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prostate cancer models
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Introduction: The development of therapy resistance and the formation of

distant metastases represent clinical unmet needs for patients with advanced

prostate cancer (PCa). The use of drugs for other indications, i.e. drug

repurposing, shows great promise for cancer treatment. Drug repurposing

could allow new cancer treatments to be introduced relatively quickly and at

lower costs. Penfluridol, an approved antipsychotic drug, has strong cytolytic

effects in multiple cancers.

Methods: In this study, we have investigated the potential anti-tumor effects of

penfluridol in preclinical and ‘near-patient’ PCa models.

Results: Penfluridol significantly reduced the viability of a panel of human PCa

cells, induced apoptosis by increasing caspase-3/7 levels and decreased the

number of PCa stem cells in vitro. Penfluridol reduced the viability and induced

cytotoxic effects in three-dimensional cultures and in ex vivo cultured PCa tissue

slices (patient-derived xenograft, freshly isolated PCa biopsies). Moreover,

penfluridol significantly reduced the viability of docetaxel-resistant PCa cells

and exerted synergistic effects in combination with docetaxel in docetaxel-

resistant PCa.

Discussion: In conclusion, penfluridol exhibited cytotoxic effects in multiple

preclinical PCa models. Further research is warranted to address the

translational value of our findings.
KEYWORDS
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1 Introduction

Prostate cancer (PCa) is the second most common cancer type

in men in the Western world (1). The development of castration-

resistant prostate cancer (CRPC) and the formation of metastatic

disease represent major clinical unmet needs in the treatment of

PCa. The current treatment for CRPC includes the use of the

cytotoxic agent docetaxel. Docetaxel belongs to the taxane class and

binds to the microtubules. Hereby, docetaxel stabilizes the

microtubules and prevents tubulin depolymerization, resulting

inhibition of cell proliferation. Unfortunately, clinical responses to

docetaxel are modest since a subset of patients does not respond to

docetaxel, develops adverse effects or acquires resistance to the

docetaxel treatment (2). Therefore, novel treatment strategies for

(therapy-resistant) PCa are urgently needed.

Epidemiological studies have revealed a reduced incidence of

different types of cancer, including PCa, in schizophrenic patients

(3–5). This suggests that the use of antipsychotics could protect

against the development of cancer. These findings were

subsequently further reinforced by several meta-analyses (6, 7).

Penfluridol is a long-acting oral antipsychotic drug and is

prescribed to treat chronic schizophrenia and other psychiatric

disorders (8–11). Interestingly, multiple preclinical studies have

demonstrated that penfluridol exerts cytotoxic effects in bladder,

breast, colon and pancreatic cancer preclinical models (12–16). To

date, the effect of penfluridol on human PCa cells remains elusive.

In this study, we have investigated the anti-tumor effects of

penfluridol in preclinical human PCa models, including

monolayers and three-dimensional cell cultures and ex vivo

cultured PCa tissue slices. Finally, we have tested the effects of

penfluridol in docetaxel-resistant PCa cells in vitro and have

examined the effect of penfluridol in combination with docetaxel

in these docetaxel-resistant PCa cells.
2 Material and methods

2.1 Two- and three-dimensional cultures

Human PCa cells lines PC3, PC-3M-Pro4luc2, DU145, 22Rv1

and C4-2B4 were cultured in monolayers as described in

Supplementary Table 1. Docetaxel-resistant PCa cell lines PC3-

DR, DU145-DR and 22Rv1-DR were generated by treatment of the

cells with increasing concentrations of docetaxel (17, 18). Three-

dimensional cultures were generated from PC3 cells and MSK-

PCa1 cells, both derived from PCa bone metastasis, and the PCa

liver metastasis model NM60 (19–21).
2.2 Viability assays

1,500 human PCa cells were seeded per well in 150 ml medium

in 96-well plates. After 24 hours, the cells were treated with a dose-

range of penfluridol (Sigma-Aldrich, Saint Louis, MO, USA P3371,
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RRID: SCR_008988) or vehicle (ethanol in medium). The medium

was refreshed as indicated and the viability was measured after 72

hours. To investigate the effect of penfluridol in combination with

docetaxel on docetaxel-resistant PCa, docetaxel-resistant PCa cells

were exposed to a dose-range of docetaxel (Sigma-Aldrich) in

combination with one concentration of penfluridol for 72 hours.

