
Frontiers in Ophthalmology

OPEN ACCESS

EDITED BY

David W. Marshak,
University of Texas Health Science Center,
United States

REVIEWED BY

Robert James Lucas,
The University of Manchester,
United Kingdom

*CORRESPONDENCE

Michael Tri H. Do

michael.do@childrens.harvard.edu

†
PRESENT ADDRESS

Alan J. Emanuel,
Department of Cell Biology, Emory
University School of Medicine, Atlanta, GA,
United States

SPECIALTY SECTION

This article was submitted to
Retina,
a section of the journal
Frontiers in Ophthalmology

RECEIVED 26 February 2023

ACCEPTED 10 April 2023
PUBLISHED 26 April 2023

CITATION

Emanuel AJ and Do MTH (2023) The
multistable melanopsins of mammals.
Front. Ophthalmol. 3:1174255.
doi: 10.3389/fopht.2023.1174255

COPYRIGHT

© 2023 Emanuel and Do. This is an open-
access article distributed under the terms of
the Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Mini Review

PUBLISHED 26 April 2023

DOI 10.3389/fopht.2023.1174255
The multistable melanopsins
of mammals

Alan J. Emanuel † and Michael Tri H. Do*

F.M. Kirby Neurobiology Center and Department of Neurology, Boston Children’s Hospital and
Harvard Medical School, Boston, MA, United States
Melanopsin is a light-activated G protein coupled receptor that is expressed

widely across phylogeny. In mammals, melanopsin is found in intrinsically

photosensitive retinal ganglion cells (ipRGCs), which are especially important

for “non-image” visual functions that include the regulation of circadian rhythms,

sleep, and mood. Photochemical and electrophysiological experiments have

provided evidence that melanopsin has at least two stable conformations and is

thus multistable, unlike the monostable photopigments of the classic rod and

cone photoreceptors. Estimates of melanopsin’s properties vary, challenging

efforts to understand how the molecule influences vision. This article seeks to

reconcile disparate views of melanopsin and offer a practical guide to

melanopsin’s complexities.
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Introduction

Organisms produce electrical responses to light in part by expressing photopigments,

molecules that absorb photons, change conformation, and signal downstream. Over a

thousand photopigments are known (1). Among them is melanopsin (2, 3). This molecule

has features that are, presently, both unique and controversial. A unified understanding of

these features is desirable because melanopsin exerts vital influences (4–7). For example,

melanopsin helps synchronize the circadian clock to the solar day, thereby setting normal

patterns of physiology and gene expression in practically all tissues of the body (8).

Circadian dysregulation is implicated in disorders that range from mental illness to cancer

(9–11). Melanopsin also plays roles in other species, such as fishes, frogs, lancelets, and reef

corals (12). This review provides a practical synthesis of knowledge concerning the

melanopsin molecules of mammals.
The spectral sensitivity of melanopsin

A cardinal feature of a photopigment is its spectral sensitivity. Examining the literature,

one has difficulty settling on the spectral sensitivity of mammalian melanopsin. Most

estimates indicate that melanopsin is most sensitive to a wavelength near 480 nm (13–19).
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This wavelength of maximum sensitivity is referred to as the lmax. A

single lmax suggests that the molecule activates from a single state

(or from multiple states that have the same spectral sensitivity).

However, photochemical and electrophysiological measurements

indicate that mouse melanopsin activates from two spectrally

distinct states (Figures 1A, B) (20, 21). The ground state,

melanopsin, abbreviated “R” for historical reasons, has a lmax of

~470 nm. The second state, extramelanopsin (E), has a lmax of ~450

nm. These values also apply to the melanopsin of macaque monkeys

(22) (Figure 1B). Puzzlingly, none of these lmax values are near 480

nm. Consideration of two factors offers a potential reconciliation.

First, the lmax of a photopigment is often determined by fitting

a discrete data set with a continuous function and taking the peak

of that fit (23–25). These functions, often referred to as
Frontiers in Ophthalmology 02
nomograms, are empirical and remarkably accurate (25). Given

