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Pediatric cataracts of different
etiologies contain insoluble,
calcified particles

Peter J. Minogue1, Sarah H. Rodriguez1,2, Viviana M. Berthoud1†

and Eric C. Beyer1*†

1Department of Pediatrics, University of Chicago, Chicago, IL, United States, 2Department of
Ophthalmology and Visual Science, University of Chicago, Chicago, IL, United States
Our recent studies in mice suggest that a crucial event for the development of

cataracts is the formation of calcium-containing deposits. To examine the

generality of pathologic mineralization as a novel mechanism of cataract

formation, we analyzed lens material from different human cataract surgeries.

Human lens material was obtained from routine cataract surgeries performed on

three patients with dense, white cataracts: a 10-month-old with congenital

cataracts, a 9-year-old with a uveitic cataract, and a 17-year-old with a

traumatic cataract. The aspirated material from the cataract surgeries

contained insoluble material that could be isolated by centrifugation. Many

particles within the insoluble fraction stained with Alizarin red, a dye that stains

insoluble calcified material. The appearance of these human insoluble, Alizarin

red-stained particles was similar to some of those detected in homogenates

from cataractous mouse lenses. These results support the hypothesis that

pathologic mineralization may have a mechanistic role in the formation of

cataracts of different etiologies.
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1 Introduction

Although less common than in adults, pediatric cataracts are the leading cause of

childhood blindness worldwide (1, 2). While they may result from a variety of different

primary etiologies, cataracts in children share several pathologic features. Cataractous

lenses exhibit damage to lens cell proteins and lipids. Biochemically, this damage can

include oxidation, crosslinking, denaturation, aggregation, proteolysis/cleavage,

misfolding, and other kinds of modifications (3, 4). Disturbances of ionic homeostasis,

including large elevations of calcium concentrations, are also observed in many cataractous

lenses (5, 6). These biochemical changes are not necessarily identical in all patients and

their relative importance for cataract severity is not well established.

Recent studies performed in our laboratory and others using microscopy and micro-

computed tomography to study the lenses of mice that develop cataracts due to different
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genetic abnormalities have shown that the cataracts contain calcium

precipitates that localize to the same region as the cataract (7–10).

In connexin mutant lenses and the lenses of a mouse with a

mutation of gC-crystallin, we used infrared microspectroscopy to

identify the mineral in these precipitates as calcium phosphate in

the form of apatite (10, 11). Radiographic studies have detected

calcium-containing mineral also in canine cataracts (12). Several

previous papers have suggested that different types of cataracts in

people contain insoluble calcium salts (13–17). These findings

suggest that precipitation of calcium ions (biomineralization)

might be a general phenomenon in cataracts (18).

We undertook the present study to test the generality of

calcified particle formation in human cataracts of different

etiologies. We performed microscopic examination of the

insoluble material from cataract extractions after staining it with

Alizarin red, a dye commonly used to identify and localize calcium

deposits in tissues, including bone and teeth.
2 Methods

2.1 Subjects

Patients seen at Comer Children’s Hospital for cataract

extraction were enrolled prospectively. Parents provided informed

consent. Assent was obtained from children aged seven years or

older unless the child's decision-making capacity was impaired.

Protocols were approved by the University of Chicago Institutional

Review Board (#17-1679). All studies were conducted in accordance

with the Declaration of Helsinki guidelines.
2.2 Alizarin red staining of lens material
and microscopy

Lens material aspirated from cataract surgery, which would

otherwise be discarded, was analyzed. All material collected during

cataract surgery (including irrigation fluid) was combined (total

volume 50 - 150 ml) and centrifuged at 16000 g for 10 min at 4°C.