After 72 hours, 20 ml of 3-(4,5 dimethylthiazol-2-yl)-5-(3-

carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTT)

(Promega, Madison, WI, G3581, RRID: SCR_006724) was added to

the culture medium and mitochondrial activity was measured after

2 hours (SpectraMax iD3, Molecular Devices).

Three-dimensional cultures of PC3, MSK-PCa1 and NM60 cells

were treated with a dose-range of penfluridol. After 3 days, the

viability of the cultures was determined using the Cell Titer Glo

assay (Promega, Madison, WI, G9681). In parallel to the viability

assays, histology was performed on three-dimensional cultures by

executing H&E and immunofluorescent stainings for cleaved

caspase-3, pancytokeratin and PCNA (Supplementary

Table 2) (21).
2.3 Caspase-3/7 assay

1,500 human PCa cells were seeded in 150 ml medium. After

overnight incubation, the cells were exposed to penfluridol for

2 hours. Human PCa cells exposed to 1 mM staurosporine for

24 hours were used as a positive control. The caspase-3/7 activity

was measured by performing the Caspase-Glo® 3/7 Assay System

according to the manufacturer’s protocol (Promega). Luciferase

activity was measured after 30 minutes with a luminometer

(Spectramax iD3, Molecular Devices).
2.4 Clonogenic assay

Hundred human PCa cells were seeded in 2 ml of medium in a

6-well plate. After 24 hours, cells were stimulated with penfluridol

for 2 hours. Colonies were fixed with 4% paraformaldehyde and

stained with a 0.2% crystal violet solution after 15–20 days. The

number of colonies was counted and the Colony Area Plugin for

ImageJ was used to quantify the average colony area.
2.5 Aldefluor assay

PCa cells were treated with a dose-range of penfluridol for 2

hours. After 48 hours, 106 cells were collected for the Aldefluor

Assay. The Aldefluor assay was performed by using the

ALDEFLUOR Assay Kit (StemCell Technologies, Vancouver,

Canada, #01700, RRID;SCR_013642) (22). The ALDH substrate

was added to the collected cells, resulting into intracellular

conversion of the substrate by intracellular ALDH into a

fluorescent product. The percentage of ALDHhigh stem/

progenitor-like cells was determined by FACS analysis (LSRII, BD
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Biosciences, Franklin Lakes, NJ, USA) (24). The percentage

ALDHhigh cells was analyzed by using FlowJo10.0 by measuring

the percentage after doublet exclusion and compared to

DEAB controls.
2.6 Ex vivo tissue slice culture and scoring

PCa tumor tissue was obtained from cell line-derived xenografts

(CDX) and previously established patient-derived xenograft (PDX)

models (21). In addition, primary prostate tumor material was

obtained by transurethral resection of the prostate (TURP) after

informed consent (Pronet p05.85 and RBUT-ID-PROSTAAT-151).

Additional (clinical) details are shown in Supplementary Table 3.

PCa tumor tissue were sliced and cultured as previously described

(23). After one day, the PCa tissue slices were treated with 100 mM
penfluridol. After exposure to penfluridol for 3 days, the PCa tissue

