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Glaucoma is a leading cause of progressive blindness and visual impairment

worldwide. Microstructural evidence of glaucomatous damage to the optic

nerve head and associated tissues can be visualized using optical coherence

tomography (OCT). In recent years, development of novel deep learning (DL)

algorithms has led to innovative advances and improvements in automated

detection of glaucomatous damage and progression on OCT imaging. DL

algorithms have also been trained utilizing OCT data to improve detection of

glaucomatous damage on fundus photography, thus improving the potential

utility of color photos which can be more easily collected in a wider range of

clinical and screening settings. This review highlights ten years of contributions

to glaucoma detection through advances in deep learning models trained

utilizing OCT structural data and posits future directions for translation of these

discoveries into the field of aging and the basic sciences.

KEYWORDS
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Introduction

Glaucoma is a progressive optic neuropathy wherein retinal ganglion cell and retinal

nerve fiber layer loss from optic nerve atrophy results in characteristic patterns of visual

field loss (1). More than 76 million people were affected by glaucoma as of 2020, and it is

projected to impact more than 111.8 million people by 2040, making it the most common
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cause of irreversible blindness worldwide (2). The only known

modifiable risk factor for glaucoma is elevated intraocular

pressure (IOP) (3), which increases the risk of subsequent

vision loss if left untreated (4). However, despite the

availability of effective treatments to lower IOP and thus slow

down the rate of disease progression, a majority of patients with

glaucoma are unaware they have the disease until it is advanced

since the early stages are relatively asymptomatic (5). Thus, there

is increasing interest in improving diagnostic and screening

technologies so that glaucoma can be detected and treated at

an early stage before the onset of irreversible blindness.

A number of diagnostic tests are employed in the clinical

evaluation of glaucomatous optic neuropathy, including

measurement of IOP and central corneal thickness,

gonioscopy, visual field testing, fundus photography, and

optical coherence tomography (OCT) (4). In recent years,

however, OCT has risen to the forefront as the de facto

diagnostic tool of choice for detecting the early onset of

structural changes from glaucoma as well as its progression

over time. Spectral domain (SDOCT) has excellent repeatability

(6), and it is highly accurate even for detection of early lesions

prior to the onset of visual field loss (7). SDOCT commercial

software is not only able to segment and measure the thickness

of the retinal nerve fiber layer (RNFL) and ganglion cell layer

(GCL) (8), but also can be used to create 3-dimensional

reconstructions of the optic nerve head (ONH), macula, and

surrounding tissues. Measurements of the disc and rim area, the

cup-to-disc ratio, and Bruch’s membrane opening-minimum

rim width (BMO-MRW) can provide additional microstructural

evidence of early glaucomatous damage.

Nevertheless, SDOCT is not currently recommended for

population-based screening since the technology is expensive and

requires skilled operators for image acquisition. Review of SDOCT

imaging can also be complicated and time-consuming and

clinicians can make errors when subjectively interpreting an

array of different outputs produced by automated segmentation.

The large number of varied parameters and plots produced by a

single SDOCT test also increases the risk of committing a type 1

error or diagnosing glaucoma when it is not truly present.

Moreover, over 40% of SDOCT may be affected by segmentation

errors, which can lead to false positives and negatives (9–11). The

risk of overdiagnosis and treating false positives is thought to

outweigh the possible benefit of early detection (4). Distinction of

glaucoma from age-related changes affecting the thickness of the

retinal nerve fiber layer on SDOCT is also critical to the accurate

detection of glaucomatous progression over time (12, 13).

Furthermore, the different SDOCT platforms are not

standardized, and no true reference standard exists, making

comparison of output across platforms challenging (14). Thus,

the gold-standard diagnosis for glaucomahas continued to bemade

on the basis of clinical judgement, combining clinical data from

ophthalmic dilated fundus examination of the optic nerve head,
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intraocular pressure measurements, and interpretation of visual

field and SDOCT tests.

The desire to develop novel technologies to improve ease, cost,

and objectivity of glaucoma detection has spurred recent

investigations into the development of artificial intelligence (AI)

algorithms that can be applied to existing imaging data. Deep

learning (DL) algorithms have shown particular utility in glaucoma

detection given the ability of these convolutional neural networks

(CNNs) toprocess complex ophthalmic imaging such as SDOCTof

the optic nerve, macula, and anterior segment. Because DL

algorithms can be trained to provide a single prediction about an

image – i.e. whether it appears glaucomatous or normal – the

algorithm can mitigate risk of committing a type 1 error and

potentially decrease the time needed to review structural imaging in

a clinical setting. Moreover, recent studies have demonstrated that

DL algorithms can be trained using SDOCT to provide predictions

about other structural imaging used in glaucoma such as fundus

photographs. Application of DL algorithms have the potential to

improve feasibility of glaucoma screening using low cost color

fundus photography.

