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Introduction: Estrogen has emerged as a multifaceted signaling molecule in the

retina, playing an important role in neural development and providing

neuroprotection in adults. It interacts with two receptor types: classical

estrogen receptors (ERs) alpha and beta, and G protein-coupled estrogen

receptor (Gper). Gper differs from classical ERs in structure, localization, and

signaling. Here we provide the first report of the temporal and spatial properties

of Gper transcript and protein expression in the developing and mature

mouse retina.

Methods: We applied qRT-PCR to determine Gper transcript expression in wild

type mouse retina from P0-P21. Immunohistochemistry and Western blot were

used to determine Gper protein expression and localization at the same

time points.

Results: Gper expression showed a 6-fold increase during postnatal

development, peaking at P14. Relative total Gper expression exhibited a

significant decrease during retinal development, although variations emerged

in the timing of changes among different forms of the protein. Gper

immunoreactivity was seen in retinal ganglion cells (RGCs) throughout

development and also in somas in the position of horizontal cells at early time

points. Immunoreactivity was observed in the cytoplasm and Golgi at all time

points, in the nucleus at early time points, and in RGC axons as the

retina matured.

Discussion: In conclusion, our study illuminates the spatial and temporal

expression patterns of Gper in the developing mouse retina and provides a

vital foundation for further investigations into the role of Gper in retinal

development and degeneration.
KEYWORDS

estrogen, estradiol (E2), G protein-coupled estrogen receptor 1 (GPER1), GPR30, retinal
ganglion cells, neurodevelopment
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1 Introduction

Estrogen is best known for its role in the development and

regulation of the reproductive system. However, it also plays an

important role in many organ systems, including the central

nervous system (CNS) (1). Estrogen has been shown to have

neuroprotective effects in the CNS (2) and in models of retinal

degenerative disorders including glaucoma (3–5). Estrogen has also

emerged as a multifaceted signaling molecule in CNS development,

playing a role in cell proliferation, differentiation, migration, and

growth of neuronal processes (1, 6–8).

Estradiol (E2), the predominant estrogen form, acts on two types

of receptors, classical estrogen receptors (ERs) alpha and beta, and the

non-canonical membrane estrogen receptor, G protein-coupled

estrogen receptor (Gper). Gper is a novel estrogen receptor, differing

from classical ERs in structure, localization, and signaling pathways (9,

10). Classical ERs are nuclear receptors that act through a genomic

pathway, dimerizing when activated by E2 and translocating from the

cytoplasm to the nucleus where they bind to promoters of target genes

(11). In contrast, Gper regulates the rapid, non-genomic actions of E2

on classical ERs (9, 12–14), ultimately leading to genomic action (15).

Gper, also known as Gper1 or GPR30, is highly conserved in

vertebrate species (16, 17) dating to 4.5 million years ago. It is

ubiquitously distributed throughout the body including the central

and peripheral nervous systems (1). Gper regulates proliferation in

neural stem/progenitor cells (18, 19) and differentiation in

oligodendrocytes (20). In zebrafish, Gper has been linked to

regulation of Otx2 expression where it influences development of

sensory organs and the brain (21). Here we provide the first report of

the temporal and spatial properties of Gper transcript and protein

expression in the postnatal developing and mature mouse retina.
2 Materials and methods

2.1 Animals

All animal procedures adhered to National Institutes of Health

Guidelines on Laboratory Animal Welfare and were approved by Saint

Louis University’s Institutional Animal Care and Use Committee

(IACUC). Housing facilities were maintained with a 12-hour light/

dark cycle. Tissue samples were harvested from wild type C57BL/6J

mice (Jackson Laboratory, CAT #: 000664) at seven time points from

postnatal day (P)0 to P21. Samples from animals were age-matched

between different litters. Animals were sexed on P0 and again on the

day of tissue collection. Animals between P0-P8 were euthanized via

induced hypothermia followed by decapitation. Animals between P11-

P21 were euthanized by intraperitoneal injection of pentobarbital (≤0.1

ml). Eyes were enucleated on ice and the anterior segment removed.
2.2 Quantitative reverse transcription
polymerase chain reaction

Retinas were isolated as above and pooled with four retinas in

each P0-P5 sample and two retinas in samples harvested at P8-P21.
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Total RNA was extracted using Quick RNA Mini-Prep Plus (Zymo