slices were fixed, embedded in paraffin and sectioned (15, 23). Paraffin

sections were stained with H&E and immunofluorescent stainings for

cleaved caspase-3, pancytokeratin and PCNA were performed in

parallel (see Supplementary Table 2). Images were captured using the

SP8 confocal microscope (Leica) and theMidi Panoramic slide scanner

(3D Histech) (15). The effect of penfluridol on the PCa tissue slices was

quantified as previously described (15). The necrotic area and positive

cleaved caspase-3 area were quantified by using ImageJ software

(National Institutes of Health). Furthermore, sections were scored

based on tissue integrity (H&E staining), the presence of fragmented

cytokeratin, proliferating cells (PCNA), and apoptosis (cleaved caspase-

3). The average cumulative scores of four sections are displayed in

heatmaps, where a higher score indicates a decrease in tumor tissue

quality (14).
2.7 Statistical analyses

Statistical analyses were performed by using GraphPad Prism,

version 10.2.3. One-way ANOVA with a Bonferroni post-hoc test was

performed to test for statistical differences in the in vitro viability

experiments. An unpaired t-test was performed to test for statistical

differences in caspase-3/7 apoptosis assays. IC50-values were calculated

by using non-linear regression in combination with the dose-response-

inhibition equation with four parameters in the GraphPad Prism

software package. Two-way ANOVA with a Bonferroni post-hoc test

was used to test for statistical difference in the docetaxel-resistance cell

lines. The Bliss independence model (Ce = A + B – A x B) was used to

calculate the expected effect (Ce) of penfluridol in combination with

docetaxel. The combination index (CI) was calculated by dividing the

observed effect (Co) to the expected effect (Ce). A CI larger than 1

indicates synergy.

* p<0.05, ** p<0.01, *** p<0.001 and **** p<0.0001
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3 Results

3.1 Penfluridol treatment decreases the
viability, induces apoptosis and reduces
cancer stem cell phenotype in human PCa
cells in vitro

To investigate the effects of penfluridol on the viability of human

PCa cells, PC3, PC-3M-Pro4luc2, DU145, 22Rv1 and C4-2B4 cells

were exposed to a dose-range penfluridol for 72 hours. Viability

assays indicated a significantly reduced viability after treatment with

3.125 mM penfluridol in PC3, 6.25 mM penfluridol in PC-3M-

Pro4luc2 (p<0.01) and 3.125 mM penfluridol in DU145 (p<0.05),

22Rv1 (p<0.0001) and C4-2B4 (p<0.001) cells (Figure 1A). The IC50

values ranged from 2.8-9.8 mM penfluridol treatment. A short

penfluridol exposure of 2 hours significantly reduced the viability

of PC3 cells, (p<0.05 12.5 mM, IC50 = 16.8 mM), PC-3M-Pro4luc2

cells (p<0.0001 25 mM, IC50 = 22.3 mM), DU145 cells (p<0.0001 12.5

mM, IC50 = 10.5 mM), 22Rv1 cells (p<0.05 12.5 mM, IC50 = 17.5 mM)

and C4-2B4 cells (p<0.0001 6.25 mM, IC50 = 7.2 mM) cells after 72

hours (Figure 1B, Supplementary Figure 1A). The effect of penfluridol

on caspase-3/7 induction was investigated in a panel of human PCa

cells. Penfluridol significantly increased caspase3/7 levels in PC3 cells

(p<0.0001), PC-3M-Pro4luc2 cells (p<0.0001), 22Rv1 (p<0.01) and

C4-2B4 cells (p<0.0001) after 24 hours (Figure 1C and

Supplementary Figure 1B). To examine the effect of penfluridol on

the PCa stem/progenitor subpopulation, changes in the percentage

ALDHhigh cells were measured by performing an Aldefluor assay.

Previous research by our group has shown that PCa cells with high

ALDH activity are associated with elevated clonogenicity and

invasiveness in vitro and increased tumor progression and

metastasis formation in vivo (22, 24).The percentage of ALDHhigh

subpopulation of PCa stem/progenitor cells was reduced

upon treatment with penfluridol after 48 hours (Figure 1D) In line

with these findings, clonogenic assays revealed a dose-dependent

reduction in number of colonies and colony area in human PCa cells

exposed to penfluridol (Figure 1E, Supplementary Figure 1C).
3.2 Penfluridol treatment decreases the
viability, induces apoptosis in ‘near-patient’
human PCa models

Next, the effect of penfluridol was examined in advanced ‘near-

patient’ PCa models, including three-dimensional cultures and ex

vivo cultured tumor tissue slices (23, 25). Three-dimensional

cultures of PC3 cells, MSK-PCa1 cells [PCa bone metastases

material (22)] and NM60 cells [PCa liver metastasis PDX model

(20, 21)] were exposed to a dose-range of penfluridol for 72 hours.

