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Regulatory T cells (Tregs) are critical for the maintenance of immune tolerance and the
suppression of excessive inflammation. Many inflammatory autoimmune disorders,
including autoimmune uveitis, involve the loss of the suppressive capacities of Tregs.
Over the past decade, Tregs’ therapeutic potential in uveitis has garnered increasing
attention. Specific subsets of Tregs, including TIGIT+ and PD-1+ Tregs, have emerged as
potent immunosuppressors that may be particularly well-suited to cell-based
therapeutics. Studies have elucidated the interaction between Treg development and
the gut microbiome as well as various intracellular signaling pathways. Numerous cell-
based therapies and therapeutic molecules have been proposed and investigated using
the murine experimental autoimmune uveitis (EAU) model. However, certain challenges
remain to be addressed. Studies involving the use of Tregs in human patients with uveitis
are lacking, and there are concerns regarding Tregs’ production and purification for
practical use, their plasticity towards inflammatory phenotypes, immunogenicity, and
tumorigenicity. Nevertheless, recent research has brought Tregs closer to yielding viable
treatment options for uveitis.
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1 INTRODUCTION

Regulatory T cells (Tregs) are a subset of CD4+ T cells that play a critical role in maintaining
immune tolerance. Dysfunction and/or depletion of Tregs has been implicated in the pathogenesis
of autoimmune disorders including Sjogren syndrome, dry eye disease (DED), Behcet disease (BD),
and Vogt-Koyanagi-Harada disease (VKH) (1, 2).
2 MECHANISM OF ACTION

Tregs make important contributions to ocular immune privilege, helping to foster a relatively
immunoquiescent environment. Tregs utilize multiple mechanisms to exert their
immunosuppressive effects, including granzyme-mediated cytolysis, apoptosis of effector T cells
(Teff), and the secretion of various anti-inflammatory cytokines including TGF-b, IL-10, and IL-35
(3) (Figure 1). Tregs have also been shown to modulate dendritic cells (DCs) (4). The interaction
between dendritic cells and Tregs is mediated, in part, by indoleamine (IDO); under inflammatory
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conditions, IDO activation in antigen presenting cells leads to
immune tolerance and inhibition of T cell proliferation (5).
Furthermore, Tregs downregulate DC markers CD80/86 and
induce apoptosis of DCs via IDO (4).
3 CLASSIFICATION

Tregs are identified by their surface marker, CD25, as well as
their transcription factor forkhead box P3 (FOXP3) (3).
However, there are multiple subsets of Tregs, with notable
subsets including those that express TIGIT and PD-1. TIGIT+
Tregs promote IL-10 induced proliferation of regulatory
dendritic cells, thereby suppressing T cell activation (6).
Upregulation of TIGIT expression has been associated with
hypomethylation of FOXP3 in Tregs, increasing its expression
(7). TIGIT+ Tregs have been implicated in uveitis remission,
given the correlation between TIGIT expression and remission in
uveitis patients (8). Interestingly, in studies involving the murine
experimental autoimmune uveitis (EAU) model, not all Tregs
that remain following resolution of uveitis are suppressive (9–
12). However, those post-EAU Tregs that maintain their
suppressive function have been found to have high levels of
TIGIT expression (13). From these data, investigators have
suggested that TIGIT might serve as a sensitive marker for
remission in uveitis, and that TIGIT might have some utility in
identifying ‘functional’ Tregs (8). Yet another subset, PD-1+
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Tregs, have similarly demonstrated marked immunosuppressive
capacities in the context of autoimmune disorders (14). In
uveitis, low levels of PD-1+ Tregs are implicated in developing
chronic disease (14). PD-1+ Tregs utilize a melanocortin
receptor (MC5r)-dependent pathway, which subsequently
activates the adenosine receptor, A2Ar (14). A2Ar stimulation
induces Treg proliferation and activation and has been
implicated in conferring resistance to EAU relapse (15, 16).
Decreased PD-1+ Tregs have been observed in patients with
uveitis (14); therefore, targeting A2Ar may represent a potential
therapeutic approach, with the goal of bypassing upstream PD-1
and MC5r.

