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Retinal imaging in animal models:
Searching for biomarkers
of neurodegeneration
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There is a pressing need for novel diagnostic and progression biomarkers of

neurodegeneration. However, the inability to determine disease duration and

stage in patients with Alzheimer’s disease (AD) hinders their discovery. Because

animal models of disease allow us to circumvent some of these limitations, they

have proven to be of paramount importance in clinical research. Due to the clear

optics of the eye, the retina combined with optical coherence tomography (OCT)

offers the perfect opportunity to image neurodegeneration in the retina in vivo,

non-invasively, directly, quickly, and inexpensively. Based on these premises, our

group has worked towards uncovering neurodegeneration-associated changes

in the retina of the triple-transgenic mouse model of familial AD (3×Tg-AD). In

this work, we present an overview of our work on this topic. We report on

thickness variations of the retina and retinal layers/layer aggregates caused by

healthy aging and AD-like conditions and discuss the implications of focusing

research efforts solely on retinal thickness. We explore what other information is

embedded in the OCT data, extracted based on texture analysis and deep-

learning approaches, to further identify biomarkers that could be used for early

detection and diagnosis. We were able to detect changes in the retina of the

animal model of AD as early as 1 month of age. We also discuss our work to

develop an optical coherence elastography system to measure retinal elasticity,

which can be used in conjunction with conventional OCT. Finally, we discuss the

potential application of these technologies in human patients and the steps

needed to make OCT a helpful screening tool for the detection

of neurodegeneration.

KEYWORDS
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1 Introduction

Over a third of all Europeans suffer from some form of central

nervous system (CNS) disease (1). With improved care and life

expectancy, the already worrying numbers associated with

neurodegeneration are expected to climb even further. The

soaring prevalence and economic burden of neurodegeneration

pose a significant and mounting threat to every governmental

body in the world.

There is a need for novel diagnostic and progression biomarkers

for neurodegenerative disorders, such as Alzheimer’s Disease (AD)

or Parkinson’s Disease. Despite some advances, the accurate and

timely diagnosis of these diseases is still lacking, with studies

reporting substandard misdiagnosis rates and initial stages

typically remaining undiagnosed (2–5). The eye is a readily

available and inexpensive window into human health. The retina

is part of the CNS and is the perfect target for in vivo, in situ, and

non-invasive neuropathology diagnosis.

Optical coherence tomography (OCT) is now a standard

imaging modality in daily clinical practice. First demonstrated in

1991, it is a non-contact imaging modality based on interferometry.

It was first used to image the human retina in vivo in 1993 (6). Since

then, OCT has revolutionized retinal imaging. OCT systems are

fast, non-invasive, inexpensive, and readily available. This starkly

contrasts with typical neuroimaging modalities and opens up the

possibility of screening. Embedded in the OCT signal there is a

wealth of information that can be used to evaluate the retina. The

underlying rationale is the sensitivity of OCT to subtle refractive

index changes and the amount of data collected from the ocular

fundus. Minor differences at the molecular level cannot be

individualized, but they still affect the statistics of the global data.

Amyloid-beta has been demonstrated in and around melanopsin

retinal ganglion cells in AD patients (7). Furthermore,

hyperphosphorylated tau is present in mice’s innermost layers of

the retina (8). These and other neurodegenerative-related changes

lead to differences in the refractive index of the retina and its

components that can be detected in OCT scans.

Animal models play a key role in the search for novel

diagnostic, progression, and treatment response biomarkers. In

the real world, neurodegenerative diseases can remain

unsuspected for more than 10 years before a tentative diagnosis is

made (9–11). This results in the loss of a pivotal time window (early

diagnosis) in which novel disease-modifying therapies could

intervene. Furthermore, disease staging is largely unknown, and

the assessment of disease progression is qualitative and difficult to

quantify. This dramatically hinders the search for progression and

treatment response biomarkers. Longitudinal studies require long-

term commitment and are cumbersome for subjects. Differences in

basic characteristics or lifestyle are difficult to match between

populations. Availability of subjects is also a significant limitation.

None of these issues extend to animal models of disease. Disease

onset and duration are more readily known, and the time scale is

compressed, facilitating longitudinal studies. Multiple imaging
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sessions over months are feasible, and population matching is

guaranteed a priori.