In this article, we will provide a brief overview of AI and DL

before discussing some of the most recent advances in the

development of DL algorithms trained with OCT imaging to

assist with glaucoma detection on structural OCT imaging of the

optic nerve, macula, and anterior segment, as well as

glaucomatous damage on inexpensive color photography of

the optic disc. Finally, we will highlight possible gaps in the

field of DL as it applies to SDOCT and glaucoma, which will be

critical to address in future translational work, as well as propose

some new directions into the fields of aging and basic science.
What is deep learning?

AI encompasses an array of automated computer programs

that can mimic intelligent behavior with minimal human input

(15). Machine learning is the broadest category of AI and refers

to a method of automated data analysis wherein the machine

learning classifier (MLC) is presented with multiple relevant

examples in order to train it to automate a task (16–19). In

comparison to traditional statistical analysis, MLCs can handle

larger and more complex datasets which has made them of

increasing interest in this age of ‘big data’ and electronic health

records. Before MLCs can be trained, however, human input is

required to identify the relevant features that the MLC needs to

learn. While numerous examples of traditional MLCs exist, some

common examples include random forest, support vector

machines, and independent component analysis.

DL is a more recent development in the field of AI which has

emerged as computational capabilities have increased.DL hasmade

possible analysis of more complex data with predictions that

sometimes exceed that of humans. The convolutional neural
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networks (CNNs) utilized in DL are modeled after the human

visual cortex with many layers of interconnected neurons, or

“nodes”, capable of autonomously processing and learning

features from a training dataset (16). As data is input and passed

through the series of convolutional layers, each layer assigns a

weight to the data before passing it on to the next neuron, and these

weights are subsequently adjusted to develop a classification system

(20). CNNs are well-equipped to process very complex data types

including two- and three-dimensional imaging. Moreover, human

input is not required to identify the relevant features that themodel

needs to learn. Rather the CNN automatically identifies which

features are relevant during the training process (21).

This fact causes DL models to offer several advantages over

traditional MLCs. First, the DL model may be more objective and

less labor intensive than traditional MLCs since a priori feature

identification is not needed. However, in supervised learning, the

DL model still requires a reference “ground truth” designation to

input data for classification. For example, if the DL algorithm is

viewing an OCT scan, then the “ground truth” label of whether the

scan demonstrates glaucoma or not will help the algorithm learn to

distinguish between the two outcomes. Nevertheless, DL models

may be able to identify novel features or patterns in the data that

humans had not previously detected. In unsupervised learning, for

example. the CNN views unlabeled data and discovers new patterns

or relationships with no human input. However, unsupervised

learning has been less commonly applied toOCT data in glaucoma.

OnedrawbackofDL is that thedecisionmaking, or predictionof

the DL model is entirely automated and highly complex, making it

impossible to trace all of the individual decision-making steps made

duringmodel building. This has led to a widespread perception that

DL predictions arise from a “black box” (22). Also, given the

complexity of the computations performed, CNNs require

extremely large datasets for training, which are not always

available, especially for ophthalmic imaging. Techniques such as

transfer learninghavebeenable tocircumvent someof the challenges

posed by the need for large datasets. In transfer learning, existing

CNNs that are trained toperforma simpler task on largedatasets can

be further trained to perform more sophisticated tasks on more

complexdatasets of limited size (23).Neural networkshave alsobeen

used to develop additional sophisticated analytic techniques such as

generative adversarial networks, variational autoencoders, and

transformer models. Thus, with advances in computational power,

application of transfer learning techniques, and access to larger

imaging datasets for training, DL has become a powerful tool for

development of newapproaches toOCT interpretation in glaucoma.
Methods

Following the Preferred Reporting Items for Systematic

reviews and Meta-Analysis (PRISMA), we conducted a

systematic search of original studies wherein deep learning

models were trained with OCT for detection of glaucoma on
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structural imaging. We searched PubMed using the terms

“optical coherence tomography” AND “glaucoma” AND

(“deep learning” or “generative adversarial networks” or

“variational autoencoders” or “transformer”) for the date range

of January 1, 2012, to January 1, 2022. This search yielded a total

of 119 results from Pubmed (Figure 1). After two reviewers

carefully read the articles, 29 were removed because they were

review articles, and 23 were removed because the topic was not

relevant (i.e. article on development of traditional machine

learning classifier without deep learning techniques, algorithm

developed for visual field analysis, etc.). In the final count there

were 65 original research articles conducted in human subjects

which presented results from deep learning models trained with

OCT to either 1) improve detection of glaucoma or glaucoma

progression on OCT (N=28) (Supplementary Table 1) (24–51),

2) improve structural analysis such as segmentation or image

analysis of optic nerve and retinal microstructural elements

relevant to glaucoma on OCT (N=17) (Supplementary

Table 1) (52–68), 3) improve angle classification on anterior

segment or swept source OCT (N=14) (Supplementary Table 2)

(69–82), or 4) improve glaucoma detection on photos of the

retina or optic nerve (N=6) (Supplementary Table 3) (83–88).

