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Leber’s hereditary optic
neuropathy: Update on current
diagnosis and treatment

Ali Esmaeil*, Ali Ali and Raed Behbehani

Neuro-Ophthalmology Service, Department of Ophthalmology, Ibn Sina Hospital, Kuwait City,
Kuwait
Leber’s hereditary optic neuropathy (LHON) is a fairly prevalent mitochondrial

disorder (1:50,000) arising from the dysfunction of the mitochondrial

respiratory chain, which eventually leads to apoptosis of retinal ganglion

cells. The usual presentation is that of a young male with a sequential

reduction in visual acuity. OCT has been used to study the pattern of optic

nerve involvement in LHON, showing early thickening of the inferior and

superior retinal nerve fibre layer and ganglion cell layer thinning

corresponding with the onset of symptoms. Of the three primary mutations

for LHON, the m.14484T>C mutation has the best visual prognosis. Recent

emerging therapeutic options for LHON include idebenone and the

introduction of genetic vector therapy, which is currently in phase III clinical

trials. Screening of family members and adequate advice to avoid

environmental triggers, such as smoking and alcohol consumption, are also

cornerstones in the management of LHON.
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Introduction

Leber’s hereditary optic neuropathy (LHON) is a maternally inherited mitochondrial

disorder that manifests as subacute, sequential, and painless bilateral vision loss, typically

in young males (1, 2). Von Graefe initially recognized the condition in 1858; however, it

was later named after Dr. Theodore Leber (3), who reported the condition in several

patients across different families and described its unique clinical characteristics (4).

LHON was initially thought to be an x-linked disorder, but with later understanding of

mitochondrial inheritance, it became clear that mitochondrial mutations are the

underlying cause (5).

LHON is one of the most prevalent mitochondrial disorders in specific populations

(6, 7). We review the recent developments in the understanding of the pathophysiology of

LHON and the latest updates in the diagnostic and therapeutic strategies of LHON.
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Epidemiology

The worldwide prevalence of LHON is estimated at 1 in

50,000, with some variability across different countries and

continents. In a molecular genetic epidemiological study of

LHON in the UK, the prevalence was 1 in 31,000 (6). Another

study carried out in Finland suggests the local prevalence to be

closer to 1 in 50,000 (8). In Denmark, the prevalence of LHON

was reported as 1 in 54,000 (9). 1 in 68,000 was the prevalence of

LHON reported in Australia (10). A recent nationwide

questionnaire survey carried out in Japan estimates the

prevalence LHON to be 1:50,000 (11).

LHON has been widely regarded as a disease of young males

peaking at the age of 14-26 years, with a male-to-female ratio of

5:1. However, recent studies have shown that the ratio is closer to

3:1, and approximates 1:1 after the 3rd decade of life (12).

Moreover, although the disease is more prevalent in young

adults, it can manifest at any age, and 10% of disease onset

occurs after the age of 50 (12).
Genetics

Mitochondrial DNA (mtDNA) is a double-stranded circular

molecule with a genome containing 37 genes (13). Oxidative

phosphorylation is a process mediated by the enzyme complexes

(I–V) on the inner mitochondrial membrane. Subunits of

complex II are encoded entirely by nuclear DNA, while

complexes I, III, IV, and V are encoded by a combination of

nuclear and mtDNA. Complex I, the site of all the primary

LHON mutations, is a multimer of 7 mitochondrial-encoded

subunits and a minimum of 36 nuclear-encoded subunits (14).

Mitochondrial mutations in LHON were first discovered by

Wallace et al. in 1988 (5), and are therefore inherited strictly

through a maternal lineage. The three primary point mutations

in the mitochondrial genome (m.11778G>A, m.14484T>C,

m.3460G>A) constitute 95% of all LHON mutations (15). The

m.11778G>A mutation, which involves the MT-ND4 gene,

accounts for approximately 70% of LHON cases and has the

worst prognosis for visual recovery (15). The m.14484T>C,

which affects the MT-ND6 gene, is responsible for 14% of

LHON cases and has the best prognosis for visual recovery

(16–18). Finally, the least prevalent primary LHON mtDNA

mutation is the m.3460G>A (13% of cases), which involves the

MT-ND1 gene. The rate of partial visual recovery (0.3 LogMAR

change in visual acuity) in m.11778G>A, m.14484T>C, and

m.3460G>A, is 4-25%, 37-58%, and 20%, respectively (6, 19–21).

