References