Research, CAT #: R1057) using the manufacturer’s protocol. RNA

quality was measured on the Synergy H1 BioTek plate reader at

260nm/280nm, and the values were between 1.8 and 2. cDNA was

made with primers shown in Table 1 using the Iscript Reverse

Transcription Supermix (Bio-Rad, CAT#: 1708841) according to

the manufacturer’s protocol on a Labnet MultiGene Optimax

(Labnet International). The final concentration of cDNA for

amplification was 903.12 ng (90.312 ng/ml). Samples were mixed

with PowerUp SYBR Green Master Mix (Thermo Fisher, CAT #:

A25742) and amplified in a MicroAmp Enduraplate Optical 96 well

Fast Clear Reaction Plate (Applied Biosystems, CAT#: 4483485)

covered with an Optical Adhesive Cover (Applied Biosystems,

CAT#: 4360954) on a QuantStudio 5 Real-Time PCR System

(Applied Biosystems).
2.3 Western blot assay

Tissue processing and Western blot assay were performed as

previously described (22) with variations noted. Retinas were

isolated, flash frozen, and stored in microcentrifuge tubes at -80°

C until further processing. P0 samples consisted of eight retinas, P2-

P8 samples consisted of six retinas, and P11-P21 samples consisted

of four retinas. Whole brain cortex from P2 was used as a positive

control. Sample lysis was performed with a mixture of Pierce Radio

Immune Precipitation Assay (RIPA) buffer (Thermo Fisher

Scientific, CAT #: 89900), 1% Mammalian Protease Inhibitor

Cocktail (Sigma-Aldrich, CAT #: P8340) and 1% 0.1M of

phenylmethylsulfonyl fluoride protease inhibitor (Sigma-Aldrich,

CAT #: P-7626). Tissue was emulsified by sonification for 20 (P0-

P14) or 40 seconds (P21, plus positive control) with the Sonic

Dismembrator Model 100 (Thermo Fisher Scientific) on a setting of

1 and an output of 3 Watts.

Total protein of the samples was determined using a BCA assay

(Pierce™ BCA Protein Assay Kit, CAT #: 23227) following

manufacturer’s instructions and measured on the Synergy H1

BioTek plate reader. Sample protein concentration was normalized

with RIPA buffer, except for the positive control, followed by addition

of 5% beta-mercaptoethanol (Sigma-Aldrich, CAT #: M3148), and

35% LDS 4x TruPage LDS Buffer (Millipore, CAT #: PCg3009). Gel

electrophoresis was performed on three biological replicates of each

timepoint using mPage precast gels (EMD Millipore Corporation,

CAT #: MP41G12) and mPage MOPS SDS Running Buffer (EMD

Millipore Corporation, CAT #: MPMOPS) following manufacturer’s

instructions. Precision Plus Protein Kaleidoscope (Bio-Rad, CAT #:

1610375) was used as our protein standard.
TABLE 1 Primers for qRT-PCR.

Primer Name Sequence Size

Gper Forward GCCTCTGCTACTCCCTCATC 20

Gper Reverse ACTGCGAAGATCATCCTCAGG 21

Rplp0 Forward ATCTGCTGCATCTGCTTG 18

Rplp0 Reverse CGACCTGGAAGTCCAACTAC 20
frontie
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Proteins were transferred overnight at 25 V in mPage Transfer

Buffer (EMD Millipore Corporation, CAT #: MPTRB). Blots were

cut between the 50 kDa and 36 kDa protein markers and incubated

concurrently with either a polyclonal rabbit GPR30 antibody

targeted to the C-terminal for Gper (GeneTex, CAT #:

GTX107748, 1:3000) or GAPDH rabbit monoclonal antibody

(Cell Signaling Technologies, CAT #: 14C10,1:3000). The

nitrocellulose was then incubated with IgG anti-rabbit horse

radish peroxidase linked secondary antibody (Cell Signaling

Technologies, CAT #: 7074S, 1:2500), with three subsequent

washes for five minutes in PBST. Clarity Western ECL Substrate

(Bio-Rad Laboratories, CAT #: 170-5060) was applied to the

nitrocellulose as per the manufacturer’s protocol to visualize

proteins via iBright FL1000.
2.4 Immunohistochemistry

Tissue processing and immunohistochemical procedures were as

previously described (22). Briefly, eyecups were washed in 0.1M

Phosphate Buffer Saline (PBS), fixed in 4% paraformaldehyde

overnight, cryoprotected in a 30% sucrose solution, and embedded

in OCT (Sakura, CAT#: 62550-01). The samples were immediately

frozen on dry ice and stored at -80°C. Twelve-micron sagittal sections

were cut on a cryostat (Leica CM 1850), adhered to gelatin-subbed

slides, and stored at -80°C until stained. Anti-rabbit IgG Gper

polyclonal antibody (GeneTex, CAT #: GTX107748, 1:1500) and

anti-mouse IgG GM130 antibody (BD Biosciences, CAT #: 610822,

1:1500) were used to label Gper and the cis-Golgi marker, respectively.

Secondary antibodies were Alexa Fluor 488 donkey anti-rabbit IgG

(Molecular Probes, Eugene, OR; 1:600) and Alexa Fluor 555 donkey

anti-mouse IgG (Life Technologies, CAT #: 1270147, 1:600). Slides

were coverslipped with Invitrogen Prolong Gold Antifade Reagent

with DAPI (Thermo Fisher Scientific, CAT #: P36932) and cured at

room temperature for 24 hours prior to imaging on an SP8 Leica

Confocal Microscope. Lasers, gain, zoom, format, a three-line average,

and pinhole diameter were consistent for all images. Images were

taken in 2048 x 2048 format. No adjustments were made to the

images. Three or more retinal samples were analyzed at each

timepoint. All images were taken from the central half of the retina.
2.5 Statistics and data analysis

qRT-PCR was performed with four biological replicates. Each

plate included one biological sample and one technical replicate of

that sample. Samples were separated by sex in addition to

developmental timepoint and then normalized to the

housekeeping gene Rplp0, which is reported to be highly stable

across various tissues under different conditions, including

developmental stages (23–25). Since no gender differences were

observed in preliminary studies, data from males and females were

combined for statistical analysis. The delta delta Ct method was

used to calculate the relative fold change in Gper expression over

time, followed by a one-way ANOVA to assess differences in gene

expression fold changes.
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Semiquantitative analysis of protein expression was determined

using ImageJ densitometry to measure protein intensity onWestern

blot images. Integrated density measurements were recorded on

three Gper bands and GAPDH. Integrated density values were

averaged between four biological replicates for each timepoint and

normalized to developmental timepoint P0. A one-way analysis of

variance (ANOVA) was performed in Prism to analyze the effect of

developmental time on Gper expression followed by a post hoc

Tukey test for two-way comparisons between developmental

timepoints. The 250 kDa Gper band exhibited insufficient density

relative to the GAPDH control in early timepoints across two

separate gels, precluding its reliable statistical assessment.
3 Results

3.1 Gper transcript expression in
developing retina

We determined the expression profile of Gper in the mouse

retina during postnatal development, spanning seven distinct time

points from P0 to P21. Gper expression showed a 6-fold increase

during postnatal development, peaking at P14 (Figure 1A).

Significant differences were confirmed by a one-way ANOVA test

(p < 0.0001, F = 11.92, df = 6). Posthoc analysis indicated differences

between early (P0-P5), mid (P5-P11), and late (P14-P21)

timepoints with the greatest difference between P0 and P14 as

illustrated in Figure 1A. No significant differences were observed

within early, mid, and late developmental phases.
3.2 Gper protein expression in
developing retina

Prior investigations have reported multiple specific bands produced

by Gper antibodies in Western blot assays, including a 50 kDa band

representing non-glycosylated Gper and one or more larger bands

representing glycosylated Gper or detergent-resistant protein complexes

(27, 28). P2 wholemouse brain cortex was used as a positive control (26)

with an antibody that has previously been validated through shRNA

and siRNA knockdown (29). Consistent with previous reports, distinct

Gper bands were detected in P2 cortex and were further confirmed in

P0 retina at 50 kDa, 63 kDa, and 250 kDa (Figure 1B).