Another area of recent research interest is the enhancers and
promoters of FOXP3, called Treg-specific demethylated regions
(TSDRs), which influence the level of FoxP3 expression (17).
Studies have shown that TSDRs with low methylation levels are
crucial for Treg development (18–20). Ten-Eleven-Translocation
(Tet) belongs to a family of enzymes that play a role in the
demethylation of TSDR (21). Using these concepts, Ito et al. have
reported the development of a population of stable, antigen-
specific Tregs; the group utilized vitamin C to induce Tet, and
subsequent hypomethylation of TSDR within enhancers led to
the generation of antigen-specific Tregs with stable FoxP3
expression (17). Given that instability of antigen-specific Tregs
has been one of the main barriers to their practical
implementation, the ability to maintain stable expression of
FoxP3 using this model represents an important step toward
clinical use.
A B C

FIGURE 1 | Mechanisms of action of regulatory T cells. (A) Granzyme and perforin-mediated apoptosis of effector T cells (Teff) by regulatory T cells (Treg).
(B) Inhibition of Teff function via secretion of anti-inflammatory cytokines- IL-10, IL-35, and TGF-b. (C) Modulation of dendritic cells (DC) via interaction
between CTLA-4 expressed on Treg and DC markers CD80/86, leading to Teff inactivation by DC via indoleamine 2,3-dioxygenase (IDO).
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4 PLASTICITY

An important consideration in the development of cellular
therapies using regulatory T cell concerns their ability to
differentiate into pro-inflammatory phenotypes, termed
plasticity. Studies have revealed that the transformation of
Tregs to T helper 17 cells (Th17) may play a crucial role in the
development of various autoimmune disorders (1). This
transformation can occur when Tregs are exposed to
inflammatory environments, and results in the loss of FOXP3
expression and diminished suppressive ability (1, 22). Moreover,
these cells may express pro-inflammatory cytokines, becoming
‘ex-Tregs’ that have been implicated in the pathogenesis of type 1
diabetes, colitis, and arthritis (23). Interestingly, Tregs expressing
IL-17 may still have anti-inflammatory effects, depending on the
stage of autoimmune disease (24–26). T cells co-expressing
FOXP3 and retinoic acid-related orphan receptor (RORgt), a
transcription factor for Th17 phenotype, have been shown to
produce IL-17, yet these cells continue to suppress T cell
proliferation and limit inflammation (27). The mechanism of
conversion between phenotypes in Tregs co-expressing CD25
and IL-17 remains unclear at this time; noting that cellular
therapies involve transferring cells to pro-inflammatory
environments, it is vital to better understand the potential of
Tregs to differentiate in these settings.
5 IMMUNE MECHANISMS IN UVEITIS

Uveitis is an inflammatory disorder of the eye caused by
interactions between ocular autoantigens and T cells (1). T
cells that escape negative selection in the thymus migrate to
the eye, where they become activated by ocular antigens (28).
IFN- g-producing Th1 and IL-17-producing Th17 cells are the
most significant effector T cells driving intra-ocular
inflammation (1). In experimental autoimmune uveitis mouse
models, Tregs reach their highest frequencies around the peak of
disease activity, and remain elevated during resolution,
corresponding to increased IL-10 and TGF-b during resolution
(29). Unsurprisingly, decreased IL-6 and IL-17 levels are
observed during resolution (29). There are conflicting data
regarding the correlation between absolute level of Tregs and
disease activity in patients with uveitis. While some studies
report higher Treg levels in uveitis patients compared to
healthy patients, others report lower levels (30–35). More
recent studies have proposed measuring Treg/Th17 ratio to
assess recovery (29). More specific suppressive Treg markers
such as TIGIT and PD-1 may also be valuable in establishing a
correlation between Treg level and uveitis resolution.