The resulting pellet was resuspended and fixed for 15 min at room

temperature in 4% paraformaldehyde in PBS, pH 7.4 (total volume

0.5 ml) to enhance preservation of cells and tissue pieces in the

insoluble fraction. After fixation, the lens material was centrifuged

and the pellet was resuspended in PBS, pH 7.4. The resuspended

material was mixed with an equal volume of 2% Alizarin red

(filtered) in water (pH 4.1-4.3) on a glass slide (11). Images from

the specimens were acquired using 10X or 20X objectives with a

Nikon DIAPHOT inverted microscope (Nikon Instruments Inc.,

Melville, NY) and a Nikon D70 digital camera as described

previously (11) or using 10X, 20X or 40X Plan-Apochromat

objectives in a Zeiss Axioplan 2 microscope (Carl Zeiss,

München, Germany) equipped with a Zeiss AxioCam digital

camera using Zeiss AxioVision software. The longest dimensions

of the Alizarin red-stained particles were determined using ImageJ

(19). For images including many particles in different focal planes,

multiple photomicrographs of the same field were combined using
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the ImageJ Extended Depth of Field (EDF) plugin; EDF-combined

images are shown in Figures 1B, 2C.
3 Results

We studied three pediatric patients with cataracts of different

etiologies (Table 1).
3.1 Patient 1 congenital/genetic cataracts

A 10-month-old girl presented as a referral from her

pediatrician due to poor red reflex in both eyes that had been first

noticed by the mother at about 7 months. She was found to have

bilateral white cataracts (Figure 1A) and poor fixation. There was
FIGURE 1

(A) Pre-operative external photograph of the left eye of a 10-month-old
girl with bilateral congenital cataracts. (B–F) Photomicrographs showing
the Alizarin red-stained particles in the insoluble material extracted from
this lens. Bar, 50 µm for (B, D, F) and 100 µm for (C, E).
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no view to the retina due to the dense white cataracts, but posterior

segment ultrasonography was unremarkable.

Her newborn screen had been negative, and she had passed a

hearing screen shortly after birth. The genetics consultant did not

recognize any dysmorphic features on exam and did not suggest a

syndromic diagnosis. Microarray testing showed single copy

interstitial loss of chromosome 8q24.3. The patient’s younger

sibling carries the same mutation and has milder cataracts that

are not yet visually significant.

The patient underwent lensectomy with intraocular lens

placement, limited anterior vitrectomy, and posterior capsulectomy

in both eyes. After removing the cataracts, examination of her optic

nerve and retina were unremarkable. Her nystagmus has continued

with some intermittent visual interest likely due to a combination of

amblyopia and cortical visual impairment.
3.2 Patient 2 uveitic cataract

A 9-year-old girl presented with poor vision in the right eye of

unknown duration. The family had noticed a white pupil on the

right side 1 month prior to presentation to the emergency room.

She had no history of trauma. A normal eye exam was documented

on optometry records from 5 years prior. There was no family or

personal history of autoimmune conditions. Past medical history

and review of systems were negative.

On examination, her vision was 20/20 in the left eye and hand

motions in the right eye. Pressure was normal in both eyes. The left eye

examination was unremarkable with no signs of inflammation or

cataract. In the right eye, she was found to have a dense white

cataract (Figure 2A) with 360 degrees synechiae. The anterior

segment was otherwise quiescent. Posterior segment ultrasonography

revealed some scattered hyper-echoic opacities in the vitreous, hyper-

echoic signal over the nerve, but attached retina.

Rheumatology consultation and serologic evaluation showed no

evidence for an underlying autoimmune condition. The patient was

diagnosed with idiopathic uveitis.

The subject underwent cataract surgery with synechiolysis and

intraocular lens placement with intracameral steroids. Post-operatively,

she was found to have optic nerve edema and cystoid macular edema.

She was placed on topical and oral steroids, and her disc and macular

edema resolved. Best corrected visual acuity is 20/50. She has been

tapered off steroids, and the eye has remained quiet.
3.3 Patient 3 traumatic cataract

A 17-year-old girl with the 13q deletion syndrome,

developmental delay and self-inflicted trauma presented with a

white, traumatic cataract in the right eye (Figure 3A). The patient

had a significant past medical history (severe intellectual disability,

hearing impairment, dependence on gastrostomy feeding, type 2

diabetes, asthma, and atrial and ventricular septal defects), but she

had no previously diagnosed eye problems. The mother reported

the new development of a white pupil within a few weeks to a

month prior to presentation. Visual acuity could not be assessed
Frontiers in Ophthalmology 03
due to lack of patient cooperation. There was no view of the retina

before surgery, but ultrasound was reassuring. The left eye

examination was unremarkable.