In this manuscript, we present an overview of our efforts to

uncover the missing links between signs in the retina and

neurodegeneration using an animal model of AD and age-

matched controls. We show the evolution of retinal layer

thickness in both groups and discuss the drawbacks of focusing

research efforts on retinal thickness alone. We show that retinal

aging is altered in the triple-transgenic mouse model of familial AD

(3×Tg-AD) and discuss the implications. Using metrics that

describe image patterns, we show that changes are detectable as

early as 1 month of age. In previous works, we have shown that

these changes are widespread and not specific to a single retinal

layer. We also discuss the development of an optical coherence

elastography (OCE) system that can be used in conjunction with

traditional OCT to obtain information on the elastic properties of

the retina. Finally, we discuss the possibilities of translating the

knowledge gained to humans and the efforts needed to make ocular

imaging the screening tool required to deal with neurodegeneration.
2 Materials and methods

2.1 Ethics statement

All the studies were approved by the Animal Welfare

Committee of the Coimbra Institute for Clinical and Biomedical

Research (iCBR), Faculty of Medicine, University of Coimbra. All

procedures were conducted in accordance with the guidelines for

animal use by the Association for Research in Vision and

Ophthalmology, which align with the European Community

Directive Guidelines for the care and use of nonhuman animals

for scientific purposes (2010/63/EU), which have been implemented

into Portuguese law in 2013 (DL113/2013).
2.2 Data

In total, 57 wild type (WT) C57BL6/129S and 57 triple

transgenic (3×Tg-AD) age-matched male mice were used. The

3×Tg-AD mouse carries three mutant genes, namely genes

encoding human beta-amyloid precursor protein (APPswe),

presenilin-1 (M146V), and microtubule-associated protein tau

(P301L), and recapitulates both amyloid and tau pathologies (12).

Observed progression timing and localization were shown to mimic

human observations. For each mouse, OCT volumes were acquired

from both eyes at the ages of 1, 2, 3, 4, 8, 12, and 16 months.

Animals were included when available over approximately 8

months. Subpar OCT volumes were excluded from the analysis.

Between acquisitions, animals were maintained in an animal

house facility at the iCBR, Faculty of Medicine, University of

Coimbra. Animals were kept at controlled temperature and

luminosity (12-h light/dark) and with free access to food and
frontiersin.org
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water. Table 1 shows the mean animal weights (and standard

deviations) for both groups throughout the entire duration of the

experimental setup. Animal weight increased significantly with age

for both groups (repeated measures ANOVA: p<0.001 for both

groups). No statistical differences were observed between animal

groups aged up to 4 months. In mice older than 8 months, WTmice

had a significantly higher weight than 3×Tg-AD mice. Statistical

differences between the groups were assessed using the independent

samples t-test after confirming normality using the Kolmogorov-

Smirnov normality test.

Before OCT image acquisition, animals were anesthetized using

a mixture of 80 mg/kg ketamine (Nimatek; Dechra) and 5 mg/kg

xylazine (Sedaxylan; Dechra). Additionally, oxibuprocaine

(Anestocil; Edol) was used as a local anesthetic. Pupil dilation was

achieved with 0.5% tropicamide (Tropicil; Edol) and 2.5%

phenylephrine (Davinefrina; Dávi) solution. Eye hydration was

maintained during acquisition using 1% carmellose drops

(Celluvisc; Allergan).
2.3 OCT Imaging

OCT volumes were acquired using a Micron IV OCT System

(Phoenix Technology Group, Pleasanton, CA, USA). This system

employs a superluminescent diode with a bandwidth of 160 nm

centered at 830 nm. The imaging depth of the system is 1.4 mm,

with an axial resolution of 3 mm. Each volume is composed of 512

B-scans, with each B-scan having 512 A-scans composed of 1024

discrete samples in depth. All B-scans were saved as non-

compressed TIFF image files. For consistency, all OCT volumes
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were acquired by a single operator in a set retinal region. Using the

optic disc as a landmark, the imaged retinal region was horizontally

aligned with it and positioned directly above it.
2.4 Retinal layer segmentation

A deep learning-based approach was used to segment the retinal

nerve fiber layer and ganglion cell layer complex (RNFL-GCL),

inner plexiform layer (IPL), inner nuclear layer (INL), outer

plexiform layer (OPL), outer nuclear layer (ONL), photoreceptors

inner segment (IS), photoreceptors outer segment (OS), and retinal

pigmented epithelium (RPE) (13). Although the RNFL-GCL

complex is a layer aggregate and not a single layer, it will herein

be defined as so for simplicity. Briefly, the neural network used

consists of a convolutional neural network (CNN) with a U-type

architecture (14) with shortcut connections between the encoding

and decoding paths. The encoding path also uses residual blocks

that contain skip-through connections, i.e., connections that skip

some layers, which mitigate the problem of exploding/vanishing

gradients based on the ResNet architecture (14). The network

receives as input a single B-scan and outputs the result of the

SoftMax activation as the probability of each pixel belonging to the

above-described 8 layers or none of them. Post-processing is

applied to define the interfaces between two adjacent layers. The

network was trained on manually corrected ground truth.