Current management of uveitis relies heavily on corticosteroids
and immunomodulators (36). However, due to adverse systemic
and ocular effects seen with prolonged use of these medications,
newer therapies with higher efficacy and narrower targets are
being sought. Here, we review potential therapies and targets that
have been discussed in recently published studies.
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6 MOUSE MODELS OF UVEITIS

The role of Tregs in dampening ocular inflammation has been
demonstrated in murine models of EAU. Depletion of FoxP3+
Tregs has been shown to result in more severe EAU relative to
controls following exposure to IRBP; depletion of Tregs
following EAU induction has been shown to inhibit disease
resolution, and depletion of Tregs following resolution has
been shown to result in relapse (37, 38). These data
demonstrate the suppressive function of Tregs at each stage of
the disease. Adoptive transfer of FOXP3+ Tregs to mice with
established EAU has been shown to reduce inflammation as well
as the expression of pro-inflammatory cytokines such as IL-17
and IFN- g (38, 39). In patients with uveitis, decreased
frequencies and impaired function of Tregs has been
observed (22).
7 THERAPEUTIC OPPORTUNITIES

7.1 Gut Microbiome
The gut microb iome (GM) i s known to media t e
immunomodulatory effects, and the disturbance of GM has
been linked to the development of autoimmune disorders,
including uveitis (40–47). Nakamura et al. have documented
the difference in composition of GM in patients with uveitis
compared to healthy patients (48). The investigators have also
demonstrated that antibiotics given orally, but not through
intraperitoneal injection, affected susceptibility to EAU
induction (48). Vancomycin and Metronidazole, in particular,
led to an increase in Treg population in the retina and lymph
nodes, associated with decreased EAU severity (48). Other
studies have also established reduced incidence of EAU
following antibiotic administration in mice (49–52). Kasper
et al. investigated the composition of GM in human patients
with Behcet Disease (BD), whose GM was characterized by
decreased butyrate production (53). Butyrate and other short-
chain fatty acids are essential in Treg differentiation and mediate
anti-inflammatory effects Novel everolimus-loaded nanocarriers
for topical treatment of murine experimental autoimmune
uveoretinitis (53). Butyrate has been shown to induce thymic
Tregs and suppress pro-inflammatory cytokines (53). Chen et al.
studied the effect of sodium butyrate (NaB) administration
in EAU (54). NaB resulted in decreased inflammation in
EAU, correlated with increased splenic Tregs and a decrease in
Th17 (54). NaB-treated mice had increased IL-10 expression and
decreased expression of chemokines, IL-17, IFN- g, TNF-a, and
ROR gT (54). The proposed mechanism of NaB involved
manipulating the plasticity between Tregs and Th17,
redirecting Th17 towards the Treg phenotype by inhibiting
IL-6R (54).

7.2 Signaling Pathways
Several signaling pathways that affect Treg development have been
identified and targeted to study potential therapeutic candidates.
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7.2.1 PI3K/AKT
PI3K/AKT pathway promotes secretion of pro-inflammatory
cytokines and is essential for Th17 differentiation (55, 56). This
pathway is dysregulated in autoimmune disorders, including
uveitis (57). Blockage of this pathway using Apremilast, a
phosphodiesterase 4 (PDE4) inhibitor, has been used to
control inflammation in rheumatoid arthritis, psoriatic
arthritis, dermatitis, and other autoimmune disorders (58–63).
Chen et al. demonstrated that Apremilast administration results
in decreased clinical and histological disease severity in EAU and
is associated with increased Treg and decreased Th17
populations (57). Another compound, AS101, a tellurium-
based molecule, has been shown to suppress EAU development
by inhibiting the activation of AKT (64). Following
administration of AS101, increased conversion of naïve T cells
to Tregs and decreased Teff population has been observed (64).

7.2.2 STAT
AS101 has also been shown to suppress phosphorylation of
STAT3 and STAT4, enzymes of another pathway required for
Th17 and Th1 differentiation (64). Wang et al. demonstrated that
progranulin (PGRN) induced expansion of antigen-specific and
non-specific Tregs via STAT5 phosphorylation, reducing EAU
severity (65). Correspondingly, decreased PGRN in the
peripheral blood of patients with active BD and VKH has been
reported (65). Vorinostat, a histone deacetylase inhibitor, has
been shown to result in decreased STAT1 and STAT3 expression,
associated with increased Treg frequencies (57). Aminooxy-
acetic acid (AOA) has also been used to block the STAT/NF-
kB pathway, leading to reduced inflammation in EAU (66). As
expected, AOA led to upregulation of Tregs and IL-10 and
downregulation of Th1/Th17 activity (66).