In the majority of LHON pedigrees, the primary mutation

responsible for LHON is homoplasmic (mutation is present on

all inherited mtDNA) (19); however, heteroplasmy (mutation is

present in a fraction of the mitochondria DNA) is found in

about 10-15% of LHON cases (22). The mutation load appears to
Frontiers in Ophthalmology 02
be correlated with penetrance and the phenotypic expression of

the disease and with the risk of disease manifestation

significantly reduced if the mutational load is less than 60%

(23). However, LHON with heteroplasmic inheritance does not

necessarily manifest as a milder form of the disease (24).

The incomplete penetrance of LHON is not well understood,

but some factors affect the expression of LHON mutations. The

association of LHON with certain haplogroups (haplogroup J)

might have a role in modifying the risk of phenotypic expression

of the disease. Mitochondrial haplogroups can be defined as a

group of similar haplotypes (a group of alleles inherited in

combination from a single parent) with single nuclear

polymorphisms inherited from a common ancestor. Sequential

accumulation of mutations through maternal lineages is

responsible for the development of these haplogroups (25).

Haplogroup J, which is associated with the mutations

m.4216T>C, m.13708G>A, m.15257G>A, and m.15812G>A,

has been classically thought to enhance the penetrance of

m.11778G>A and to a lesser extent m.14484T>C (26).

However, this has been challenged by the finding that the

presence of haplogroup J with other primary mutations does

not seem to further impair mitochondrial oxidative metabolism,

nor influence the age of onset or the final visual outcome of

LHON (26). Finally, less common secondary mutations

(m.11696G>A, m.14502T>C, m.3497C>T, m.3394T>C,

m.12811T>C, m.11696 G>A, and m.3316G>A) have been

associated with LHON, and they are postulated to act in

synergy with the three primary mutations responsible for the

disease (27, 28).

Gender has been recognized as an important modifier for the

risk of penetrance of LHON. Approximately 10% of females and

50% of males with an underlying LHON mutation will

experience vision loss (15). The gender predilection has been

linked to the protective effects of estrogen via the activation of

mitochondrial biogenesis and increasing the mitochondrial load,

decreasing the production of reactive oxygen species, and

reducing apoptosis in retinal ganglion cells (RGC) (29). In

addition, x-linked modifier genes, such as PRICKLE3, encode

for mitochondrial proteins linked to the biogenesis of ATPase. In

experimental animal modes, PRICKLE3-deficient mutants had a

greater rate of conversion to LHON (30).

Environmental risk factors associated with an increase in

LHON penetrance include smoking, heavy alcohol

consumption, chemical toxins, as well as antiretroviral and

antituberculosis medication (31, 32). Cigarette smoking, in

particular, is the most established risk factor, and it has been

shown to reduce the mtDNA load in the blood cells of LHON

patients as well as reduce the mtDNA load and ATP levels in

fibroblast models of LHON patients (33). Smoking also has a

deleterious effect on the bioenergetic compensation of LHON

carriers, and in animal models, cigarette smoking did not reduce

ATP levels in non-mutant control fibroblasts (33).
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Pathophysiology

Polypeptide complexes I-V are situated in the inner

mitochondrial membrane and are responsible for ATP

production through the process of oxidative phosphorylation.

In the respiratory chain, electron donors such as NADH and

FADH2 contribute electrons to complexes I and II, respectively.