Corrections were performed by two experienced graders.

Volumetric segmentation is achieved by combining the 512

segmented B-scans. Representative B-scans and achieved

segmentation are shown in Figure 1.
FIGURE 1

Representative B-scans (1 month old) of a wild type mouse (left) and a triple transgenic mouse model of Alzheimer’s Disease (3xTg-AD) (right) with
overlayed segmentations. RNFL-GCL – retinal nerve fiber layer and ganglion cell layer complex; IPL – inner plexiform layer; INL – inner nuclear
layer; OPL – outer plexiform layer; ONL – outer nuclear layer; IS – photoreceptors inner segment; OS – photoreceptors outer segment; RPE –

retinal pigmented epithelium.
TABLE 1 Weight of wild type (WT) mice and the triple transgenic model of Alzheimer’s Disease (3xTg-AD).

Age (Months) 1 2 3 4 8 12 16

WT (g)
14.82 22.63 25.25 26.95 32.69* 35.04* 36.98*

(2.62) (1.68) (1.91) (2.09) (3.53) (3.46) (4.09)

3×Tg-AD (g)
14.90 22.24 25.60 27.49 30.41 31.66 32.91

(2.64) (2.32) (2.24) (2.04) (2.84) (3.48) (3.69)

p-values 0.87 0.32 0.40 0.18 6.00×10-4 8.61×10-6 2.53×10-6
fron
Average (standard deviation) values per age and group are shown. Statistical differences between the two groups were assessed with the independent samples t-test and are indicated by * (p <
0.001). The resulting p-values are shown.
tiersin.org

https://doi.org/10.3389/fopht.2023.1156605
https://www.frontiersin.org/journals/ophthalmology
https://www.frontiersin.org


Batista et al. 10.3389/fopht.2023.1156605
2.5 Retinal thickness

Retinal thickness maps were computed from the volumetric

segmented OCT data. The thickness of each retinal layer, as well as

the total retinal thickness (TRT), were computed as the average

distance in mm between the respective segmented boundaries.

Average thickness values per volume were computed as the average

of the 512 × 512 values (1 measurement per A-Scan) minus excluded

A-Scans due to segmentation quality. The quality of the segmentation

at each position was evaluated before computation. Three exclusion

criteria were considered based on data quality, segmentation

(boundary) consistency, and distribution of thickness measurements

to guarantee the overall quality. The unfulfillment of one or more of

these criteria resulted in the exclusion of the individual thickness values

from the analysis and average computation. Additionally, we did not

consider volumes from which more than 10% of the total thickness

measurements were excluded.
2.6 Fundus images

A mean-value fundus (MVF) image (15) was computed as the

average of the A-scan values between the boundaries of the layers

for each of the segmented RNFL-GCL complex, the IPL, INL, OPL,

and ONL layers. We limited the MVF images to the neuroretina,

i.e., retinal layers that are analogous to those found in the brain.

These images allow us to project the 3D information of each layer

onto a 2D image, similar to retinal fundus photography (Figure 2).

The differentiating aspect comes from limiting this to specific layers.
2.7 Texture features

Texture is the characteristic that describes the spatial

distribution of pixel intensity values. The Gray-Level Co-

occurrence Matrix (GLCM) is a popular method for texture-

related feature extraction (16). For local feature extraction, we

applied GLCM to squared blocks of 20 × 20 pixels, cropped from
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the MVF images. In total, 24 × 24 blocks per image were used,

focusing on the central region of the fundus. GLCM was computed

at four angles (0, 45, 90, and 135°) using a scale of one pixel.

Symmetry was accounted for, i.e., 180° apart angles are considered

the same. For each resulting GLCM, 20 features were computed,

namely: the Inverse Difference Moment/Energy, Contrast/Inertia,

Correlation, Angular Second Moment/Uniformity, Sum Average,

Sum of Squares, Sum Variance, Sum Entropy, Difference Variance,

Difference Entropy, Information Measure of Correlation 1 (IMC1),

Information Measure of Correlation 2 (IMC2), and Entropy were

computed as described in (16); Autocorrelation and Maximum

Probability as described in (17); Cluster Prominence and Cluster

Shade as described in (18); Inverse Difference Normalized (INN)

and Inverse Difference Moment Normalized (IDN) as described in

(19); and Dissimilarity as described in (20). Across the four

directions, only the maximum feature value was considered.