7.2.3 Notch1
Notch signaling plays an important role in inhibiting Treg
differentiation and promoting Teff differentiation (67–70).
Exposing Tregs in vitro with JAG1 and DLL1, downstream
molecules of the Notch1 pathway, has been shown to
downregulate FOXP3 expression and modulate the
immunosuppressive function of Tregs (71). Furthermore,
adoptive transfer of Notch-deficient Tregs in EAU mice has
been shown to downregulate pro-inflammatory cytokines in the
eye (71). DAPT, a Notch signaling inhibitor, restored Treg/Th17
balance, increased IL-10, and reduced inflammation in EAU (72).
8 CELL-BASED THERAPIES

8.1 IL-35 and Bregs
IL-35-induced Bregs promote Treg expansion and suppress
Th17 and Th1 response in uveitis (73). Adoptive transfer of
ex-vivo produced IL-35+ Bregs led to resistance against EAU
development and resolution of existing EAU in mice (73).
Another study demonstrated that IL-35 containing exosomes
secreted from Bregs stimulated IL-10 and IL-35 secreting Tregs,
reducing EAU severity (28). Exosomes are particularly beneficial
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in clinical use because they may be applied topically in the form
of an eyedrop and bypass the requirement of generating
autologous Bregs for transplant (28).

8.2 Col-Tregs
Collagen II is constitutively expressed in the retina and the
vitreous (74, 75). Collagen II-specific Tregs (Col-Tregs),
activated upon exposure to collagen II, inhibit uveitis in mice
(76, 77). Like type 1 Tregs, Col-Tregs display multimodal ability
to suppress inflammation (76, 77). Although Col-Tregs have
been studied exclusively in mice, they are similar to human Col-
Tregs, lack tumorgenicity and plasticity, and minimize systemic
immunosuppression, making them promising candidates for
therapy (76, 77).

8.3 Mesenchymal Stem Cells (MSCs)
Human MSCs are known to exert immunomodulatory effects
and generate Tregs (78). MSCs secrete TGF-b and prostaglandin
E2 under inflammatory conditions, inducing differentiation of
naïve T cells to Tregs (79). MSCs also upregulate their
chemokines during inflammation, trapping Th17 cells and
shifting them towards the Treg phenotype by taking advantage
of their plasticity (80). In addition, MSCs bias macrophages
towards the M2 phenotype, which secretes IL-10 and induces
Treg expansion (79). Intraperitoneal injection of MSCs in EAU
induced antigen-specific Treg development mediated by TGF-b
(78). These Tregs remained long after a single injection,
conferring protection against EAU relapse (78). However,
MSCs are not exclusively anti-inflammatory; they can exert
pro-inflammatory effects under certain environmental
conditions (79). Therefore, further studies assessing the effect
of the microenvironment on MSC phenotype are required.

8.4 Human Amniotic Epithelial
Cells (hAECs)
hAECs share properties of Col-Tregs and MSCs that make them
promising candidates for cell-based therapy in uveitis. hAECs
have low immunogenicity (81–83), lack tumorgenicity (84, 85),
and can be easily harvested from amniotic membrane (82).
Compared to MSCs, hAECs have lower immunogenicity and
tumorigenicity and are less prone to apoptosis under
inflammatory environments (81, 85). Li et al. revealed that
sub-retinal injection of hAECs increased Treg/Th17 ratio by
shifting macrophages toward M2 expression, which was
associated with a decreased pathological score in EAU (86).
Additionally, hAECs were seen to reduce both induction and
progression of the disease, depending on when they were
administered (day 0 vs. day 6) (86).