Treatment with penfluridol significantly and dose-dependently
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reduced the viabi l i ty of PCa tumoroids (Figure 2A).

Immunohistochemical analyses of MSK-PCa1 confirmed a

reduction in the proliferation marker PCNA and fragmentation

of epithelial protein pancytokeratin (panKRT) upon penfluridol

exposure. Furthermore, apoptosis was induced (cleaved caspase-3,

cCASP-3) and a complete loss of organoid architecture was

observed in MSK-PCa1tumoroids (Figure 2B). Overall, these

results suggest that penfluridol has anti-tumor effects in three-

dimensional cultures of human PCa.

PCa tissue slices were generated from a subcutaneously growing

cell-derived xenograft (CDX) of PC-3M-Pro4luc2 cells and cultured

in the presence of 100 mM penfluridol for 3 or 6 days. H&E staining

revealed a lower tumor cell density and the presence of fragmented

nuclei in the outer rim of penfluridol-treated tissue slices (red

marked areas in Figure 3A). Quantification of the percentage total

viable area in H&E-stained sections revealed a decrease in viability

upon penfluridol treatment (Figure 3B). In line with these findings,

quantification of the positive cleaved caspase-3 area indicated a

dose-dependent increase in cleaved caspase-3 levels upon

penfluridol treatment (Figure 3C). Histological evaluation by

using immunofluorescence and confocal microscopy indicated a

reduction in the number of proliferating cells and an increase in

tumor cell apoptosis and fragmented cytokeratin upon treatment
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with penfluridol (Figure 3D). The effect of penfluridol was

quantified by using a scoring system based on the loss of tissue

architecture, the absence of proliferating cells and the presence

apoptotic cells and fragmented cytokeratin (15). Scoring of the

tissue slices revealed a slight increase in the score after penfluridol

treatment (Supplementary Figure 2A). Tissue slices were generated

from our previously established patient-derived xenograft (PDX)

models PCa-15.01 and NM60. These PDX models were derived

from a hormone-naïve PCa patient (PCa-15.01) or from a patient

with mCRPC (NM60). Tumor tissue slices were treated with 100

mM penfluridol for three days (Figures 4A, B) (21, 23). Treatment

with penfluridol resulted in a decreased total viable area

(Figure 4C), elevated levels of cleaved caspase-3 (Figure 4D),

decreased numbers of proliferating tumor cells and loss of tumor

cell integrity leading to an overall increase in tissue score

(Supplementary Figure 2B). These observations indicate that

penfluridol displays anti-tumor properties in these ex vivo

cultured tumor tissue slices derived from PCa PDX models.

Finally, similar anti-tumor effects of penfluridol were found in

tissue slices derived from freshly isolated PCa biospies using the

same experimental setup (Figure 4E). Taken together, these results

suggest that penfluridol treatment can induce an anti-tumor

response in ex vivo cultured PCa tissue slices.
FIGURE 1

Penfluridol reduces viability, induces apoptosis and reduces stemness of human PCa cells in vitro. Continuous (A) and two-hour (B) exposure of the
human PCa cell lines PC-3M-Pro4luc2, DU145, 22Rv1 and C4-2B4 to a dose-range of penfluridol resulted in a reduced viability after 72 hours.
(C) Treatment with penfluridol resulted in an increase of caspase-3/7 levels after 24 hours in PC-3M-Pro4luc2, 22Rv1 and C4-2B4 cells.
(D) Exposure to penfluridol reduced the percentage of cells with high ALDH activity (ALDHhigh) after 48 hours in multiple PCa cell lines.
(E) Treatment of human PCa cell lines with penfluridol significantly decreased the number of colonies and colony area. Mean +/- standard error of
the mean (SEM) (n=3) * p<0.05, ** p<0.01, *** p<0.001 **** p<0.0001, one-way ANOVA (viability, clonogenic assay) and two-sided t-test (caspase-
3/7 induction).
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3.3 Penfluridol induces cell death in
chemotherapy-resistant PCa cells in vitro
and sensitizes docetaxel-resistant PCa cells
to docetaxel