We determined the expression profile of Gper protein in the

mouse retina during postnatal development at seven time points

from P0 to P21. The three bands identified in positive controls were

apparent throughout development of the retina (Figure 1C). The 50

kDa band consistently exhibited greater intensity compared to the

63 kDa band, with both bands displaying a reduction over the

course of development. The 50 kDa band decreased sharply

beginning at P5 (Figure 1D), while the 63 kDa band peaked at P5

and decreased beginning around P8-P11 (Figure 1E). Observations

of the 250 kDa glycosylated Gper were suggestive of an increase at

later time points, which would follow the opposite trend to non-

glycosylated Gper (Figure 1C), however the data was insufficient for

quantitative analysis, precluding definitive conclusion.
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FIGURE 1

(A) Gper transcript expression was determined by qRT-PCR. The histogram displays the relative fold change in mRNA expression of Gper across
seven timepoints, normalized to P0. Values represent the mean ± standard deviation from four biological replicates. *p<0.05, **p<0.01, ***p<0.001,
****p<0.0001. (B) Gper protein expression was determined by Western blot. P2 mouse brain cortex was used as a positive control for the Gper
antibody. Gper bands at 50 kDa, 63 kDa, and 250 kDa were detected in both mouse cortex, as previously reported (26), and retina. A band
representing GAPDH is shown at 36 kDa (red label). (C) Representative Western blot of Gper expression at seven timepoints is shown. GAPDH (36
kDa, red label) was used as a loading control. (D) The histogram displays the relative expression of 50 kDa Gper across seven timepoints, normalized
to P0. Values represent the mean ± standard deviation from four independent experiments. **p<0.01, ***p<0.001, ****p<0.0001. (E) The histogram
displays the relative expression of 63 kDa Gper across seven timepoints, normalized to P0. Values represent the mean ± standard deviation from
four independent experiments. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. (F) Gper (top) and GM130 (bottom) localization during postnatal retinal
development. Mouse retinal sections were labeled with antibodies to Gper (magenta) and the cis-Golgi marker GM130 (green). Representative
images from at least three samples at each of seven timepoints are shown. Punctate Gper staining and colocalization with GM130 (white) were most
intense in the GCL. Gper immunoreactivity was observed in a small number of somas in the position of horizontal cells from P2-P8 (arrowheads). By
P14, RGC somas and axons were more intensely labeled (P21 inset). Control sections from P0 (P0c) and P8 (P8c) retinas treated without primary
antibody showed nonspecific GM130 staining of blood vessels and, at P8, nonspecific Gper staining in the developing outer segments. All images
were taken from a single 12 mm slice and photographed at 63X with 0.75X zoom. Gper and GM130 staining are shown independently in the
Supplementary Figure. NBL, neuroblast layer; ONL, outer nuclear layer; OPL, outer plexiform layer; INL, inner nuclear layer; IPL, inner plexiform layer;
GCL, ganglion cell layer.
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3.3 Gper localization in developing retina

We next performed immunohistochemistry to determine the

spatial and temporal expression of Gper during postnatal

development. To better visualize changes in subcellular

localization resulting from increased Gper glycosylation, retinal

sections were double labeled with the cis-Golgi marker GM130

(Figure 1F; Supplementary Figure). Throughout development, Gper

immunoreactivity had a speckled appearance within the ganglion

cell layer (GCL) somas. Abundant staining was seen in both the

cytoplasm and nucleus, with the highest intensity localized in the

perinuclear region. Colocalization with GM130 confirmed that

Gper perinuclear staining was in the Golgi apparatus.

Gper immunoreactivity was also seen in a population of cells in

the inner portion of the neuroblast (NBL) and inner nuclear (INL)

layers. A small number of somas in the position of horizontal cells

displayed Gper immunoreactivity from P2 to P8 (Figure 1F,

arrowheads). Overall, staining appeared diminished around P8,

coinciding with a decrease in the 63 kDa Gper. By P11, Gper

became distinctly discernible in individual processes, particularly

those extending through the thickness of the inner plexiform layer

(IPL), with the characteristic appearance of Müller glial cells.

Staining in the Golgi and cytoplasm, but not the nucleus, became

more prominent again at P14 and by P21, retinal ganglion cell

(RGC) somas and axons were intensely labeled (Figure 1F, inset).