Blocks were aggregated into quadrants by defining each quadrant

feature’s value as the average of 12 × 12 blocks. The feature

extraction process was repeated five times for the MVF images

computed from each of the segmented RNFL-GCL complex, the

IPL, INL, OPL, and ONL layers. This results in a total of 80 features

(20 features × 4 quadrants) per layer (5) per acquisition time point

(7), which were then subjected to feature selection (described in

Statistical Analysis). Further details on the feature extraction

process can be found in (21).
2.8 Age modeling

Accelerated aging or a positive brain-age gap in neural tissue

has been associated with AD in adult humans. Age-related changes,

such as neural activity and functional connectivity impairments,

have been shown to be more pronounced in AD (22, 23).

We trained and tuned two convolutional neural networks based

on the DenseNet architecture (24) to predict biological age from

OCT data: one using only B-scans from WTs, and the other using

only B-scans from 3×Tg-AD mice. The network receives as input a

single B-scan and outputs an age prediction. Both models were used
FIGURE 2

Mean-value fundus (MVF) images. Example of MVF images (bottom) computed from the retinal nerve fiber layer and ganglion cell layer complex
(RNFL-GCL), and the inner plexiform layer (IPL), inner nuclear layer (INL), outer plexiform layer (OPL), and outer nuclear layer (ONL). On top, the
respective layers used for MVF computation are highlighted.
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to predict age in an independent dataset, which included B-scans

from both WT and 3×Tg-AD mice. Further details on the network

and protocol can be found in (25).
2.9 Classification

A convolutional neural network based on the Inception-v3

network (26) trained on the ImageNet dataset (27) was applied to

classify images as belonging to the WT or 3×Tg-AD mouse group,

regardless of the age. The network receives as input an MVF image

and outputs a group prediction.

Mice were first split into train/tuning and test sets (80/20% of

mice). Then the train/tuning set was further divided into the train

(75%) and tunning (25%) sets. Our goal was to answer the following

three questions: (1) Can a neural network be trained to consistently

discriminate between the two groups over an extended period? (2)

Can it be trained to recognize differences between these groups at

times outside the training period? (3) Is the information layer-

specific or widespread? Thus, the network was trained exclusively

with data from mice at the ages of 3, 4, and 8 months. OCT scans

from 1-, 2-, and 12-month-old mice were left out exclusively for

testing. This allows us to understand the ability of the neural

network to classify mice that are either younger or older than

those in training. Further details of the network and protocol can be

found in (28).

To infer how widespread in the retina the information is,

training, tuning, and testing were repeated five times as an

independent CNN model was created for MVF images computed

from each of the segmented RNFL-GCL complex, the IPL, INL,

OPL, and ONL layers.
Frontiers in Ophthalmology 05
2.10 Statistical analysis

We used the Kolmogorov-Smirnov normality test to assess the

normal distribution of the data at a significance level of 10%.

Statistical differences between groups were evaluated using the

independent samples t-test when normality was not rejected, and

the non-parametric alternative Mann-Whitney U-test, when at least

one of the groups did not follow a normal distribution. Significance

levels of 5%, 1%, and 0.1% were considered. After comparing the

texture between the two groups, the Pearson correlation, if features

were distributed normally, or if not, Spearman correlation, was

computed for feature pairs. For each comparison, if two features

were correlated (p<0.05), only the feature with the lowest p-value

(intergroup comparison) was considered. The Bonferroni

correction was performed to correct for multiple comparisons.
3 Results

3.1 Retinal thinning

TRT for WT and 3×Tg-AD mice is shown in Figure 3A, defined

as the distance between the upper boundary of the RNFL-GCL

complex and the lower boundary of the RPE. Data from both eyes

were included. As shown, TRT decreases with age for both groups.