8.5 Retinoic Acid Receptors (RAR)
RAR is necessary for Treg differentiation and maintenance in
inflammatory disease (87–91). RAR contributes to the eye’s
immune privilege by inducing differentiation of naïve T cells to
Tregs in the aqueous humor (92). Immunization of mice with
foreign antigen (to induce EAU) with RAR and low-dose IL-2
induced generation of Tr1 Tregs (93). While Tr1 Tregs do not
express FOXP3, they suppress the immune response by secreting
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IL-10 and expressing immune checkpoints, including CTLA-4
and PD-1 (93). Interestingly, IL-2 has been shown to promote
Treg proliferation without affecting Teff (94–96). Therefore, co-
administration of RAR and IL-2 can expand Treg in vivo and be
helpful in therapeutic settings.

8.6 Anti-CD4
A recent study by Chen et al. revealed anti-CD4 as a promising
tool to generate antigen-specific Tregs in vivo (97). In vivo
generation of stable antigen-specific Tregs has been
challenging. This study aimed to address the issue by using
anti-CD4 to deplete Teff and then introducing retinal antigen to
generate antigen-specific Tregs. Anti-CD4 mediated apoptosis of
Teff resulted in increased TGF-b and IL-10 expression, which
subsequently led to higher levels of CD25+ FOXP3+ Tregs (97).
Introduction of ocular antigens (IRBP and S-antigen, in separate
trials) generated Tregs specific to these antigens and suppressed
antigen-driven Th17 and Th1 response (97). An overall decrease
in inflammation was observed (97). Although additional studies
detailing the efficacy and toxicity are required, anti-CD4
represents a step towards the ability to produce Tregs in vivo.
9 HUMAN DATA

No human data demonstrating successful treatment of uveitis
with Tregs has been published at the time of this writing (98).
However, several therapies that have been used to treat uveitis in
humans mediate their effects by induction of Tregs, which are
reviewed in this section.

Albayrak et al. investigated the therapeutic effect of IFN-2a on
patients with BD (99). The study proposed that IFN-2a leads to
recovery of Treg function. 70% of the patients in the study
underwent remission of uveitis with a median duration of
treatment of 5 months (99). Interestingly, IFN treatment was
associated with decreased Treg frequencies, but increased IL-10
and IL-35 secretion by Tregs (99). BD patients had a higher
baseline level of Tregs and lower IL-10 than healthy patients.
Based on these observations, the authors concluded that Treg
dysfunction, rather than scarcity, was contributing to
pathogenesis (99). Notably, this is consistent with murine
models of ocular inflammation, in which adoptive transfer
experiments have shown that far more relevant than Treg
frequency is levels of FOXP3 expression, which is directly
associated with Treg immunosuppressive function (100).

Given the evidence that the STAT pathway is involved in Treg
development and T cell differentiation, JAK inhibitors have been
proposed as having potential therapeutic benefit (101). In a case
series of four patients with juvenile idiopathic arthritis with
uveitis, JAK inhibitors (baricitinib [three cases] and tofacitinib
[one case]), successfully suppressed uveitis (101). While
tofacitinib has a black box warning for serious infections,
malignancies, cardiovascular effects, thrombosis, and all-cause
mortality, no such complication was seen in the patient after one
year of use. Metformin has also been investigated in BD patients,
the use of which has been noted to be correlated with an increase
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in FOXP3 and TGF-b expression and concurrent decrease in
ROR gT, IL-17, and TNF-a (102). Based on reports of IL-2’s
ability to expand Tregs without affecting Teff level, Liu et al.
administered low-dose IL-2 to BD patients, which led to a
reduction in disease severity without adverse effects (103).
While all T cell subsets showed expansion under IL-2
stimulation, Tregs underwent the most dramatic increase by a
factor of 4 (103).
10 REGULATORY T CELLS IN
HUMAN AUTOIMMUNITY