An article about a DL algorithm trained to predict age from OCT

RNFL was also reserved for discussion of the implications for

aging research (89). In addition, an article about a DL model

developed in rodent models of glaucoma was retained and
FIGURE 1

Flow diagram of articles reviewed.
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combined with three other articles about application of DL in

the basic sciences for the discussion of future directions (90–93).
Data extraction

The following data were extracted from the papers included

in this review and are summarized in Supplementary Tables 1-3

and Figures 2–5:
Fron
• Bibliographic information, i.e. authors, year of

publication, journal

• Input for training the CNN, i.e. type of OCT or derived

parameters or maps
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• Ground truth or reference standard used for training the

DL model (Figure 2)

• Primary output byDL algorithm, i.e. classification of glaucoma

vs. normal, prediction of RNFL thickness, etc. (Figure 3)

• Training and test dataset characteristics including

number or percentage of images in each set and

diagnoses (e.g. glaucoma, suspect, normal)

• Demographic information, e.g. race/ethnicity, gender

(Figures 4, 5)

• Primary outcome of the study, e.g. reporting area under

the curve (AUC) for discriminating between

glaucomatous and normal eyes

• Results of any direct comparison of the results of DL

versus traditional machine learning methods or

automated parameters, if also conducted
A

B

C

FIGURE 2

Comparison of Ground truth for deep learning algorithms. Studies were divided into four categories for ground truth, including clinical
diagnosis, clinical reference, manual grading, and automated grading. (A) Comparison of all (far left) or sub-categorized (remaining) studies
training deep learning algorithms for OCT of the optic nerve, RNFL, or macula (Supplementary Table 1), (B) Comparison of all (far left) or sub-
categorized (remaining) studies training deep learning algorithms for OCT of anterior chamber anatomy (Supplementary Table 2), and (C)
Comparison across all studies training deep learning algorithms for OCT – Photo pairs (Supplementary Table 3).
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Results

Deep learning models trained to detect
glaucomatous damage on OCT

A majority of studies trained their DL model with OCT

parameters or OCT imaging to diagnose glaucomatous

structural damage on OCT (24–51) or identify structural

components of the optic nerve or macula affected by glaucoma

(52–68). Included articles used macular data (25, 43, 65, 68),

optic nerve or RNFL scans and measurements (25–27, 29–32, 36,

39–42, 44, 46, 49–57, 59–63, 66, 67, 88), or a combination of

OCT data from different types of scans or thickness maps, with

or without additional clinical criteria (24, 25, 27, 28, 33–35, 38,

45, 47, 48, 61, 64) for training the DL algorithm (Supplementary

Table 1). The ground truth used for training the DL algorithm

varied. We classified the studies into four categories for ground

truth. These categories were defined as studies utilizing: 1) a

defined set of clinical parameters (clinical reference), 2) a known

clinical diagnosis of glaucoma (clinical diagnosis), 3) grading of

OCT images by trained personnel or clinical expert (manual

grading), and 4) grading of OCT images by automated

parameters (automated grading). We found that most studies

utilized manual grading of OCT images (44.4%), followed by

clinical reference (31.1%). Fewer studies relied upon automated

parameters (15.6%) or clinical diagnosis (8.9%) as a reference

standard (Figure 2A). Twenty-seven studies (60%) trained the

DL algorithm to detect glaucoma, 17 studies (37.8%) focused on

structural analysis, and one study (2.2%) identified glaucoma

progression on OCT (Supplementary Table 1; Figure 3A).

Moreover, a majority of these studies compared the

performance of DL models with other approaches such as

traditional machine learning classifiers, values from automated

segmentation, or hand-crafted features derived from OCT, with
Frontiers in Ophthalmology 05
stronger performance by the DL model (25–27, 31, 34–36, 38,

44, 45, 47, 51, 66, 67). For example, Zheng et al. reported that

their deep learning algorithm (AUC 0.99) performed

significantly better than hand-crafted features from

peripapillary RNFL images (AUC 0.895 for average hand-

crafted feature) when detecting glaucoma on OCT (51). Lee

and colleagues trained an ensemble DL model with a

combination of GCIPL and RNFL thickness and deviation

maps, resulting in an excellent AUC of 0.99 for distinguishing

glaucoma from normal (35). This model outperformed

individual OCT parameters derived by traditional automated

segmentation, MLC, or visual field parameters.

Several groups also demonstrated that DL was particularly

advantageous in detection of early glaucomatous damage on

OCT before the onset of visual field loss. Asaoka and colleagues,

developed a DL model to distinguish early glaucoma from

normal eyes using OCT macular data acquired in an 8x8 grid

(25). Since their OCT macular training dataset only had 178

images, they applied transfer learning techniques and built on a

previously trained CNN. The DL AUC was 0.937 which was

significantly greater than two other MLC models trained with

similar data (AUC 0.82 for support vector model; AUC 0.674 for

random forest model). Another advantage of their DL algorithm

was that it performed well even though the training and test

datasets were constructed with images from different OCT

machines. Another DL algorithm trained with both RNFL and

ganglion cell inner plexiform layer (GCIPL) thickness map data

showed greater diagnostic ability for discriminating patients

with glaucoma (AUC 0.957) or early-stage glaucoma (AUC

0.869) from normal subjects compared to a DL algorithm

trained with either RNFL or GCIPL alone (47).