The retinas of WT mice were significantly thicker than those of

transgenic mice at all ages (p<0.01, Figure 3A). Notably, at the first

time point, the TRT of 3×Tg-AD mice is already significantly

thinner. Only at the age of 16 months were the differences not

statistically significant (p>0.05). When the thickness values of the

left and right eyes are addressed separately, statistical differences
A

B

FIGURE 3

Retinal thickness longitudinal variation: (A) - Average thickness and standard deviation (line and filled area, respectively) over 16 months for wild type
and the triple transgenic (3xTg-AD) mice. (B) - Average thickness variation per region (B1-9, as shown). Thickness presented as % of baseline
thickness, defined as the average retinal thickness of wild type mice aged 1 month. Color scale as indicated by the color bar. ★ p<0.001.
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between WT and 3×Tg-AD TRT were found at all ages (data not

shown). Thinning appears to occur at a faster rate for WT mice

between 1 and 2 months of age. Similar behavior is observed in

3×Tg-AD mice, although at a slower pace.

Figure 3B shows the local variation by dividing the retina into 9

equally sized regions of interest (B1-9, covering 510×510 A-scans

centrally cropped from theOCTvolumes). As expected, TRTdecreases

with distance from the optic nerve. Although 3×Tg-AD retinas are

thinner overall, there is no clear group-specific thinning pattern.

Figure 4 discriminates variation in retinal thickness per

segmented layer. In both groups, the IPL and INL layers were the

most thinned. On the other hand, both the RPE and IS layers

thicken over time. Between the two groups, the behavior of RNFL-

GCL complex seems to differentiate the most. A thorough analysis

will be the subject of future work.
3.2 Texture differences

Figure 5 shows the results of the textural comparison betweenWT

and 3×Tg-ADmice. For the sake of convenience, the results portrayed

are limited to 1-, 4-, 12-, and 16-month-old mice. Results for the

remaining time points can be found in the SupplementaryMaterial. As

expected, there were many correlations between computed features.

After feature selection, only a handful of features per time point and

layer remain. Significant differences between WT and 3×Tg-AD mice

can be found from month 1. At least one feature is significantly

different (p<0.001) for each time point and layer. The widespread

statistically significant differences throughout the layers and across

time points highlight the considerable influence of the three gene

mutations that characterize the mouse model of familial AD.
3.3 Age-gap

Twomodelswerecreatedbytrainingaconvolutionalneuralnetwork

to predict the age of WT and 3×Tg-AD mice from OCT B-scans. We
Frontiers in Ophthalmology 06
then used an independent dataset to test the two resulting models.

Because eachmodelwas trained exclusively onone group (WTor 3×Tg-

AD), we eliminated training bias. Figure 6 shows the kernel density age

estimates for each acquisition time-point, separated per class for both

models.Overall, regardlessof thetraininggroup, itwaspossible topredict

the age ofmicewith a reasonable degree of accuracy. As predicted by the

models, retinal aging differs between the two classes. Aftermonth 4,WT

retinas are consistently predicted to beolder than3×Tg-ADretinas. This

is consistent between the two models, substantiating obtained results.

These results have been further described by (25).
3.4 Deep learning opens the door to
early detection

We used a neural network to classify computed fundus images

from OCT scans of the retinas of WT and 3×Tg-AD mice. Table 2

discriminates misclassification rates per layer and time-point for the

classification of young (1 and 2 months old) and older (12 months

old) mice using scans from 3-, 4-, and 8-month-old mice to train

and tune the network. In general, the performance of the networks

is particularly good. It demonstrates that the network can

extrapolate to ages not included in the training set. As shown,

most misclassifications occur for 1 month old retinas. Also, the

misclassification rate increases at deeper layers of the retina,

especially when both groups are considered. The number of

misclassifications increases from the RNFL-GCL complex to the

ONL. 12-month-old mice have the lowest misclassification rate.

The accuracy, sensitivity, specificity, and F1-score metrics were

also used to evaluate the model’s performance per layer (Figure 7).

Overall, the accuracy is high (>79.8%), regardless of the retinal

layer, showing the discriminative power of the networks to

distinguish between WT and transgenic mice. As the training

group incorporates retinas of distinct ages, the network is forced

to learn common features across a time window, which it can then

apply to younger and older mice outside its training range. These

results, among others, have been further described in (28).
FIGURE 4

Normalized average thickness. Average thickness values over 16 months for wild type and the triple transgenic (3xTg-AD) mice (left and right,
respectively) discriminated per retinal layer (RNFL-GCL complex and IPL, INL, OPL, ONL, IS, OS, and RPE layers). Thickness presented as % of
baseline, defined as the average retinal thickness per retinal layer of wild type mice aged 1 month. Error bars show standard deviation. RNFL-GCL –

retinal nerve fiber layer and ganglion cell layer complex; IPL – inner plexiform layer; INL – inner nuclear layer; OPL – outer plexiform layer; ONL –

outer nuclear layer; IS – photoreceptors inner segment; OS – photoreceptors outer segment; RPE – retinal pigmented epithelium.
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4 Discussion

Animal models of disease are of paramount importance in clinical

research. They allow us to circumvent major limitations of patient-

based studies, such as the uncertainty of disease onset and duration,

and the inability to assess changes in the early stages of the disease.