The development of therapy resistance, including resistance to

the chemotherapeutic agent docetaxel, represents an important

clinical unmet need in the treatment of PCa patients. Docetaxel-

resistant PCa cell lines PC3-DR, DU145-DR and 22Rv1-DR were

exposed to penfluridol in vitro. Penfluridol significantly reduced the

viability of PC3-DR, DU145-DR and 22Rv1-DR cells after 72 hours

(Figure 5A). Strikingly, penfluridol induced a more pronounced

anti-tumor effect in PC3-DR cells than in docetaxel-sensitive PC3

cells (p<0.001 at 3.125 mM and p<0.0001 at 6.25 mM). This was also

reflected by a lower IC50 value of PC3-DR cells compared to PC3

i.e. 7.3 mM in PC3-DR cells compared to 9.9 mM in PC3 cells.
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Next, we investigated the effects of penfluridol in combination

with docetaxel on docetaxel-resistant PCa cells. The viability of

docetaxel-resistant PC3-DR, DU145-DR and 22Rv1-DR cells was

significantly decreased when docetaxel was administered in

combination with a low dose of penfluridol (Figure 5B,

Supplementary Figures 3A–D). The Bliss independence model

(C= A + B – A x B) was used to calculate the combination index

(CI). The CI was calculated by dividing the predicted inhibition C

by the observed inhibition, where a CI > 1 indicates synergy (26).

The combination of penfluridol and docetaxel treatment in the

docetaxel-resistant cell lines PC3-DR, DU145-DR and 22Rv1-DR

resulted in a stronger reduction in viability when similar dosages of

docetaxel and penfluridol were administered separately

(Supplementary Figures 2B–D) and induced synergistic effects in

these cell lines, as indicated by the combination index (Figure 5C).

Moreover, penfluridol reduced the percentage ALDHhigh cells of
FIGURE 2

Penfluridol displays anti-tumor effects in three-dimensional cell cultures of advanced human PCa. Three-dimensional cell cultures were generated
from PC3 cells, PCa bone metastases (MSK-PCa1) and PCa liver metastases (NM60) and exposed to a dose-range of penfluridol for 72 hours.
(A) Viability assays revealed a significant dose-dependent decrease in viability after treatment with penfluridol. Mean +/- standard error of the mean
(SEM), ** p<0.01, **** p<0.0001, one-way ANOVA (n=3). (B) Representative confocal images of three-dimensional MSK-PCa1 cell cultures stained
for apoptosis (cleaved caspase-3, cCASP-3 in green), proliferation (proliferating cell nuclear antigen, PCNA in green), epithelial cell marker
(pancytokeratin PANKRT in red) and combined with nuclear staining (DAPI, in blue) indicated decreased cancer cell proliferation and integrity upon
penfluridol exposure. Magnification 63x, scale bar = 25 mm.
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docetaxel-resistant PCa cells after 48 hours (Figure 5D) and

significantly decreased the number of colonies and colony area of

docetaxel-resistant PCa cells (Figure 5E). These results suggest that

administering a low dose of penfluridol induces anti-tumor effects

and might sensitize docetaxel-resistant PCa cells to docetaxel.
4 Discussion

Penfluridol was discovered in 1968 and is an oral antipsychotic

drug with a long half-life (8–10). Recently, cationic amphiphilic

drugs (CADs), including penfluridol, have drawn substantial

attention for their anti-neoplastic properties in different tumor

types. However, the effects of CADs, including penfluridol, on

PCa remain unclear. In this study we found that penfluridol

induces anti-tumor effects in multiple preclinical PCa models

including ‘near-patient’ patient-derived tumor models such as

three-dimensional cultures and ex vivo cultured tumor tissue

slices (14, 23–25). Moreover, our study reports for the first time

that penfluridol displays anti-tumor effects in chemotherapy-

resistant PCa and that penfluridol induces synergistic effects in

combination with docetaxel in docetaxel-resistant PCa cells.
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Docetaxel is the first-line therapy for patients suffering from