Distinction of early glaucoma from glaucoma suspects can also

be particularly challenging, especially in patients who have
A B C

FIGURE 3

Comparison of algorithm output for deep learning algorithms. Studies were divided into categories based on output parameters for (A) studies
examining OCT of the optic nerve, RNFL, or macula (Supplementary Table 1), (B) OCT of anterior chamber anatomy (Supplementary Table 2),
and (C) OCT – Photo pairs (Supplementary Table 3).
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“normal” intraocular pressure. For this reason, Seo and colleagues

trained a DL algorithm to distinguish between glaucoma suspects

and early normal tension glaucoma (NTG) using the Bruch’s

membrane opening-minimum rim width (BMO-MRW) from

OCT, a relatively new parameter that may be more accurate for

detecting neuroretinal rim damage (44). Although the DL

algorithm trained with BMO-MRW (AUC 0.959) performed

better than the model trained with RNFL alone (AUC 0.914), the
Frontiers in Ophthalmology 06
best performance occurred when combining three parameters –

BMO-MRW, RNFL thickness, and RNFL color code classification

(AUC0.966). This DL algorithm trained with three parameters also

outperformed several other machine learning models for early

NTG detection (AUC 0.927-0.947). Thus, DL models trained

with combinations of OCT parameter inputs showed particularly

robust diagnostic ability compared to MLCs or algorithms trained

with single parameters, especially in detection of early glaucoma.
A

B

C

FIGURE 4

Demographic reporting of gender and race/ethnicity in algorithm testing and training. Studies for training and testing of deep learning
algorithms applied to: (A) OCT of the optic nerve, RNFL, or macular (Supplementary Table 1), (B) OCT of the anterior chamber (Supplementary
Table 2), and (C) OCT-Photo pairs (Supplementary Table 3) were categorized by reporting of gender and race/ethnicity (left). Studies reporting
race/ethnicity were further categorized by the number of race/ethnicities compared and/or reported.
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https://doi.org/10.3389/fopht.2022.937205
https://www.frontiersin.org/journals/ophthalmology
https://www.frontiersin.org


Thompson et al. 10.3389/fopht.2022.937205
A

B

C

FIGURE 5

Races and ethnicities represented in algorithm testing and training. For studies from Figure 4 that reported race/ethnicity, we graphed the
number studies reporting data for specific races/ethnicities. As in Figures 2, 4, we segregated studies that trained and tested deep learning
algorithms for: (A) OCT of the optic nerve, RNFL, or macular (Supplementary Table 1), (B) OCT of the anterior chamber (Supplementary Table 2),
and (C) OCT-Photo pairs (Supplementary Table 3). For ease of comparison, color coding for individual races/ethnicities is consistent in A-C.
Frontiers in Ophthalmology frontiersin.org07
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In addition to traditional DL, hybrid models that combine

DL with other approaches sometimes provided superior results

compared to using DL alone or relying on manual segmentation.

Muhammad et al. trained a CNN to extract features from swept-

source OCT, and then trained a random forest classifier to

predict glaucoma with those features derived from the

resulting maps (38). This “hybrid DL” model was most

accurate when trained using the RNFL probability map

(93.1%) and outperformed the accuracy of parameters from

traditional OCT segmentation or 24-2 and 10-2 Humphrey

visual field (66.7% - 87.3%). Garcia and colleagues have also

recently developed a novel DL methodology for diagnosing

glaucoma on 3D SDOCT B-scans of the optic nerve (30). In

their study, they first trained and validated a slide level feature

extractor using 2-dimensional circumpapillary B-scans, and

then combined the feature dependencies in the latent space via

Long-Short-Term Memory (LSTM) networks with a CNN to

improve glaucoma prediction from -3D optic nerve volume

scans. Their end-to-end algorithm had relatively high accuracy

(AUC 0.8847) for detecting glaucoma on a 3D SDOCT of the

optic nerve. Another study by Raja and colleagues developed a

hybrid DL framework to detect glaucoma on the SDOCT scans

of the optic nerve head using the retinal ganglion cell profiles

(ganglion cell complex, RNFL, ganglion cell-inner plexiform

layer) (41). RAG-Netv2 was trained to extract the three

features and the trained weights were used to classify

glaucoma versus healthy with an AUC of 0.9871 which was

higher than five other state-of-the-art solutions. Moreover, the

hybrid framework was better able to distinguish between early

and advanced glaucoma on OCT than RNFL thickness

(accuracy=0.9117 vs. 0.7647) which may suggest it has

potential application for detection of glaucoma progression.

However, the study did not apply the hybrid system to a

longitudinal dataset of OCT scans to assess progression.

Diagnosis of glaucoma progression over time on OCT is

challenging since normal aging can also cause microstructural

changes to the retinal nerve fiber layer over time (12, 13).