With these models, disease duration and staging are more readily

known, age-matching is granted a priori, and longitudinal studies are

easier to conduct. For these reasons, animalmodels are often chosen as

surrogates to investigate pathology-induced changes in the retina,

including those related to neurodegeneration, even acknowledging

the significant difference between animal models and humans.
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The retina, which shares a common origin with the brain during

embryonic development, is part of the CNS and has many

similarities in terms of its anatomy, vascularization, and

immunology, among others. The clear optics of the eye allows for

direct observation, providing a valuable opportunity to directly

image the effects of AD in the retina. Unlike other methods used to

diagnose and monitor neurodegenerative disorders, OCT is non-

invasive, fast, inexpensive, and readily available.

We continuously monitored two groups of mice, WT and 3×Tg-

ADmice, until 16months of age. Animals were frequently imagedwith

OCT, as we brought retinal changes induced by healthy aging and

familial AD-associated genes to light. For the first time, the retinas of
FIGURE 5

Retina texture. Boxplots for extracted textural features for 1-, 4-, 12-, and 16-month-old mice, for wild type and the triple transgenic (3xTg-AD) mice
discriminated per retinal layer (RNFL-GCL complex and IPL, INL, OPL, ONL, IS, OS, and RPE layers). Median, first, and third quartiles are represented.
Whiskers at each quartile plus 1.5 times the interquartile range. All features were normalized to have zero mean and unit standard deviation. Feature
name and quadrant (superscript) as indicated. Correlated features (p<0.05) per layer and time point were excluded. CS – Cluster Shade; DE –

Difference of Entropy; DS – Dissimilarity; DV – Difference of Variance; Etp – Entropy; Hgt – Homogeneity; IDN – Inverse Difference Moment
Normalized; IMC1 – Information Measure of Correlation 1; SA – Sum Average; SE – Sum of Entropy; SS – Sum of Squares; Unf – Uniformity; RNFL-
GCL – retinal nerve fiber layer and ganglion cell layer complex; IPL – inner plexiform layer; INL – inner nuclear layer; OPL – outer plexiform layer;
ONL – outer nuclear layer. ▪ p<0.05; ● p<0.01; ★ p<0.001. These limits were corrected for multiple comparisons using the Bonferroni method.
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mice have been meticulously imaged from an early age (1 month old),

revealing changes at the very beginning of these animals’ lives.Wehave

investigated readily quantifiable alterations, such as retinal thickness,

but also information embedded in the OCT data that could be used for

early detection and diagnosis.

We have trained and tuned a neural network model capable of

segmenting retinal layers from the OCT of mice. This allowed us to

assess the TRT and the thickness of individual layers or aggregates.

As expected, both WT and 3×Tg-AD mice show a progressive

decrease in total retinal thickness with age. However, we found that

not all retinal layers follow this trend. The end-result retinal

thinning derives from a layer thickening and thinning balance.

We observed a decrease in the thickness of the IPL and INL over

time, combined with the thickening of the IS and RPE. The

remaining layers have minor to moderate thickness variations.

We observed significantly lower total retinal thickness values in

3×Tg-AD mice compared to age-matched WT animals at 6 out of
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the 7 ages evaluated. The observed thinning is consistent with the

literature for other animal models of AD (APP/PS1 mouse model)

(29) and human patients (30). Although RNFL thinning is usually

considered a hallmark of AD, in this study we observed RNFL-GCL

thinning only in WT mice. In (31), we have already detailed the

evolution of retinal thickness in these animal models up to 4

months of age. In the future, we will provide a more thorough

analysis up to month 16. We believe that normative retinal

thickness data, both layer-specific and for the whole retina,

covering the 16 months is an essential comparative reference for

future studies.

While verified thickness differences between the two groups can

indicate the potential of the retina as a surrogate for neuroimaging,

using thickness-based analysis alone has several drawbacks: (1) the

potential for error due to changes in segmentation methodology,

systems, resolution, scanning protocol, and location, (2) low

specificity as retinal thinning is not specific to neurodegeneration
FIGURE 6

Kernel density estimate of predicted retinal age per class (wild type and the triple transgenic mice, WT, and 3×Tg-AD, respectively) for each age. On
the left is the prediction of the network trained exclusively on WT mice, and on the right is the network trained exclusively on 3×Tg-AD mice. The
median (dashed), and first and third quartiles (dotted) are shown. Figure adapted from (25). ▪ p<0.05; ● p<0.01; ★ p<0.001.
TABLE 2 Percentage of classification errors for wild type (WT) and the triple transgenic mouse model of Alzheimer’s disease (3×Tg-AD) discriminated
by age.