Strong links between various autoimmune disorders in humans
and the deficiency or dysfunction of Tregs lend support to the
notion that Tregs are crucial in maintaining immune
homeostasis in humans. One notable sequela of Treg
dysfunction is X-linked immunodeficiency (IPEX) syndrome,
an autoimmune disease that affects multiple organs (104).
Mutations in FoxP3, CD25, and CTLA-4, all associated with
Treg function, have been implicated in the pathogenesis of
autoimmune and inflammatory disorders in humans (105,
106). Importantly, an increase in Th17/Treg ratio has been
documented in autoimmune disorders, including multiple
sclerosis , psoriasis , rheumatoid arthritis (RA), and
inflammatory bowel disease (IBD) (107). Interestingly in both
psoriatic and RA patients, Treg level was comparable to that of
healthy patients; however, affected patients have Tregs with
diminished suppressive capacities, which is thought to be the
main contributor to these pathologies (108–110). In psoriatic
patients, Tregs were less effective in suppressing IL-17
production and were shown to lose their FOXP3 expression
more easily (109, 110).

Given the importance of Th17/Treg imbalance in
pathogenesis, several medications are currently undergoing
clinical trials to restore their balance to treat MS, RA, SLE, and
IBD (107). For instance, in RA patients, monoclonal antibodies
against IL-6R and tocilizumab were shown to reduce not only the
Th17 phenotype but also increase the Treg population (107, 111,
112). However, there remain controversies regarding the
association between Treg level and autoimmunity. There are
conflicting data on frequencies of Treg in autoimmune diseases,
particularly in SLE and RA. While some studies report an
increased level of Tregs in these disease states, others have
discovered an unchanged or decreased level of Tregs (113,
114). The discrepant findings expose one of the main
challenges to Treg therapy: the ability to identify and target
Treg populations reliably. Tregs in SLE have decreased CD25
expression; therefore, using CD25 as a Treg identifier leads to
reduced measurements, whereas using FOXP3 leads to increased
measurements (115–117). However, a detailed analysis of Treg
subpopulations demonstrates a decreased level of ‘effective’ Tregs
in both SLE and RA (118). While it is known that multiple
subpopulations of Tregs exist in humans, a more reliable and
accurate marker to identify different types would be essential in
progressing Treg therapy.
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As for human therapy utilizing immunomodulatory effects of
Tregs, induction of the Treg population with IL-2 has been
successful in treating type 1 diabetes, alopecia areata, and
hepatitis C virus-induced vasculitis (119). Because Tregs are
particularly sensitive to IL-2, IL-2 has been shown to promote
Treg proliferation with minimal effects on other T-cell lineages
(120). Using an antibody directed against the IL-2 beta chain has
been theorized to increase IL-2’s specificity, as Tregs utilize the
IL-2 alpha chain for IL-2 binding unlike many other immune
cells (120). In addition to IL-2, autologous transfer of in-vitro
expanded naïve Tregs from human plasma has demonstrated in-
vivo stability and safety in type 1 diabetes and graft versus host
disease patients (121, 122). Further delineation of specific Treg
markers and more human data will significantly benefit the
potential of Treg therapy in human autoimmunity.
11 DISCUSSION, CHALLENGES, AND
FUTURE DIRECTIONS

Studies have proposed that ideal characteristics of Tregs for use
in therapy include antigen-specificity, maximal purity/avoiding
contamination, absence of plasticity toward inflammatory
phenotypes, and capacity to migrate to target sites.

Challenges associated with developing antigen-specific Tregs
include lack of knowledge of autoantigens that cause autoimmune
disorders, and the difficulties associated with producing different
sets of Tregs for every autoantigen (49). Given the difficulties, only
polyclonal Tregs have been developed for human studies (123).
However, polyclonal Tregs are limited in their route of
administration and duration of action compared to antigen-
specific Tregs. While antigen-specific Tregs have been reported
to downregulate ocular inflammation when administered
intravenously, the transfer of non-specific Tregs has not been
shown to be effective (123). Polyclonal Tregs reduced
inflammation only when they were injected in-situ (123). In
addition, the protection conferred by polyclonal Tregs was
transient; recipients were vulnerable to uveitis when Teff were
re-introduced at later time points (123). Antigen-specific Tregs, on
the other hand, may offer long-term protection. Therefore, there
seem to be important advantages of transferring antigen-specific
Tregs rather than polyclonal Tregs.