However, DL may be able to more accurately detect

progression than traditionally segmented parameters because

the algorithm may draw on additional information when

assessing the OCT image. For example, Bowd et al. compared

the circumpapillary RNFL (cpRNFL) thickness from automated

segmentation to eye-specific OCT RNFL-based region-of-

interest (ROI) maps developed using unsupervised deep-

learning auto-encoders (DL-AE) for the detection of

glaucomatous progression (77). They found that cpRNFL-

based region of interest maps developed using unsupervised

DL-AE were more sensitive (0.90 vs. 0.63) and had similar

specificity (0.92 vs. 0.93) for glaucoma progression compared

to cpRNFL thickness. Moreover, the DL-AE ROIs had

significantly steeper slopes for change over time compared to

cpRNFL thickness values in both the progressing (-1.28 micons/

year vs. -0.83 microns/year) and non-progressing eyes (-1.03
Frontiers in Ophthalmology 08
microns/year vs. -0.78 microns/year) suggesting that the DL-AE

may be gleaning additional information beyond cpRNFL via the

ROIs which may be important to glaucoma progression.
Deep learning models trained to detect
angle anatomy on OCT of the
anterior segment

In clinic, gonioscopy is the gold standard for evaluating

whether the anterior chamber angle (ACA) is closed or open,

which is critical since angle closure places one at risk for acute or

chronic angle closure glaucoma. However, gonioscopy is semi-

subjective, and can only be performed through direct patient

contact by an expert examiner. Contact-free anterior segment-

OCT (AS-OCT) is able to capture images of the anterior

chamber angle anatomy, and thus may be useful for angle

closure detection. However, most current automated

classification systems for AS-OCT provide only a binary

classification of open versus closed without the ability to

distinguish between subtypes of angle closure, and these

systems are prone to misclassifications.

Fourteen articles have developed DL models that predicted

the formation of the ACA on AS-OCT or swept source OCT with

several comparing their performance against current automated

systems (Supplementary Table 2) (69–82). Reference standards

for training these DL algorithms ranged from gradings of

ultrasound biomicroscopy images (73, 78) and gradings (69,

71, 74) of AS-OCT of the anterior chamber angle to clinical

gonioscopy grades (75, 76, 79) (Supplementary Table 2;

Figure 2B). Li and colleagues developed a DL algorithm able to

distinguish between open versus narrow versus angle closure on

AS-OCT with greater than 0.98 sensitivity and specificity, using

ultrasound biomicroscopy as the reference-standard (73), while

Xu et al.’s DL algorithm detected gonioscopic angle closure with

an AUC of 0.928 on their test dataset (79). Fu et al. developed a

DL model for distinguishing open from close angles on AS-OCT

and compared its performance to that of an automated angle-

closure detection system based on quantitative features (69).

When using clinician gradings of the AS-OCT images as the

reference standard, the DL model performed significantly better

than the automated detection system (AUC 0.96 vs. 0.90,

respectively). Fu et al. also developed a multilevel deep learning

network (MLDN) which consisted of three parallel subnetworks

that generated representations for multiple clinically relevant

regions on the AS-OCT image (70). Their MLDN showed

excellent performance for angle closure detection when tested

on imaging from two different devices, the Carl Zeiss Visante AS-

OCT (AUC 0.962) and Cirrus HD-OCT (AUC 0.952), and

outperformed multiple deep learning networks.

While most articles demonstrated excellent detection of

angle closure by DL, only three attempted to investigate more

particular subtypes of angle formation (Supplementary Table 2;
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Figure 3B) (71, 72, 81). For example, early angle closure can be

appositional, in which the trabecular meshwork is touching the

cornea but without synechiae or scar tissue, whereas chronic

angle closure is characterized by presence of synechiae. To

address these different subtypes, Hao and colleagues trained a

DL algorithm that could not only distinguish between open and

closed angle formation, but also between appositional and

synechial angle closure, with better performance (AUC 0.8005-

0.8114) than conventional classifiers (AUC 0.6183-0.6648) in

three different lighting settings (71).

In addition, three articles identified specific anatomic

features such as the scleral spur or plateau iris on AS-OCT

(Supplementary Table 2; Figure 3B) (74, 78, 80). Importantly, an

investigation by Shen et al. identified biometric parameters such

as iris curvature, lens vault, and angle opening distance, that may

explain misclassifications of angle closure made by their OCT-

based DL algorithm (77). Secondary angle closure can also occur

due to particular iris formations, such as plateau iris, which can

be challenging to diagnose in clinic. Wanichwecharungruang

et al. demonstrated that DL can enhance detection of plateau iris

formation on AS-OCT (78). Thus, DL algorithms show

substantial promise for automating interpretation of AS-OCT

for angle closure and subtypes of angle closure. In the future,

incorporation of additional biometric elements may help refine

the performance of these algorithms for angle closure detection.
Deep learning models trained with OCT
to detect glaucomatous damage
on photos

One advantage of OCT over other structural imaging

modalities such as fundus photographs is it provides more

objective and reliable criteria for glaucoma detection than

subjective human grades of photos. For this reason, six studies

have utilized OCT data to serve as the ground truth when

training DL algorithms to predict glaucomatous damage on

fundus photos (Figure 2C) (83–88). In these studies, the

algorithm learned to predict a structural parameter such as

RNFL, BMO-MRW, or macular ganglion cell inner plexiform

layer (mGCIPL) in datasets of imaging acquired in patients with

glaucoma or healthy optic nerves (Figure 3B). Medeiros et al.