Shuttling of electrons through the rest of the chain is aided by

co-enzyme Q10 and cytochrome c. The energy produced by

electron shuttling allows protons to be pumped from the

mitochondrial matrix to the intermembrane space. The final

step in the oxidative chain involves the utilisation of the

electrochemical proton gradient by complex V (ATPase) to

catalyse the conversion of adenosine diphosphate (ADP) into

adenosine triphosphate (ATP) (34).
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Dysfunction of the respiratory chain caused by LHON

mutations of complex I subunits leads to defects in energy

production and downstream accumulation of reactive oxygen

species (ROS) that ultimately leads to RGC apoptosis (Figure 1).

Under normal intracellular conditions, the presence of

antioxidant enzymes, such as superoxide dismutase (SOD) and

catalase (CAT), counteract the build-up of ROS. In LHON, net

build-up of free electrons from poor electron shuttling and the

resultant generation of large amounts of ROS leads to RGC

death, even without a significant reduction in ATP production

(35). Additionally, reduced SOD activity was found in animal

models exhibiting optic neuropathy with a pattern similar to

that of LHON, which emphasizes the importance of ROS in

the pathophysiology of the LHON (36). The build-up of ROS

causes damage to various intracellular membranes and the
FIGURE 1

Pathophysiology of LHON, showing the mutational defect in Complex 1 of the respiratory chain. IMS, Inter Membrane Space; IMM, Inner
Mitochondrial Membrane; LHON, Lebers Hereditary Optic Neuropathy; C 1-5, Complex 1-5; CoQ, co-enzyme Q10; CytC, cytochrome c;
NADH/NAD+, Nicotinamide adenine dinucleotide; FADH2/FAD+, flavin adenine dinucleotide; ADP, Adenosine Diphosphate; ATP, Adenosine
Triphosphate; Pi, Phosphate; H+, Hydrogen; O2, Oxygen; H20, water.
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release of calcium from intracellular stores. The rise of

intracellular calcium contributes to mitochondrial permeability

transition pore opening and the release of intrinsic apoptotic

triggers such as cytochrome c (37). Furthermore, low

energy production arising from dysfunctional oxidative

phosphorylation leads to a net influx of axonal calcium due to

the altered function of membrane channels, namely the Na

+-Ca2+ exchanger (38).

The predilection of LHON to involve the papillomacular

bundle fibers of the optic nerve axons suggests that the diameter

of the axons and myelination play a role in the pathophysiology.

The unmyelinated axons of RGCs exist in the pre-laminar

segment and are myelinated in the post-laminar segment (39).

The lack of myelin in the pre-laminar segment renders them less

efficient in propagating action potential and, therefore, especially

vulnerable to damage in LHON due to the higher energy

needs (31).

RGCs are classified into midget, parasol, and small

bistratified ganglion cells. Midget RGCs carry the smallest

calibre axons and are the primary type of RGCs affected in

LHON. In addition, midget cells are the most prominent subtype

in the papillomacular bundle mediating visual information and

red-green chromaticity (40). In the early pre-symptomatic phase

of the disease, temporal macular RGCs and peripapillary nerve

fibres are initially damaged.
Natural history, examination, and
diagnostic evaluation

LHON classically presents with bilateral sequential vision

loss, with the interval between the two eyes varying from weeks

up to years apart. Visual acuity is often severely affected due to

the early involvement of the papillomacular bundle, which

results in a dense central or centro-cecal scotoma that enlarges

over time (41, 42). The pupillary light reflex is often brisk and

preserved, with the absence of a relative afferent pupillary defect,

even with early unilateral involvement. This has been attributed

to the preservation of melanopsin-containing RGCs early in the

clinical course of LHON (43). Melanopsin RGCs constitute one

percent of all the RGCs and are sensitive to sustained and strong

blue light, contributing to autonomic functions like the circadian

rhythm and pupillary constriction (44).

The natural course of LHON generally follows a pre-

symptomatic phase, an acute phase, and a chronic phase. The

duration of each phase can vary from patient to patient, but a

general timeline is 12-24 weeks for the acute phase and a

transition to the chronic phase after the initial 6 months (45).