Even when Tregs are generated in vivo, they are unstable,
limiting their clinical efficacy. Rapamycin, RAR, and IL-2 have
been shown to produce stable Tregs, and may become crucial
Frontiers in Ophthalmology | www.frontiersin.org 6
ingredients in the commercial development of Tregs (124). We
also discussed that vitamin C-induced hypomethylation of TSDR
led to the generation of stable Tregs in vivo; in line with this
finding, some have suggested epigenetic modification of FOXP3
may be vital to producing a stable population of Tregs (125).

A reliable marker of Tregs must be identified to isolate Tregs
from contaminants. Although FOXP3 is a reliable marker, it
requires permeabilization, causing cell death (49). Some studies
have proposed identifying Tregs with low expression of
CD45RA, which corresponds to active Tregs (126, 127). As we
mentioned, markers such as TIGIT or PD-1 have been found to
represent ‘functional’ suppressive Tregs. As contamination is
nearly inevitable even with identifying specific Treg markers,
future studies should attempt to uncover the extent to which
contamination can be tolerated for clinical use (49).

Finally, we need to better understand Tregs’ plasticity,
tumorigenicity, and systemic immunosuppressive capabilities.
Tregs have shown a tendency to convert to Th17 phenotype in
inflammatory environments with an abundance of IL-6, posing a
challenge for treating patients with inflammatory disorders.
Some of the mentioned cell-based therapies, especially Col-
Tregs (and MSCs and hAECs), which demonstrate low
plasticity, tumorigenicity, and systemic immunosuppression,
may overcome these challenges.

The role of Tregs in maintaining immune tolerance and as a
potential therapeutic tool in uveitis has been actively investigated
over the past decade. However, data from human patients are
scarce, and barriers to utilizing Tregs in clinical settings remain
to be addressed. Future studies addressing these issues and
translating EAU studies to human subjects could potentially
make cell based Treg therapies a viable treatment option
in uveitis.
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35. Hamzaoui K. Th17 Cells in Behçet’s Disease: A New Immunoregulatory
Axis. Clin Exp Rheumatol (2011) 29:S71–6.

36. Lee RWJ, Dick AD. Current Concepts and Future Directions in the
Pathogenesis and Treatment of non-Infectious Intraocular Inflammation.
Eye (Lond) (2012) 26:17–28. doi: 10.1038/EYE.2011.255

37. Grajewski RS, Silver PB, Agarwal RK, Su SB, Chan CC, Liou GI, et al.
Endogenous IRBP can be Dispensable for Generation of Natural CD4+CD25
+ Regulatory T Cells That Protect From IRBP-Induced Retinal
Autoimmunity. J Exp Med (2006) 203:851–6. doi: 10.1084/JEM.20050429

38. Silver PB, Agarwal RK, Su S-B, Suffia I, Grajewski RS, Luger D, et al.
Hydrodynamic Vaccination With DNA Encoding an Immunologically
Privileged Retinal Antigen Protects From Autoimmunity Through
Induction of Regulatory T Cells. J Immunol (2007) 179:5146–58.
doi: 10.4049/JIMMUNOL.179.8.5146

39. Imai A, Sugita S, Kawazoe Y, Horie S, Yamada Y, Keino H, et al.
Immunosuppressive Properties of Regulatory T Cells Generated by
Incubation of Peripheral Blood Mononuclear Cells With Supernatants of
Human RPE Cells. Invest Ophthalmol Vis Sci (2012) 53:7299–309.
doi: 10.1167/IOVS.12-10182

40. Berer K, Mues M, Koutrolos M, AlRasbi Z, Boziki M, Johner C, et al.
Commensal Microbiota and Myelin Autoantigen Cooperate to Trigger
Autoimmune Demyelination.Nat (2011) 479:538–41. doi: 10.1038/nature10554