was the first to propose this novel approach (87). He trained a

“machine-to-machine” (M2M) deep learning algorithm with

color optic disc photos labeled with the global RNFL thickness

measurement from the corresponding SDOCT. When applied to

optic disc photos, the M2M algorithm provided a prediction of

RNFL thickness that was highly correlated with true RNFL from

SDOCT (r=0.832, p<0.001), with MAE of 7.39 microns. In

addition, the DL algorithm’s predicted RNFL discriminated

between glaucomatous and normal eyes on color photos with

similar accuracy to the true RNFL thickness from SDOCT (AUC

0.944 vs. 0.940, respectively). The performance of the M2M DL
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algorithm was subsequently compared to that of human graders

for detecting which eyes had repeatable glaucomatous visual

field loss (83). When applied to photos, the DL-predicted RNFL

thickness was significantly more correlated with mean deviation

from visual fields than the probability of glaucoma provided by

human graders (rho=0.54 vs. 0.48, p<0.001). In a related paper,

Thompson et al. paired color photos to the BMO-MRW

thickness values from SDOCT to train a DL algorithm to

quantify neuroretinal damage on the photos (88). When

applied to color optic disc photos, the DL-predicted BMO-

MRW was able to distinguish between glaucoma and normal

eyes (AUC 0.945) with similar performance to actual BMO-

MRW (AUC 0.933). Similarly, Lee and colleagues trained a

hybrid DL model to predict the macular ganglion cell inner

plexiform layer (mGCIPL) thickness when assessing a red-free

retinal nerve fiber layer photograph by pairing the red free

photograph with the SDOCT data (84). Their hybrid algorithm’s

predicted mGCIPL thickness was highly correlated with the

actual thickness (r=0.739, p<0.001) with an MAE of 4.76

microns. Moreover, the hybrid DL algorithm’s predictions

showed excellent discrimination between eyes with

glaucomatous visual field loss from healthy eyes when viewing

the red-free photos (AUC 0.918).

Medeiros and colleagues have performed additional training

of their M2M DL algorithm on a larger repository of SDOCT

paired to fundus photographs collected on different cameras

(Nidek and Visupac). They applied this model to a longitudinal

cohort of color fundus photos and demonstrated that the DL

RNFL predictions from the color photos could discriminate

between eyes that were progressing and eyes that were not

progressing (AUC 0.86), with even better performance for

detecting fast progressors (AUC 0.96) (85). Moreover, their

group has also shown that longitudinal changes in DL

predictions of RNFL are able to predict conversion from

glaucoma suspect to glaucoma. In the future, this overall

approach of training DL algorithms to interpret fundus

photographs while using OCT data for a reference standard

could improve the utility of inexpensive fundus photography for

detection of glaucoma and glaucoma progression, especially in

low-resource settings.
Discussion

Deep learning models show great potential for the accurate

diagnosis of glaucoma on OCT without the need for human

input. In some cases, such algorithms may even prove more

accurate than either manual segmentation by human graders or

output from automated segmentation in commercially available

OCT software, especially for early glaucoma detection. Though

further investigation is needed, at least one study suggested that

DL may also be better able to predict glaucomatous progression

on OCT than traditional linear regression of RNFL from
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automated segmentation (63). DL algorithms trained with OCT

data may also be able to predict glaucomatous damage on other

structural imaging (e.g. color fundus and red-free photos) and

may even provide accurate predictions of glaucomatous

progression on the photos over time. Thus, in the future, DL

algorithms trained with OCT data may be able to improve the

accuracy of low-cost photos for glaucoma detection in settings

without access to OCT imaging.

Despite the exciting progress being made in the area of DL

and glaucoma, a number of factors still limit the external

generalizability of a majority of these DL models. Not all

studies reported the demographic breakdown of their training

or test datasets, and among those that did, the demographic

variation was often limited to particular racial or ethnic groups

(Figures 4, 5). Similarly, some but not all studies reported the

gender demographics of their study sample. For example, in the

studies in Supplementary Table 1 which trained and tested on

OCT of the optic nerve or macula, 40% did not report on gender

or race/ethnicity, 37.8% only reported on gender, 4.4% only on

race/ethnicity, and 17.8% on both gender and race/ethnicity with

a majority of patients being white/Caucasian or black/African

American (Figures 4A, 5A). By contrast, for the studies in

Supplementary Table 2 which focused on anterior chamber

angle formation, 15% did not report on gender or race/

ethnicity, 23% reported on gender only, and 62% reported on

both, with most studies utilizing imaging acquired in Asian

populations (Figures 4B, 5B). For the studies in Supplementary

Table 3, which used pairs of OCT and photos to train DL

algorithms, 20% reported on gender only and 80% reported both

gender and race, with patients being either white/Caucasian or

black/African American (Figures 4C, 5C). The differences in

racial/ethnic breakdown are critical to consider since a CNN

trained and tested in imaging acquired in a particular racial/

ethnic group may not perform as well in other demographics

who may have different optic nerve head or macular

characteristics. For example, Asians tend to have more myopia

which can result in tilted myopic discs and myopic degeneration,

leading to segmentation errors on SDOCT that can mimic the

appearance of glaucoma. Meanwhile larger optic disc size with

physiologic cupping is more common in African Americans.