The acute phase is characterised by the deterioration of central

vision and is usually when patients first present.

The clinical findings in a patient with LHON in the pre-

symptomatic phase include peri-papillary telangiectatic vessels

(peripapillary microangiography) and mild zones of disc
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pseudo-oedema (retinal nerve fibre layer swelling around the

optic disc without leakage of fluorescein angiography) (Sadun

et al., 2004). Spectral-domain OCT at this stage will demonstrate

dynamic inferior-temporal retinal nerve fibre layer (RNFL)

thickening and no significant changes in the ganglion cell layer

(GCL) (46). Swelling of the RNFL may reflect a compensatory

aggregation of mitochondria in the nerve fibres. This may be

attributed to enhanced mitochondrial biogenesis, which is

activated as a compensatory strategy to mitochondrial

dysfunction in LHON (47).

In the acute phase, patients present with symptoms of a

central or ceco-central scotoma, and visual acuity can deteriorate

significantly with dyschromatopsia and reduced contrast

sensitivity (48). Specifically, protan and tritan colour sensitivity

are affected early on in LHON (49). Fundus examination may

show vascular tortuosity, pseudo-edema, optic disc hyperemia,

or peripapillary telangiectasis (50). However, it is not

uncommon for the fundus examination to be normal (20-40%

of patients), which can delay the diagnosis (Yu-Wai-Man et al.,

(51)) (Figure 2). Spectral-domain OCT at this stage will show

thickening of the inferior and superior RNFL, which is

synchronous with thinning of the inferior-temporal RNFL. At

the onset of visual deterioration, the GCL and the inner

plexiform layer undergo significant reduction in thickness,

which later correlates with further deterioration in vision (46,

52). As the acute phase progresses, RNFL swelling normalises

(45) (Figures 3, 4, 5). Furthermore, early abnormalities after the

onset of symptoms can be detected using visual evoked

potentials (VEPs), including an absent response, decreased

amplitudes, and delayed latency (40). ERG can show reduced

cone-responses and N50-90 amplitudes (53). Furthermore, MRI

findings have been reported in the early stages of LHON and

include optic nerve enhancement in post-contrast MRI

images (54).

The chronic phase is characterised by optic atrophy, which

can develop as soon as six weeks from initial clinical

presentation (55, 56). Patients at this stage reach a plateau of

visual deterioration, and their chance for visual recovery is

diminished. OCT will show GCL thinning, which is well

established in the chronic phase, and RNFL thinning is also

evident (Figure 5) (45). The progression in OCT findings from

the pre-symptomatic phase to early and late acute, and

eventually the chronic phase, is essential in following up

patient progression in LHON.

Patients with LHON may manifest extraocular features

(LHON plus syndromes), including cardiac arrhythmias, such

as Wolff-Parkinson-White syndrome. Therefore an EKG is

recommended in the comprehensive clinical evaluation of

LHON patients (57) (58). Neurological features may include

peripheral neuropathy, postural tremors, clonus, dystonia, non-

specific myopathy, and movement disorders. Therefore, a

complete neurological exam and a brain MRI may be

warranted in some cases of LHON (59, 60). In addition,
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neuro-psychiatric disturbances, spastic dystonia, ataxia, and

juvenile-onset encephalopathy have been reported in some

cases of LHON (61, 62). Furthermore, the LHON-Multiple

sclerosis phenotype (Harding syndrome) is a LHON-plus

syndrome that can be difficult to distinguish from multiple

sclerosis. This syndrome can present with an optic neuritis-

like picture (ocular pain with bilateral vision loss), disseminated

central nervous system demyelination, periventricular white

matter lesions, and positive oligoclonal bands in the

cerebrospinal fluid (63).

Leigh syndrome is a rare neurodegenerative mitochondrial

disorder most commonly affecting children aged three to twelve

months, but it can infrequently be observed in adulthood (64). It

is characterized by psychomotor regression, peripheral

neuropathy, cerebellar ataxia, spasticity, and hypotonia (65).