metastatic CRPC (mCRPC). However, more than 50% of all

patients do not respond to docetaxel and patients who respond

eventually develop resistance to docetaxel (27). Unfortunately, the

exact molecular mechanisms responsible for docetaxel-resistance

are currently unknown. Studies have suggested that induction of

epithelial-to-mesenchymal transition (EMT) and increased

stemness are associated with docetaxel-resistance in PCa (18).

Increased stemness and cancer-stem cells are associated with a

poor prognosis in human PCa (28). A previous study revealed that

penfluridol reduced renal cell carcinoma growth by inhibiting

stemness (29). In line with these findings, we observed that

penfluridol reduced the percentage of ALDHhigh PCa cells,

thereby suggesting that penfluridol can reduce PCa stem cells in

vitro. Moreover, penfluridol decreased the viability of docetaxel-

resistant PCa cells in vitro. These findings are in accordance with

those of a previous study reporting that penfluridol can target

paclitaxel-resistant breast cancer cells and that penfluridol can

inhibit microtubule polymerization (30, 31). Future studies that

examine the working mechanism of penfluridol in docetaxel-

resistant prostate cancer cells are needed. Furthermore, our study

reports for the first time that penfluridol exerts synergistic effects
FIGURE 3

Penfluridol induces cancer cell death in cell line-derived PCa tissue slices. PCa tissue slices were generated from a tumor derived from a human PCa
cell line derived xenograft (CDX) (PC-3M-Pro4luc2). Tumor tissue slices were subsequently treated with penfluridol for 3 and 6 days. (A) H&E staining
revealed a lower cell density and the presence of fragmented nuclei in the outer rim of penfluridol-treated tissue slices (red marked areas) after 3
and 6 days. Magnification 4x, scale bar = 200 mm. (B) The total viable area in penfluridol treated tissue slices was quantified using ImageJ. This
indicated a decrease in the total viable area upon penfluridol treatment. (C) Quantification of the total positive cleaved caspase-3 area by ImageJ
showed a dose-dependent elevation. (D) Representative images of ex vivo cultures tumor tissue slices stained for H&E, apoptosis (cleaved caspase-
3, cCASP-3 in green), proliferation (proliferating cell nuclear antigen, PCNA in green), epithelial cell integrity (pancytokeratin PANKRT in red) and
nuclei (DAPI, in blue) indicated an anti-tumor response after exposure to 100 mM penfluridol. Magnification 63x, scale bar = 25 mm Tumor tissue
slices treated with penfluridol were scored based on tissue quality (H&E staining), loss of proliferation (PCNA), induction of apoptosis (cleaved
caspase-3) and the presence of fragmented cytokeratin (15). (D) Cumulative scores of four sections were calculated and displayed in heatmaps
where a higher score indicates a decrease in tissue quality. Scoring of PC-3M-Pro4luc2 tissue slices revealed an increase in the cumulative score
upon treatment with penfluridol, indicating overall reduced tissue quality.
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with docetaxel in chemotherapy-resistant PCa cells. The results of

this study indicated that penfluridol may be a novel therapeutic

option for docetaxel-resistant PCa cancer.