Age (Months) 1 2 12 All Ages

WT RNFL-GCL 5.3% 16.7% 13.3% 11.5%

IPL 10.5% 16.7% 20.0% 15.4%

INL 21.1% 11.1% 20.0% 17.3%

OPL 5.3% 11.1% 6.7% 7.7%

ONL 10.5% 33.3% 20.0% 21.2%

All Layers 10.5% 17.8% 16.0% 14.6%

3×Tg – AD RNFL-GCL 15.8% 19.0% 11.8% 15.8%

IPL 57.9% 14.3% 5.9% 26.3%

INL 47.4% 14.3% 17.6% 26.3%

OPL 78.9% 19.0% 23.5% 40.4%

ONL 63.2% 14.3% 11.8% 29.8%

All Layers 52.6% 16.2% 14.1% 27.7%
fro
RNFL-GCL, retinal nerve fiber layer and ganglion cell layer complex; IPL, inner plexiform layer; INL, inner nuclear layer; OPL, outer plexiform layer; ONL, outer nuclear layer.
Totals per time point and group are presented.
ntiersin.org

https://doi.org/10.3389/fopht.2023.1156605
https://www.frontiersin.org/journals/ophthalmology
https://www.frontiersin.org


Batista et al. 10.3389/fopht.2023.1156605
and can also be caused by healthy aging or other eye conditions,

highly prevalent in the age group most associated with

neurodegeneration, and (3) forgoing a wealth of information

embedded in the OCT scans.

We computed MVF images, i.e., depth projections, from the

RNFL-GCL complex, and INL, IPL, ONL, and OPL layers. These

images allowed us to quantify textural differences between WT and

3×Tg-AD mice retinas. The rationale is that minor changes at the

molecular level can lead to changes in the tissue refractive index

detectable by OCT and translatable into textural differences. We

resorted to GLCM, a popular method for texture feature extraction,

and computed 80 features per layer and time point. We observed

that for every acquisition time point and layer, there were

statistically significant differences between the two groups

(p<0.001). These indicate that changes are widespread across the

retina and persistent in time. The three genes defining the mouse

model of familial AD have an enormous phenotypic impact on the

retina, which OCT can easily capture. As the retina is part of the

CNS, the obtained results suggest that there may be a wide-reaching

effect on the brain that can be evaluated by the analysis of the retina.

In the present study, we found statistically significant

differences for both retinal thickness and texture at the first

acquisition time point (1 month old mice). At this developmental

stage, the two groups already presented widespread differences

across the retina. This is a limitation of our study, as it was not

possible to identify a branching point between WT and 3×Tg-AD.

We may speculate that early neurodevelopmental differences exist

around or even before birth. For future studies, our results show

that the assumption of parity between WT and 3×Tg-AD at early

stages may not be correct. This should be taken into account when

studying progression.

Age-related changes in the brain, such as neural tissue thinning,

neural activity, and functional connectivity impairments, have been

associated with AD (22, 23, 32, 33). Brain-predicted age has been

reported as a significant predictor of dementia progression (34). We

trained and tuned two models to predict mice age from retinal OCT
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data to understand if similar changes were present in the retina. To

eliminate training bias, one model was trained using only WTs’

OCT scans, while the other relied on 3×Tg-AD retinal data. Both

models could predict mice age for both WT and transgenic mice.

Moreover, our results indicate that the presence of the three

mutated genes associated with the familial form of AD impacts

retinal aging. Both models consistently predicted ages for WT mice

older than 4 months above the ones predicted for 3×Tg-AD mice.

These findings are somewhat unexpected as they appear to

contradict what has been observed in the brain, which may partly be

explained by a background of early neurodevelopmental changes.

Overall, the underlying biological changes leading to age-dependent

alterations are complex. Several age-dependent cellular and

molecular changes have been previously reported in the retina,

such as photoreceptor mislocalization (35), vascular and RPE

changes (36), an increase in tissue autofluorescence at the

photoreceptor-RPE interface (37), and scattering diversity (38).

Nevertheless, these changes are not directly captured by OCT,

and a straightforward comparison with our results is not possible.