She underwent lensectomy with intraocular lens placement in

the right eye. Her retina was subsequently visualized and appeared

normal. A laser retinopexy was recommended for both eyes to

decrease the chance of a traumatic retinal detachment.
FIGURE 2

(A) Pre-operative photograph of the right eye of a 9-year-old girl
with a uveitic cataract. (B–E) Photomicrographs showing the Alizarin
red-stained particles in the insoluble material extracted from this
lens. Bar, 161 µm for (B, C, E) and 81 µm for (D).
TABLE 1 Patient characteristics.

Patient 1 Patient 2 Patient 3

Age 10 months 9 years 17 years

Sex Female Female Female

Cataract etiology Congenital/
genetic

Uveitis Trauma

Time to
apparent white
cataract

~3 months 1 month ~1 month

Affected eye Both Right Right
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3.4 Examination of insoluble material

The insoluble fractions from the lenses of all three patients

contained many particles that stained with Alizarin red (Figures 1B–

F, 2B–E, 3B–E). The Alizarin red-stained objects varied widely in

size: 0.5-84 µm for patient 1, 1.5-32 µm for patient 2, and 0.4-57 µm

for patient 3. Some lens fiber cells were associated with large

numbers of very small particles (Figures 1B, 2B, 2C, 3C). Some of

the larger particles had distinct, sharp linear edges and appeared

refractile, suggestive of crystals (Figures 1D, 2D, 3D).
4 Discussion

We found Alizarin red-stained insoluble particles in all cases

within this series of three pediatric patients with cataracts of diverse
Frontiers in Ophthalmology 04
etiologies, suggesting that biomineralization (calcification of biological

material) may be a general occurrence in pediatric cataracts. Many of

the particles were discrete with limited background staining of most

cellular material and debris in the samples, implying the specificity of

our staining. We have not performed “control” experiments to study

insoluble material from the clear lenses of normal children for

comparison with the cataractous material. However, based on

extrapolating our previous findings that Alizarin red-stained

particles are found in the lenses of mice with cataracts but not in

the lenses of their wild type littermates (10, 11), we suspect that such

stained particles are uniquely associated with cataractous lenses.

Alizarin red has been widely used as a histochemical stain to

identify calcified material in tissues (20, 21) or in body fluids (22). This

dye is not absolutely specific for calcium, since it can also react with

salts of other cations (23). However, calcium ions aremore abundant in

tissues than the other cations (e.g., copper, barium, zinc, lead, iron,

nickel and cobalt). In mouse models that develop cataracts, an increase

in the intracellular concentration of Ca2+ > 1 mM is a common finding

(6), making it potentially possible to exceed the Ksp for some calcium

salts in these lenses or to favor the deposition of calcium on a scaffold of

macromolecules containing negative charges. In our studies of mutant

mice, we found mineral in their cataractous lenses and identified it as

calcium phosphate in the form of apatite (10, 11). Therefore, it is likely

that calcium ions comprise the cation in the Alizarin red-stained

insoluble material that we found in pediatric cataracts.

Maintenance of lens cell homeostasis is facilitated by an internal

circulation of ions, small molecules and water, which is driven by the

regional distribution and activities of ion channels, transporters, and

exchangers (24). Ions enter the lens at the anterior and posterior

poles and move towards the center through the extracellular spaces.

Ions are driven into fiber cells by their electrochemical gradients.

Ions move outward through the cytoplasm of fiber cells and across

cell boundaries through gap junction channels. Once ions reach the

epithelial cells on the lens surface, they are transported out of the lens

by epithelial ion pumps, transporters and exchangers. The

movement of water is coupled to the circulation of ions.