Since penfluridol is a clinically-approved agent, the

pharmacokinetics, safety and toxicity are well-known (10).
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Therefore, repurposing of penfluridol for the treatment of PCa

might represent a time- and cost-effective approach (32). Future

preclinical in vitro and in vivo studies both on the anti-tumor effects

and mechanism of action of penfluridol, may facilitate the clinical

translation of penfluridol or related compounds. Clinical studies are
FIGURE 4

Penfluridol displays anti-tumor effects in ex vivo cultured tumor tissue slices from PCa patient-derived xenograft models and primary biopsy
samples. Tissue slices were generated from patient-derived xenograft (PDX) models PCa-15.01 and NM60 (21) (A–D) or primary patient biopsies (E).
Ex vivo treatment of tissue slices resulted in the induction of an anti-tumor response as indicated by a reduced total viable area in PCa-15.01 and
NM60 tissue slices (C) and an induction of cleaved caspase-3 levels in PCa15.01 tissue slices (D) after 3 days of treatment. Green = PCNA,
Red = PANKRT, blue = DAPI. Magnification 63x, scale bar = 25 mm.
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FIGURE 5

Penfluridol reduces the viability of docetaxel-resistant PCa cells and induces synergistic effects in combination docetaxel in docetaxel-resistant PCa
cells. (A) Docetaxel-resistant (-DR) PCa cells PC3-DR, DU145-DR, 22Rv1-DR were exposed to a dose-range of penfluridol for 72 hours. Penfluridol
significantly reduces the viability in both docetaxel-resistant cell lines PC3-DR, DU145-DR, 22Rv1-DR and docetaxel-sensitive PC3, DU145 and 22Rv1
cells. The reduction in viability in PC3-DR cells was more pronounced when compared to the parental PC3 cell line after treatment with 3.125, 6.25
and 12.5 mM penfluridol. Mean +/- standard error of the mean (SEM), ** p<0.01, **** p<0.0001, two-way ANOVA (n=3). (B) Human PCa cells were
exposed to dose-range of docetaxel in combination with a low dose penfluridol for 72 hours. Administration of a low dose of penfluridol (i.e. 6.25
mM in PC3(-DR) and 1.5625 mM in DU145(-DR) and 22Rv1(-DR)) significantly reduced the viability of docetaxel-resistant cell lines, indicating
synergistic effects of penfluridol in combination with docetaxel in these cell lines. (C) By using the Bliss independence model (C= A+B-AxB), the
predicted effect of the combination therapy C was calculated where A represents the effect of penfluridol monotherapy and B is the effect of
docetaxel monotherapy. Subsequently, CI was calculated by dividing the observed effect of the combination therapy by the predicted effect of the
combination therapy, where a CI higher than 1 indicates synergy. The combination of penfluridol and docetaxel treatment in docetaxel-resistant cell
lines PC3-DR, DU145-DR and 22Rv1-R resulted in a CI larger than 1, indicating synergistic effects of penfluridol in combination with docetaxel.
(D) Exposure to penfluridol slightly reduced the percentage of cells with high ALDH activity (ALDHhigh) cells after 48 hours in multiple docetaxel-
resistant PCa cells. (E) Treatment of human docetaxel-resistant PCa cell lines with penfluridol significantly decreased the number of colonies and
colony area. Mean +/- standard error of the mean (SEM) (n=3) * p<0.05, ** p<0.01, *** p<0.001 **** p<0.0001, one-way ANOVA (clonogenic assay),
two-way ANOVA (viability assay).
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required to elucidate which subgroup of patients with PCa will benefit

the most from penfluridol treatment. Such studies should may also

encompass the putative adverse effects of the neuropsychiatric drug

penfluridol in prostate cancer patients. Our findings suggest that

penfluridol is a potent anti-tumor agent in advanced PCa, including

mCRPC and docetaxel-resistant prostate cancer. Clinical phase II

studies investigating the effects of systemic treatment with penfluridol

in advanced PCa patients are needed. The described ex vivo culture

models could help in further deciphering which subgroup of patients

will benefit the most from penfluridol treatment, although further co-

clinical studies are necessary to evaluate the predictive value of these

cultures. Taken together, we have identified penfluridol as a

promising anti-cancer agent by causing cytolytic effects in multiple

preclinical models of human PCa. We believe that repurposing of

penfluridol might represent an interesting option for the treatment of

advanced PCa.
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