Inclusion of OCT imaging across a range of racial/ethnic groups

is critical when training DL algorithms not only because of these

differences in optic nerve morphology, but also because

glaucoma disproportionately affects racial minorities (39, 94,

95). However, in our review of the literature only a minority of

studies reported on the racial demographics of their population

(27, 30, 36, 37, 43, 57, 61, 66, 69, 74–76, 78, 79, 83–88).

Maetschke et al. reported that 29.7% of included subjects were

African American, 2.7% Asian, and 67.6% White (36). Similarly,

Thompson et al. utilized an OCT dataset that was 21.7% African

American (66). Asaoka et al. trained and tested their DL

algorithms in OCT imaging acquired in Japanese patients (25).

Meanwhile, Russakoff and colleagues trained their DL algorithm
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American, and Asian participants (AUC 0.88), but the

performance was lower when tested in an external dataset of

Chinese patients (AUC 0.78) (43). Axial myopia may also impact

SDOCT measurements leading to segmentation errors on OCT,

but only one study directly addressed the influence of axial

length on OCT measurements in glaucoma patients of Asian,

African American, andWhite race (62). Olivas et al. was the only

group to train and test their DL algorithm in Mexican patients

(accuracy 86-90%) (39). Future studies should build more

heterogeneous datasets for algorithm training and testing, as

well as uniformly report the racial/ethnic and gender

composition of their datasets.

Another challenge to real-world clinical implementation of

many DL models is that the CNNs were trained and tested on

idealized datasets and on imaging acquired in the same camera

in the vast majority of cases. Thus, several recent studies have

focused on the development of DL models that are capable of

performing well in external datasets acquired in different

cameras and in field data, where imaging may be affected by

variability in quality. For example, Thakoor et al. created four

different end-to-end DL models by employing fine-tuned

transfer learning and also created a final CNN ensemble

model (48). The accuracy of each of these DL models

compared to earlier hybrid DL/MLCs was more robust in both

laboratory and field test datasets, with smaller declines in

performance when applied to field-collected datasets.

Moreover, in one study by Devalla et al., a DL-based 3D

segmentation framework was developed and shown to be

applicable across data acquired in different OCT devices (54).

This was accomplished by first pre-processing the images with a

DL network “enhancer” that enhanced OCT image quality and

harmonized image characteristics from the three devices, before

training the DL algorithm “ONH-Net” to segment the OCT

imaging acquired in each of the three different devices. In each

case, the DL ONH-Net was able to segment ONH tissue from

imaging acquired on a different device from the training dataset

with excellent performance (Dice coefficient >0.92). These

findings are also of particular interest since they demonstrated

that DL models can be trained to accurately estimate specific

features on SDOCT that are important to glaucoma diagnosis.

A significant limitation of the current literature is that a

majority of studies trained and tested their DL algorithms using

high quality OCT images and excluded those with concurrent

retinal pathology. However, these DL algorithms designed for

glaucoma detection may fail if applied in real-world settings,

where glaucoma patients can have multiple comorbid retinal

pathologies on OCT. Traditional automated segmentation of

SDOCT images using the machine’s commercially available

software has also been shown in numerous studies to be

affected by segmentation artifacts (9–11), which may be due to

vitreous traction, epiretinal membrane, or tilted disc from high

myopia. Such artifacts can adversely impact interpretation of
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OCT studies leading to false positive and false negative results

(81). Several groups have developed DL algorithms that can

segment OCT optic nerve and macular tissue layers known to be

impacted by glaucoma, and in some cases they evaluated

performance in imaging impacted by artifacts (56). Yow et al.

demonstrated that the predicted RNFL segmentation from a DL

algorithm had similar accuracy for glaucoma detection

compared to manual segmentation of the RNFL (67).

Rezapour et al. trained a DL algorithm to measure a novel

feature, peripapillary choroidal thickness, in glaucomatous eyes

and compared eyes with axial myopia to those without myopia

(62). Using manually segmented OCT B-scans as the ground

truth or reference standard, they found that the DL algorithm

provided high quality choroidal segmentation in over 95% of

eyes within each myopia group – high myopia, mild myopia, and

no myopia. A deep learning model used to segment the ganglion

cell layer likewise performed better than manual segmentation

(65). More recently, Mariottoni et al. trained a DL model to

provide reliable segmentation-free estimates of RNFL thickness

on SDOCT peripapillary circle B-scans, which proved

advantageous in cases where the conventional automated

segmentation algorithm had failed (61). Segmentation-free DL

was able to predict RNFL thickness estimates with greater

accuracy than automated segmentation, especially in poor

quality images affected by segmentation errors. Thompson

et al. subsequently demonstrated that this segmentation-free

DL algorithm could be trained using the SDOCT circle scan to

accurately distinguish between glaucoma and normal eyes (66).