Cellular Ca2+ is highly regulated in the lens. In the epithelial

cells, the intracellular Ca2+ concentration is maintained at ~100 nM

(25, 26). In fiber cells, it is somewhat higher, reflecting a gradient of

calcium ions that increases approaching the center of the lens.

Regardless of cell type, the intracellular concentration of Ca2+ is

thousands of times less than the extracellular Ca2+ concentration of

~1.3 mM in the aqueous humor (5, 27). Thus, the electrochemical

gradient will drive extracellular Ca2+ that enter the lens into fiber

cells. Impairment of the lens circulation will lead to increases in the

intracellular concentration of Ca2+, which can interact with anions

in the cells (including free phosphate) and form insoluble particles.

The sequence of events leading to biomineralization may differ in

subjects that develop cataracts due to different primary etiologies. The

initial event may be precipitation of insoluble calcium-containing

salts resulting from disturbances in ionic homeostasis or it might be

damage to lens components that act as a matrix for the deposition of

calcium ions. Each of these sequences may explain the formation of

mineralized particles in the different cases studied in this report.

The lens circulation of ions and water is disrupted in many

different kinds of cataracts (28). Lens calcification has been observed
FIGURE 3

(A) Intra-operative photograph of the right eye of a 17-year-old girl
with a traumatic cataract, after staining of the anterior capsule with
trypan blue. (B–E) Photomicrographs showing the Alizarin red-
stained material in the insoluble material extracted from this lens.
Bar, 50 µm for (B, D) 41 µm for (C) and 161 µm for (E).
frontiersin.org

https://doi.org/10.3389/fopht.2023.1213359
https://www.frontiersin.org/journals/ophthalmology
https://www.frontiersin.org


Minogue et al. 10.3389/fopht.2023.1213359
in mouse cataracts caused by mutations of channel proteins with

varied functions (7–9, 11, 29) and cataracts caused by mutations of

other lens proteins associated with secondary impairment of the lens

circulation (10). We do not know the gene(s) responsible for the

congenital cataracts in our series, but a primary disturbance of lens

ionic homeostasis might be possible. In the traumatic cataract, direct

impact on the globe causes lens damage and cellular disruption (30),

exposing negative charges in proteins and other molecules that could

readily bind calcium ions. Cataract formation in patients with uveitis

is usually attributed to uncontrolled and sustained inflammation (or

prolonged use of steroids which was not the case in our patient) (31).

It is likely that pathologic calcification followed the inflammatory

damage to lens cells.

Formation of calcified material in the lens requires interaction of

Ca2+ with negatively charged ions or molecules. The extracellular

pool would provide the main source for Ca2+ accumulation inside

lens cells and subsequent mineralization in the many kinds of

cataracts that develop when the lens circulation is disrupted (28).

Mitochondria and the endoplasmic reticulum hold substantial stores

of calcium ions that may contribute to mineralization in some forms

of cataracts. Although these organelles are normally only present in

epithelial and differentiating fiber cells, damage to cortical cells might

result in release of their intraorganellar calcium. The anions

(including phosphate and possibly proteins or lipids) are all major

constituents of cells and their cytoplasm that may become available

for interaction with Ca2+ in lenses subjected to insults or damage.

Regardless of the mechanistic sequence of events, biomineralization

within the lens would have a major impact on vision (beyond protein

damage and aggregation). The calcium-containing particles would scatter

or block transmission of light onto the retina. It is not yet clear how the

abundance of calcified material relates to the volume or severity of

cataracts. All of the patients in our series had dense white cataracts of

unknown duration. In the two older patients, the parents had only

noticed the white pupil for about one month prior to presentation, while

the congenital cataract may have been significant for as little as three

months. These results suggest that mineralization may occur relatively

early in some (or perhaps all) cataracts.

Taken together, our data suggest that development of a treatment

that prevented biomineralization in the lens could be beneficial by

interfering with the development or progression of cataracts.
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