the lmax of a pigment as the only free parameter, a nomogram

describes the spectral sensitivity well. However, ambiguity arises

in how the fit is performed. If sensitivity is plotted on a linear

scale, the fit tends to weigh the peak sensitivity more heavily. If the

response is plotted on a log scale, the fit tends to weigh the

long-wavelength decline of sensitivity more heavily. The

aforementioned photochemical and electrophysiological

estimates of melanopsin’s spectral sensitivity (lmax values of

~470 and ~450 nm) were made with fits on a linear scale. If one

fits the electrophysiological data on a log scale, the lmax values are

red-shifted to ~490 nm for the R state and ~470 nm for the E state

(Figures 1C, D). This ~20-nm disparity between linear and log fits

is substantial. Which lmax values to choose?
D

A B

C

FIGURE 1

Melanopsin multistability in mice and macaques. (A) Top, Melanopsin states in the mouse. Melanopsin (R, the ground state, electrically silent)
photoconverts with metamelanopsin (M, the signaling state), which photoconverts with extramelanopsin (E, electrically silent). Bottom,
Photosensitivities of the three mouse melanopsin states (product of the extinction coefficient and quantum efficiency of isomerization) as a function
of wavelength (20), normalized to that of the R state. (B) Wavelengths of peak sensitivity (lmax) for mouse melanopsin estimated by biochemistry and
electrophysiology, and for macaque melanopsin estimated by electrophysiology (20–22). lmax values were obtained by fitting nomograms on linear
ordinates. (C) Left, Average of action spectra measured from mouse ipRGCs in darkness (markers) Data were previously published (21). The line is a
single-state nomogram fit using a least-squares algorithm on a linear scale. Fit lmax = 471 nm. Right, As on the left but the fit was made on a semi-
log scale. Fit lmax = 493 nm. (D) Left, Average of action spectra measured from ipRGCs during background illumination with 600-nm light to enrich
for the E state (markers). The line is a single-state nomogram fit using a least-squares algorithm on a linear scale. Fit lmax = 453 nm. Right, As on the
left, but the fit was made on a semi-log scale. Fit lmax = 471 nm.
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One might select according to context. A log fit might be

undesirable because the long-wavelength decline of spectral

sensitivity is labile. When wavelengths are longer than a certain

value (lcritical, where lmax = 0.84 lcritical), sensitivity has a more

positive slope at higher temperature (26). On a log scale, fitting the

R state’s action spectrum (21) using all data points or only those

below lcritical yields lmax values of 493 and 476 nm, respectively. For

the E state, these values are 471 and 463 nm. Repeating the exercise

on a linear scale yields no difference for either state. On the other

hand, a log fit might be desirable because the long-wavelength

decline encompasses a broad range of tested sensitivities, unlike the

peak. This trade-off likely explains why measurements vary across

studies that have different emphases. Practical advice is to use the

lmax of the linear fit when short wavelengths are more relevant, and

that of the log fit when long wavelengths are. Fits may also be made

to portions of the data according to need (25).

The second consideration is that melanopsin equilibrates

among its three known states during illumination (20, 21). Under

common lighting conditions, the population of melanopsin

molecules activates about equally from the R and E states (21).

Taking the lmax values of these states as 450 and 470 nm (from fits

on a linear ordinate), one obtains an effective lmax of ~460 nm

(Figure 2A). Using log ordinate fits instead, where lmax values are

470 and 490 nm, the effective lmax is ~480 nm. Most studies of

melanopsin’s spectral sensitivity use stimuli that are sufficiently

long and intense that they are likely to produce an equilibrium of

states. Thus, the commonly observed lmax of 480 nm can be

explained by melanopsin’s multistable nature and the popularity

of fitting on a log ordinate.

Melanopsin’s activation from two spectrally distinct states

causes the population of molecules to have a broader spectral

sensitivity than a single state (21). This broadening may be

considered ample, as the difference in lmax values between the R

and E states is roughly comparable to that between the long- and

medium-wavelength sensitive cone pigments that give rise to the

red-green color axis in humans (27). Indeed, a broadened spectral

sensitivity is consistent with the role of melanopsin in sensing the

overall light intensity and not necessarily specific wavelengths (but
Frontiers in Ophthalmology 03
see 28). On the other hand, this broadening may be considered

slight. Consider the predicted activation of melanopsin in sunlight

(CIE spectrum G174), comparing the realistic case of a combined-

state spectral sensitivity and the hypothetical case of a single-state

spectral sensitivity, each having a lmax value of 480 nm. The

combined-state, broader spectrum absorbs ~3% more than the

single-state, narrower spectrum. It would appear that, at least

under sunlight, the spectral broadening caused by melanopsin

multistability is subtle. Nevertheless, in cases that require

precision, it is not much trouble to use the combined-state

spectrum rather than its single-state approximation.

To conclude this section, it may be sufficient in most contexts to

approximate melanopsin’s spectral sensitivity with a standard

Govardovskii nomogram that has a lmax of 480 nm (on a log

scale) or 460 nm (on a linear scale). Accommodating additional

complexity increases accuracy.
Specific features of
melanopsin multistability

At this point, it appears that melanopsin can be considered in

relatively simple terms. However, there are cases where specific

features of melanopsin multistability are especially salient. This

section will highlight five.
Persistent activity

Melanopsin’s signaling state, metamelanopsin (M), is subject to

termination mechanisms that include phosphorylation, arrestin

binding, bleaching, and internalization (29–39). Nevertheless,

some melanopsin signaling endures and drives persistent cellular

activation (21, 22, 40, 41). This activity is consistent with the

melanopsin system’s encoding of environmental irradiance.

Prolonged activation tends to blur spatial and temporal details in

the scene, emphasizing the overall light intensity (21, 22). The

overall light intensity is information that is used, for instance, by the
A B

FIGURE 2

Melanopsin states under broadband and narrowband illumination. (A) Fits made to the action spectrum measured from ipRGCs on a background of
broadband white light (21) using either a single-state nomogram (blue; lmax = 463 nm when fit on linear scale) or the combination of the R and E
spectra (gray; lmax = 463 nm). Black and red dotted lines represent the R and E state nomograms, respectively, scaled to their contributions to the
combined fit and using lmax values measured electrophysiologically (471 and 453 nm, respectively). The lmax of the combined nomogram, when fit
on a log scale, is 480 nm. (B) Melanopsin states at photoequilibrium for monochromatic illumination with wavelengths spanning the visible range,
predicted by a model based on biochemical parameters of mouse melanopsin (21).
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circadian clock for synchronization to the day/night cycle (42).