Indeed, what we can infer is that age-dependent neural adaptations

that naturally correlate with age are captured by our method. Thus,

we can theorize that these healthy adaptations may be altered in

transgenic animals. A delay in neural development has been

previously described in an AD mouse model (39). Moreover,

biological interpretations are further hindered by the complex

interactions between inserted mutated genes and the mice’s

background. Additional functional and molecular tests are

necessary to determine the factors responsible for these findings.

As aforementioned, the onset and staging of AD are difficult to

determine. Furthermore, AD typically remains undiagnosed for

over 10 years before clinical diagnosis (9–11). Thus, approaches that

can classify outside the training domain are paramount if models

are to be applied in the real world. Particularly, approaches that can

be trained in the late stages and still perform well in the early stages

open the door to early detection. An enticing possibility that may

lead to novel and effective disease-modifying therapies.
FIGURE 7

Classification performance. Accuracy, sensitivity, specificity, and F1-score metrics discriminated per segmented layer used to compute the input
images. RNFL-GCL – retinal nerve fiber layer and ganglion cell layer complex; IPL – inner plexiform layer; INL – inner nuclear layer; OPL – outer
plexiform layer; ONL – outer nuclear layer.
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Age modeling alone revealed statistically significant differences

between 3×Tg-AD and WT mice aged 8 months or older, even

though it was not explicitly trained to distinguish between the two

groups.Thus,wetrainedandtunedaCNNtodistinguishbetween3×Tg-

AD mice retinas and those of age-matched WT animals using data

exclusively from mice aged 3, 4, and 8 months. The resulting network

was able to distinguish between the two groups when applied to an

independent setoffundus imagescomputed frombotholder (12months

old) and younger (1 and 2 months old) mice retinas. Furthermore, the

results have shown that the retinas of transgenic and WT mice can be

discriminated based on MVF images of the segmented RNFL-GCL

complex, the IPL, INL, OPL, and ONL layers. Observed textural

differences support this finding. The effects of the three mutated genes

linked to the familial formofADarenot restricted to aparticular layeror

area of the retina but rather are observed throughout the retina.

The number of errors associated with group prediction was

higher for mice aged 1 month, particularly for the correct

identification of 3×Tg-AD mice retina. This observation may be

related to mice’s CNS development. The mass of mice’s CNS

increases from ages 4 to 15 weeks (40). As shown in Figure 3, the

biggest jump in healthy age-dependent retinal thinning occurs

between the first and second month. Thus, it is possible that, at

this stage, the retinas of transgenic and WT mice are far removed

from the cases the network was exposed to in training.

Evaluation of the elastic properties of the retina may also

provide a wealth of information on AD-induced changes. Indeed,

the potential of elastography techniques, particularly magnetic

resonance elastography (MRE), to detect changes in the brain’s

microstructure before volumetric changes or neuronal loss has

already been demonstrated (41). Nonetheless, the high cost of

MRE hinders its widespread adoption. We are currently

developing an OCE system to evaluate changes in retinal elastic

properties induced by neurodegeneration in animal models of

disease (42). Moreover, we are developing novel approaches to

retrieve tissue elastic properties with a higher degree of accuracy,

allowing the detection of slight variations (43).

OCE combines an OCT system with a localized applied force to

induce tissue displacements. Because they are based on the same

underlying system, OCE benefits from some of the advantages of

OCT in diagnosing and monitoring neurodegenerative diseases: it is

non-invasive and fast. Moreover, it is cost-effective and reachable,

since both imaging modalities can be performed in a single

examination, and it confers a new level of multimodality that can

bring us closer to in-clinic detection of subtle changes in retinal

properties in the early stages of neurodegeneration.

In this manuscript, we have highlighted the advantages of using

animal models in the study of neurodegeneration. However, there is a

significant limitation to this work: there is yet no guarantee that our

findings can be translated into clinical applicability. If our findings are

realized and verified in humans, OCT could become a powerful

screening tool for AD. However, we need prospective studies with

real-world human data to understand the feasibility of translation.

Furthermore, the “black box” nature of the deep learning approaches

used here implies that one cannot infer the reasoning behind each

classification decision. It is crucial to ensure that the outcomes of

algorithms that inform medical decisions affecting human health are
Frontiers in Ophthalmology 10
not arbitrary. Patients and clinicians need and deserve a clear-cut

explanation of the course of their diagnosis and follow-up. Before the

widespread adoption of these methods, we must strive to have more

usable and interpretable models.
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