Ocular manifestations include nystagmus, ophthalmoparesis,

and optic atrophy (66). Leigh syndrome has been reported in

association with LHON-phenotype through MT-ND6

mutations, which include G14459A and T14484C point

mutations (67).

The diagnosis of LHON is based on clinical presentation

with the exclusion of alternative etiologies (optic neuritis,

compressive, or toxic optic neuropathy), the results of
Frontiers in Ophthalmology 05
ancil lary tests (visual field, OCT, VEP, ERG), and

confirmation by molecular genetic testing. Genetic testing can

be initially targeted at the three common pathogenic types of

LHON, followed by a multi-gene panel for mitochondrial

diseases, including NADH dehydrogenase. Finally, if both

yield negative results, complete mtDNA sequencing is

performed (51, 68). In a patient with a positive family history

of LHON with typical symptoms, genetic testing may not be

required for diagnosis, but confirmation of the underlying

mutation may be prognostically valuable (51). In addition, de

novo mutations can possibly arise in coherence with an

established pedigree.
Management and
therapeutic approach

As with the majority of mitochondrial disorders, the

therapeutic options for LHON remain only supportive. It is

essential to counsel patients about the deleterious effects of

smoking, the consumption of large amounts of alcohol, and

certain medications and toxins that can adversely affect

mitochondrial function. Furthermore, low vision rehabilitation
FIGURE 2

Progression of perimetric and fundoscopic findings in patient A, an 18-year-old LHON patient. The patient presented with poor visual acuity at
initial diagnosis: 20/400 OD & CF OS. Right eye later progressed to CF after 2 months. OD, Oculus dexter; OS, Oculus sinister; CF, Counting
fingers.
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and aids can be an option in patients with intact peripheral

vision (69). Younger patients with the onset of disease at the age

of less than 20 years have been reported to have a better visual

prognosis (70). In addition, a subacute course of vision loss, as

well as a larger optic disc, are both favourable prognostic

indicators for visual recovery (71, 72).

Ubiquinone analogues such as co-enzyme Q10 function as

carriers of electrons from complex I to complex II of the

respiratory chain. However, evidence for the clinical benefits

of co-enzyme Q10 in LHON patients is lacking. In addition, the
Frontiers in Ophthalmology 06
lipophilic nature of the compound makes it poorly absorbable

across the intestinal tract (73, 74). On the other hand, idebenone

is a short-chained water-soluble ubiquinone that is easily

absorbed through the oral route. It provides protection by

bypassing complex I, maintaining ATP production, and

protecting against mitochondrial oxidative damage (75).

Idebenone has been found to be beneficial in promoting vision

recovery in LHON patients, particularly in the early stages of the

disease and in younger patients (49, 76–78). Currently,

idebenone is approved by the European Medicines Agency for
FIGURE 3

OCT (Topcon 3DOCT-3000) findings in patient A, an 18-year-old LHON patient. The patient presented with poor visual acuity at initial
diagnosis: 20/400 OD & CF OS. The right eye later progressed to CF after 2 months. This patient was homoplasmic for the mutation
m.10663T>C p.ND4L: (Val65AIa). At initial diagnosis the patient presents with thinning of the RNFL in the left eye in the superior and nasal
quadrant. At follow up there is significant reduction of RNFL thickness bilaterally, more seen in the superior and nasal quadrant and is more
evident in the left eye. OD, Oculus dexter; OS, Oculus sinister; CF, Counting fingers; RNFL, Retinal nerve fiber layer.
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the treatment of LHON in adolescent and adult patients at a

dose of 900mg/day divided into three doses. Treatment should

be continued for at least a year or until a plateau of vision

improvement is reached (79) (Table 1). The “Post-Authorisation

Safety Study with Raxone® in LHON Patients” was completed in

2021 (NCT02771379). Another ubiquinone analogue with in

vitro activity superior to idebenone, EPI-743, is in the

experimental phase and has shown potential benefits in LHON

visual recovery (80).