Persistent melanopsin activity is also thought to drive the post-

illumination pupil response (PIPR), which has been used to

diagnose the melanopsin system in contexts ranging from

seasonal affective disorder to Alzheimer’s disease (41).
Photoswitching

As mentioned above, photon absorptions interconvert

melanopsin among its states. Sunlight and most common sources

of artificial white light produce a photoequilibrium in which

roughly half the melanopsin molecules are in M state and a

quarter each are in the R and E states. Photoswitching maintains

a pool of melanopsin molecules for activation, as those that are

driven from the M state are available for reactivation (21, 22, 43).

The photoequilibrium fractions of melanopsin can be

manipulated using narrow-band light (Figure 2B) (20, 21). The M

state, having the longest lmax, dominates under short wavelengths

and is minimal under long wavelengths. The E state, having the

shortest lmax, follows the opposite pattern (while the R state has an

intermediate lmax and only a small fraction is present after exposure

to any wavelength). This trade between M and E states is reflected in

the magnitude of persistent activity in ipRGCs. Short wavelengths

produce the largest persistent activity and long wavelengths the

smallest (21, 22). Thus, ipRGC activation can be switched high and

low with acute illumination with short and long wavelengths.

Photoswitching of persistent activity has been demonstrated for

mouse and macaque ipRGCs (21, 22), as well as for cell lines

expressing human melanopsin (40).

Practically speaking, deactivation of ipRGCs requires intense

and prolonged illumination because all melanopsin states absorb

long wavelengths poorly. The optimal wavelength for deactivation

is near 560 nm and reflects a balance between being long enough for

preferential absorption by the M state but not so long that it is

scarcely absorbed at all (21). At 560 nm, deactivation can be

produced by delivering ~109 photons µm-2 sec-1 for 30 s or more

(21, 22). This kind of light is probably not found in nature, though

artificial sources are available.
Bleaching and regeneration

Bleaching is the process by which an activated photopigment

dissociates into opsin and chromophore (44). Neither opsin nor

chromophore absorb well in the visible spectrum so this process

causes the appearance of an actual bleach to the human eye. For

example, a solution of rhodopsin—a molecule once called visual

purple—loses its color in light. Bleaching and multistability are not

mutually exclusive. Thus, though active melanopsin is stable and

can be photoconverted to a silent state, it can also release its

chromophore (36, 37, 39, 45). Indeed, applying exogenous

chromophore to ipRGCs increases their sensitivity, though it is

unclear if this effect is due to natural levels of bare opsin or

bleaching during the course of the experiment (36, 45, 46).
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The only chromophore found in dark-adapted ipRGCs is 11-cis

retinal (47), which defines melanopsin’s R state (20). Curiously,

there appears to be no kind of illumination that produces only the R

state in ipRGCs. As mentioned above, this state seems sparse during

illumination with any spectrum (21). Therefore, a light-

independent pathway should recover melanopsin to the R state.

Evidence exists for chromophore supply from the retinal pigment

epithelium to ipRGCs via Müller glia cells (48) even though

questions remain (49). Perhaps the process of dark regeneration

involves melanopsin bleaching and 11-cis retinal resupply.
Adaptation

Melanopsin activity drives adaptive processes that tamp down on

melanopsin activity (29–39, 50–52). Consequently, melanopsin

deactivation may reverse adaptation to produce sensitization.

Sensitization of this kind has been suggested by in vivo experiments

(53). Anecdotal evidence can be found in ex vivo experiments as well

(21). Melanopsin phototransduction also drives light adaptation at the

level of the ipRGC population (54). The interplay of activation and

adaptation in the melanopsin system merits further study.
Species variation

At least two stable, silent states of melanopsin have been observed

in mice and macaques (21, 22). In humans and the lancelet,

amphioxus, only one silent state has been reported (55, 56). Thus,

the evolutionary conservation of melanopsin multistability may be

incomplete. Also, across species, melanopsins vary in their bleaching

rates (37). This variation may influence the lifetimes of persistent

responses across species. Indeed, mouse melanopsin (reluctant to

bleach) and human melanopsin (willing to bleach) have relatively

long and brief persistent responses, respectively (37, 40). Another layer

of intricacy is that persistent response lifetime may be modulated,

melanopsin can be alternatively spliced, melanopsins are functionally

diverse, and melanopsins show sufficient molecular distinctions to be

grouped into two gene families (Opn4m and Opn4x) (57–63). Further

study may reveal additional diversity in melanopsins across species.
Closing remarks

Melanopsin’s discovery indicated that the mammalian retina is not

duplex—relying on rods and cones to sense light—but multiplex. The

multiplicity of melanopsin states adds richness to this picture. This

review intends to provide a concise summary of melanopsin’s

complexities and a practical guide on how to navigate them.
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