Moreover, the algorithm demonstrated a higher AUC for

glaucoma diagnosis compared to the global RNFL thickness

from automated segmentation (0.96 vs. 0.87) and was

particularly sensitive in pre-perimetric glaucoma (0.92 vs.

0.93). DL algorithms can also be trained to detect

segmentation errors on SDOCT imaging acquired in clinical

practice. Jammal and colleagues developed a DL model that

discriminated between OCT scans with and without

segmentation errors (AUC of 0.979) and was 98.9% sensitive

in scans with severe segmentation errors (57). Such an algorithm

may help clinicians review and identify such errors on OCT

imaging and thus mitigate the chance of an incorrect diagnosis.

Successful removal of blood vessel shadow artifacts from OCT

by algorithms like Deshadow GAN during preprocessing may

also improve performance of other algorithms used in OCT

segmentation (52).
Future directions for deep learning
applications in aging and the
basic sciences

There is unprecedented interest in development of DL

algorithms in glaucoma with many unexplored areas of
Frontiers in Ophthalmology 11
investigation. Currently most studies have been developed

using imaging acquired in older patients, with only one study

dedicated to pediatric glaucoma (96). Moreover, since

distinguishing between normal age-related and glaucomatous

changes on OCT can be difficult, future studies should focus on

whether DL can be harnessed to identify unique features

associated with healthy aging. Current studies on deep

learning and aging on OCT are limited but show promise.

Shigueoka et al. used the whole circle SD-OCT B-scan image

to train a CNN to predict patient age with a Mean Absolute

Error (MAE) of 5.82 years (89). The DL model was also able to

differentiate the youngest from the oldest subjects with an AUC

of 0.962. Class activation maps showed that all layers were

equally important in the DL algorithm, but the posterior

vitreous seemed to be an important area for classification in

the youngest group. The study further examined specific areas of

the image to identify if they differed in predictive value for age

compared to the entire B-scan. Analyzing the entire B-scan

produced the lowest MAE when compared to SD-OCT

individual structures of the vitreous, RNFL, retinal layers

without the RNFL, and the choroid. The RNFL alone had the

greatest MAE of 9.99 years. Similarly, Chueh et al. trained a DL

algorithm to predict age from macular OCT with a MAE of 5.78;

class activation maps likewise found that the whole layers of the

retina, rather than the choroid, were important to the age

predictions (97). Thus, both of these studies suggest that there

are novel features or relationships between features on the full

thickness retinal scan, rather than individual parameters like

RNFL or choroid, that may be impacted by aging. Yow and

colleagues trained a DL algorithm to segregate neuronal and

vascular components within the cpRNFL on OCT/angiography

and then compared correlations of RNFL thickness with age

after excluding the vessels (98). They found that the ratio of

major and micro-vessels to cpRNFL achieved a stronger

correlation with aging (r=0.478, p<0.001) than the ratio of

major vessels to cpRNFL (r=0.027, p=0.820). Exclusion of

these blood vessels from the cpRNFL may improve

measurement of the neuronal component which is important

to detection of pathologic changes.

Another critical development in DL is the training of such

algorithms for application in animal models. Imaging across

various modalities provides a non-invasive tool for the detection

and quantification of glaucoma pathology in animal models that

provides streamlined translation to the same metrics in human

patients (99). Despite the routine use of OCT, OCT-A, and

fundoscopy in animal models, few studies to-date utilize AI

approaches. In a recent study by Fuentes-Hurtado, et al. a

DenseNet CNN was further trained to discriminate between

glaucoma and healthy eyes in OCT imaging acquired in a rodent

(rat) model, achieving an AUC of 0.99 (90). More recently, Choy

et al. developed the first DL model to segment the Schlemm’s

canal lumen on OCT in living mouse eyes (91). The budding use
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of AI in animal models of glaucoma is not limited to in vivo

imaging. Two DL algorithms have been developed to quantify

optic nerve pathology in rodent models of glaucoma (92, 93).

The successful development and characterization of these

algorithms indicates that studies utilizing animal models can

meet the data requirements needed for DL. This raises the

interesting notion that the translational impact of imaging

metrics could be expanded to include DL algorithms. Can DL

algorithms be both translated and reversed translated between

animal models and humans? Future efforts in the development

of DL algorithms that enable this translation, i.e. optimization of

transfer learning potential, could be a vital next-step in AI for

glaucoma diagnostics and management.
Conclusions

Deep learning models trained with OCT data show great

promise in detection of microstructural damage due to glaucoma

and glaucoma progression over time. However, future studies

will need to improve the generalizability of these models by

training and validating these algorithms in different

demographics. Moreover, the ability to detect glaucoma in the

setting of comorbid retinal pathology and related imaging

artifacts will be critical to their successful implementation.

Development of DL algorithms in OCT acquired in animal

models will also be pivotal to the success of drug development

and other translational work across species.
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