Various vitamins and supplements, such as vitamin B12,

vitamin C, vitamin E, thiamine, riboflavin, L-carnitine, L-

arginine, and creatine, have been used in LHON patients.

The presence of vitamin B12 deficiency was statistically

significant for LHON mutation carriers in the general population,

and excess alcohol consumption was a significant predictor of such

deficiency (81). However, despite the safety profile of these various

vitamins and supplements, there were no proven clinical benefits

for promoting visual recovery in LHON patients (82).

Brimonidine, a topical a2-agonist used to manage glaucoma

patients, has shown protective anti-apoptotic value in RGCs in

animal models (83). Unfortunately, when used in LHON

patients, brimonidine did not appear to be efficacious (84).

Nonetheless, its use in LHON patients with concurrent

glaucoma may be justified.
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Gene therapy is the latest therapeutic strategy for LHON that

has shown some promising results. Currently, gene therapy in

LHON aims to deliver the un-mutated MT-ND4 gene into RGC

nuclei with the goal of producing functioning proteins/complex I

subunits that can be embedded into the mitochondrial

respiratory chain. Recombinant adeno-associated viral vector

rAAV2, which encodes human wild-type MT-ND4, has been

used in multiple trials and proved to be a valuable contribution

to LHON treatment.

The use of the viral vector rAAV2-ND4 was first introduced

in a trial by Wan et al. in 2010. Nine patients were enrolled in a

phase 1 trial (NCT01267422). Eight of those enrolled received an

intravitreal injection of the vector in one eye, while one patient

received the vector in both eyes. Six of the nine patients exhibited

an improvement in BCVA of at least 0.3 logMAR after a period

of nine months (85). In 2017, a group of 149 patients was

recruited by the same Wuhan research group for an

interventional trial where they received a single unilateral

intravitreal injection of rAAV2-ND4 (NCT03153293). Within

three days, 54 patients exhibited significant improvement in VA

of more than 0.3 logMAR in at least one eye (86). Furthermore, a

single unilateral injection was found to result in bilateral visual

acuity improvement (0.21 logMAR treated eye; 0.24 logMAR

untreated eye)12 months post-therapy (87).
FIGURE 4

OCT (Heidelberg, Spectralis) findings of patient B, a 20-year-old male patient presenting to the clinic with bilateral vision loss and bilateral
central scotomas of 3-month duration. The thickness map shows thinning of GCL despite normal RNFLT in OD, and thinning of the temporal
RNFT with corresponding GCL thinning in OS. OD, Oculus dexter; OS, Oculus sinister; GCL, Ganglion cell layer; RNFLT, Retinal nerve fiber layer
thickness.
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GS010, which is a recombinant adeno-associated viral vector

serotype 2 (rAAV2) that encodes human wild-type MT-ND4,

has shown improved visual acuity when injected into the

vitreous cavity of a single eye during clinical trials carried out

by GenSight Biologics (88). In 2017, in two phase III clinical

trials rescue (NCT02652767) (LHON patients with vision loss <6

months) and reverse (NCT02652780) (LHON patients with

vision loss >6 months to 1 year), GS010 was randomly

injected into one eye, while the other eye received a sham

injection. In these trials, patients experienced significant

improvement in visual acuity in the treated eyes as well as the
Frontiers in Ophthalmology 08
sham eyes, raising the possibility of possible vector transfer from

the GS010 eye to the sham eye (39). 71% of rescue and 76% of

reverse patients had at least 0.3 gain of logMAR VA in at least

one eye. In addition, a clinically relevant recovery at week 96

post-treatment was seen in 71% of rescue and 81% of reverse

patients (89). In the ongoing phase III reflect trial

(NCT03293524), GS010 was injected bilaterally in subjects

with LHON exhibiting the m.11778G>A mutation when vision

loss was present for less than one year and showed greater

efficacy in visual recovery of +5 ETDRS when compared to

GS010 injected in a single eye (90) (Table 2).
FIGURE 5

Findings of patient C, a 22-year-old male patient presenting to the clinic with progressive central visual loss OS for the duration of 5 months.
His visual acuity was 2/200 OS and 20/400 OD. Fundoscopy showed a pale disc OS and peripapillary telangiectasias OD. The thickness map
shows marked GCL thinning OS and early thinning of GCL OD, corresponding with deterioration of visual acuity. OD, Oculus dexter; OS, Oculus
sinister; OU, Oculus uterque; GCL, Ganglion cell layer.
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TABLE 1 Idebenone in the treatment of LHON.