41. Brown CT, Davis-Richardson AG, Giongo A, Gano KA, Crabb DB,
Mukherjee N, et al. Gut Microbiome Metagenomics Analysis Suggests a
Functional Model for the Development of Autoimmunity for Type 1
Diabetes. PloS One (2011) 6(10):e25792. doi: 10.1371/journal.pone.0025792

42. Cantarel BL, Waubant E, Chehoud C, Kuczynski J, Desantis TZ, Warrington
J, et al. Gut Microbiota in Multiple Sclerosis: Possible Influence of
Immunomodulators. J Investig Med (2015) 63:729–34. doi: 10.1097/
JIM.0000000000000192

43. Wang Y, Yin Y, Chen X, Zhao Y, Wu Y, Li Y, et al. Induction of
Intestinal Th17 Cells by Flagellins From Segmented Filamentous
May 2022 | Volume 2 | Article 901144

https://doi.org/10.1182/BLOOD-2013-02-481788
https://doi.org/10.3389/FIMMU.2018.00907
https://doi.org/10.3389/FIMMU.2018.00907
https://doi.org/10.4049/jimmunol.175.7.4745
https://doi.org/10.4049/jimmunol.175.7.4745
https://doi.org/10.1073/PNAS.0509484103
https://doi.org/10.1182/BLOOD-2007-06-094656
https://doi.org/10.1182/BLOOD-2007-06-094656
https://doi.org/10.1002/EJI.200636435
https://doi.org/10.1002/EJI.200636435
https://doi.org/10.1016/j.jaut.2020.102441
https://doi.org/10.1038/s41598-019-53297-w
https://doi.org/10.1167/IOVS.11-8153
https://doi.org/10.4049/JIMMUNOL.1300182
https://doi.org/10.4049/JIMMUNOL.1300182
https://doi.org/10.1097/ICO.0000000000001720
https://doi.org/10.1038/NI.3646
https://doi.org/10.1016/J.IMMUNI.2012.09.010
https://doi.org/10.1016/J.IMMUNI.2012.09.010
https://doi.org/10.4049/JIMMUNOL.182.1.259
https://doi.org/10.4049/JIMMUNOL.1203473
https://doi.org/10.1111/J.1365-3083.2009.02321.X
https://doi.org/10.1111/J.1365-3083.2009.02321.X
https://doi.org/10.1016/J.JACI.2011.05.029
https://doi.org/10.1016/J.JACI.2011.05.029
https://doi.org/10.1038/NI.1882
https://doi.org/10.1038/NI.1882
https://doi.org/10.1038/NI.1736
https://doi.org/10.1016/J.CLIM.2003.09.013
https://doi.org/10.1182/BLOOD-2008-10-183251
https://doi.org/10.1182/BLOOD-2008-10-183251
https://doi.org/10.3389/FIMMU.2020.01051
https://doi.org/10.1007/s10753-015-0229-7
https://doi.org/10.1007/s10753-015-0229-7
https://doi.org/10.1080/08820139.2017.1306865
https://doi.org/10.1111/J.1365-2249.2011.04543.X
https://doi.org/10.1016/J.JACI.2011.07.008
https://doi.org/10.1038/EYE.2011.255
https://doi.org/10.1084/JEM.20050429
https://doi.org/10.4049/JIMMUNOL.179.8.5146
https://doi.org/10.1167/IOVS.12-10182
https://doi.org/10.1038/nature10554
https://doi.org/10.1371/journal.pone.0025792
https://doi.org/10.1097/JIM.0000000000000192
https://doi.org/10.1097/JIM.0000000000000192
https://www.frontiersin.org/journals/ophthalmology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/ophthalmology#articles


Lee and Foulsham Regulatory T Cells in Uveitis
Bacteria. Front Immunol (2019) 10:2750. doi: 10.3389/FIMMU.2019.
02750

44. Lee YK, Menezes JS, Umesaki Y, Mazmanian SK. Proinflammatory T-Cell
Responses to Gut Microbiota Promote Experimental Autoimmune
Encephalomyelitis. Proc Natl Acad Sci USA (2011) 108:4615–22.
doi: 10.1073/PNAS.1000082107
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