Study design End-points Summary Points

RHODOS Trial NCT00747487
(78)
24-week double-blinded RCT.
Idebenone 900mg/day, n=55.
Placebo, n=30.

-Primary:
Best recovery of visual acuity between baseline and
Week 24.
-Secondary:
Change from baseline to Week 24 in best visual
acuity.
Change in visual acuity of the best eye at baseline.
Change in visual acuity for both eyes in each
patient.
Acuity assessed with:
ETDRS charts.

Main Findings:
-Statistical significance not reached in the primary end point.
-Beneficial effect of idebenone over placebo present when assessing
all secondary end-points.
Supplementary Findings:
-Largest treatment effects in m.11778G>A and m.3460G>A
mutations.

Idebenone Treatment In Leber’s
Hereditary Optic Neuropathy
(76)
Retrospective evaluation of idebenone
therapy.
Idebenone cohort, n=44
Untreated control cohort, n=59

-Primary:
Recovery of visual acuity defined as a gain of at
least two lines on Snellen acuity or a change from
‘off chart’ to ‘on chart’.

Main Findings:
-Increased frequency of recovery was significant with the use of
idebenone in m.11778G>A patients.
-Early start of therapy was the most predictive factor for visual
recovery.
Supplementary Findings:
-Trend for earlier onset of visual recovery in treated patients
compared with untreated.

RHODOS–OFU
NCT01421381
(77)
Single visit observational follow-up
study 30 months following the end of
the RHODOS trial.
Idebenone 900mg/day, n=39.
Placebo, n=19.

-Primary:
Change in best visual acuity assessed at this study
visit compared with baseline and Week 24 of
RHODOS.

Main Findings:
-Beneficial effects from 24 weeks of treatment with idebenone
during RHODOS persisted despite discontinuation of therapy for a
median time of 30 months.
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TABLE 2 GS010 in the treatment of LHON.

Study design End-points Summary Points

RESCUE Trial
NCT02652767 (89)
Double-blinded RCT.
LHON patients (m.11778G>A) with vision loss of 6
months or less.
Each participant had one eye randomly selected to
receive GS010 and the other eye received a sham
injection.
Intravitreal injection of a single dose of GS010 in
one eye.
n=39.
Sham injection in the other eye.
n=39.

-Primary:
Difference in change from baseline in ETDRS
Visual Acuity at Week 48 between GS010 and
sham.
-Secondary:
Difference in change from baseline in ETDRS
visual acuity at Week 72 & 96 between GS010
and sham.
Number of eye responders (15 letter ETDRS
improvement vs baseline) to treatment.
Number of Subject Responders (15 letter
ETDRS improvement compared to sham in
same patient) to treatment.

Main Findings:
- 71% of subjects had an improvement of at least -0.3
logMAR (15 ETDRS letters equivalent) from the nadir in
at least one eye.
-Improvement from nadir is significant ( P < 0.0001)
and occurred at similar magnitude in both eyes.
-Bilateral improvement in vision occurred after a nadir
of deterioration at week 24.
-Primary end point of -0.3 logMar (15-letter) was not
met due to bilateral improvement.

REVERSE Trial
NCT02652780 (91)
Double-blinded RCT.
LHON patients (m.11778G>A) with vision loss of
more than 6 months and up to 1 year.
Each participant had one eye randomly selected to
receive GS010 and the other eye received a sham
injection.
Intravitreal injection of a single dose of GS010 in
one eye.
n=37.
Sham injection in the other eye.
n=37.

-Primary:
Difference in change from baseline in ETDRS
Visual Acuity at Week 48 between GS010 and
sham.
-Secondary:
Difference in change from baseline in ETDRS
visual acuity at Week 72 & 96 between GS010
and sham.
Number of eye responders (15 letter ETDRS
improvement vs baseline) to treatment.
Number of Subject Responders (15 letter
ETDRS improvement compared to sham in
same patient) to treatment.

Main Findings:
- 76% of subjects had an improvement of at least -0.3
logMAR (15 ETDRS letters equivalent) from the nadir in
at least one eye.
-Bilateral improvement in vision occurred after a nadir
of deterioration at week 12.
-Primary end point of -0.3 logMar (15-letter) was not
met due to bilateral improvement.

(Continued)
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An expert panel consensus on the therapeutic management

of LHON recommended the use of idebenone at a dose of

900mg/day for at least one year as the first-line treatment for

patients with less than one year since the onset of the disease.

However, there was no evidence to recommend treatment for

chronic cases (more than one year since the onset of symptoms

in the second eye) (Figure 6). Gene therapy was not included in

the panel’s recommendation (39).
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Screening and genetic counselling

If a primary LHON mutation is detected in a proband,

screening of other family members can be offered to exclude the

possibility of a de novo mutation (92). Given that LHON is

maternally inherited, all males should be reassured that none of

their offspring will inherit the mutation. On the other hand,

homoplasmic females will transmit the mutation to all their
FIGURE 6

Algorithm proposed by Hage and Vignal-Clermont considering the statements of the Milan panel and gene therapy as part of a treatment guide
for LHON (Hage & Vignal-Clermont, (39)).
TABLE 2 Continued

Study design End-points Summary Points

REFLECT Trial
NCT03293524 (90)
ONGOING TRIAL
Double-blinded RCT.
LHON patients (m.11778G>A) with vision loss of
up to 1 year.
Each participant received GS010 in their first-
affected eye, and either gene therapy or placebo in
their second-affected eye.
Intravitreal GS010 in both eyes.
n=48.
GS010 in one eye and placebo intravitreal injection
in the other eye.
n=50.

-Primary:
BCVA in 2nd affected eye reported with LogMar
from baseline at 1.5 years.
-Secondary:
BCVA in 2nd affected eye reported with
LogMar from baseline at 2 years.

Main Findings:
-Average final visual acuity was reported in subjects
treated bilaterally, compared to subjects treated
unilaterally was +5 ETDRS letters.
Supplementary Findings:
-BCVA improvement between second-affected eyes was
equivalent to +3 ETDRS letters in favor of GS010 at 1.5
years.
-2nd affected eyes treated with GS010 showed +19
ETDRS letters improvement over nadir (p<0.0001) at 1.5
years.
-2nd affected eyes receiving placebo showed +16 ETDRS
letters improvement over nadir (p<0.0001) at 1.5 years.
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offspring. In heteroplasmic mothers, varying levels of mutant

mtDNA is transferred to offspring, with approximately 60%

mutant mtDNA required as a threshold for disease

manifestation (23). This, however, should be cautiously

discussed with patients as the presence of a clear threshold

is variable.

Children of homoplasmic mothers need to be aware that the

penetrance of LHON is variable, and not all carriers develop the

disease. Risk stratification for penetrance in carriers can be

assessed by considering their age, gender, and other prognostic

factors (10). Age and gender appear to be the most critical

factors in evaluating the risk of penetrance: however, patients

must be aware that these predictions are still estimates. Carriers

should also avoid smoking and heavy alcohol consumption, as

well as possible triggers for the disease.
Conclusion

LHON is a mitochondrial optic neuropathy that affects

young males but is also not uncommon in females. Recently,

advancements have been made in understanding the

pathophysiology of LHON and developing new therapeutic

strategies, such as gene therapy through the use of viral

vectors in clinical trials. However, further studies are required

to incorporate gene therapy as a universally approved treatment

for LHON.
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