Small, punctate Gper staining was seen in the outer nuclear layer

(ONL) beginning at P14.
4 Discussion

Gper orchestrates rapid and transient responses through

protein kinase A (PKA) signaling as well as transactivation of the

epidermal growth factor receptor (EGFR) and Notch signaling

pathways (15), in contrast to classical ERs that bind directly to

promoters of target genes (11). It regulates the effects of E2 on

classical ERs (9, 12–14) and is important for other cellular processes

such as cell proliferation, migration, and ion channel regulation

(30–34).

Our investigation reveals Gper expression throughout postnatal

development in the mouse retina, peaking at P14. Notably, Gper

immunoreactivity is evident in retinal ganglion cells (RGCs) from

P0 to maturity, aligning with findings that gper is expressed in

sensory regions of the fish CNS, including the retina (16, 21) and

that gper expression is necessary for normal development of RGCs

in zebrafish (8, 21). The continued expression of Gper in mature

RGCs is noteworthy in light of the growing body of evidence

indicating that estrogen plays a role in preserving RGC health

and protecting against glaucoma (35). Gper is expressed in RGCs of

adult mouse primary retinal cultures where it has neuroprotective

effects against excitotoxicity and hypoxia (5, 36, 37). Estrogen,

acting through the ERK pathway, has been shown to have a

neuroprotective effect on axotomized RGCs, although it is unclear

whether Gper or classical ERs are involved (38).
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We observed a discrepancy between the qRT-PCR results,

which indicated an increase in Gper mRNA expression

throughout development (Figure 1A), and the Western blot

results, which indicated a decline in Gper protein expression

(Figures 1D, E). Divergence between mRNA and protein levels

have been widely reported in the literature (39). Several biological or

technical factors may contribute to this phenomenon, such as a

decrease in the rate of translation, an increase in protein turnover

due to changes in posttranslational modification, or the choice of

housekeeping genes. Alternatively, post-translational modifications

combined with the denaturation of protein required for

electrophoresis may alter the protein’s conformation in a manner

that masks it from antibody detection. This issue could be

exacerbated for Gper due to glycosylation, which appears to

increase during retinal development (Figure 1C). Using different

tissues, antibodies, and experimental conditions, others have

reported glycosylated Gper at molecular weights that we did not

observe (27, 28), raising the possibility that a substantial amount of

glycosylated protein remains present but undetected. This technical

explanation most closely aligns with our immunohistochemical

observations that exhibit robust Gper staining at later

developmental timepoints, when Gper detection on Western blots

was greatly diminished.

We observed transient Gper immunoreactivity in the inner

portion of the INL in presumptive progenitor cells during a period

of cell cycle exit, differentiation, and neurite outgrowth (40, 41).

Studies in other tissues support a role for Gper in mediating these

processes. During CNS development, estrogen receptors, including

Gper, play a crucial role in regulating proliferation, differentiation,

and neurite outgrowth in progenitor cells through modulation of

genes that regulate cell cycle progression and cell fate determination

(18, 34, 42). It contributes to proliferation and migration of cells in

bone marrow mesenchymal stem cells and in a variety of cancers

(43, 44). Gper regulates cyclin genes, which are important for both

cell proliferation and differentiation (43), and acts via the PI3K/Akt

pathway to modulate cadherins and other transcription factors that

are necessary for cell migration and proper neurite outgrowth

(45, 46).

Gper and estrogen signaling are known to regulate expression of

the transcription factor Otx2 in the CNS (21, 47). Otx2 is essential

for eye development and photoreceptor cell fate determination (48).

Single-cell RNA-sequencing has identified early expression of Gper

in the mouse retina, but expression levels are too low for accurate

analysis (49). Since Otx2 is activated embryonically in the mouse

retina, future studies should investigate whether Gper is transiently

expressed in precursor cells prior to Otx2 expression. Punctate Gper

immunostaining was observed in ONL beginning at P14, a time in

which photoreceptors are extending their outer segments and

Müller glial cells are extending processes through the ONL.

Identification of the cell types labeled by Gper will require further

studies with cell-specific markers.

Subcellular localization of Gper has been reported by some

investigators on the cell membrane (50), as is the case for other

GPCRs, but also intracellularly in the ER, Golgi, and nucleus by
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others (9, 51). Differences may be due to variations in cell type,

experimental conditions, and metabolic status. These factors and

others can alter protein glycosylation, which plays an important role

in protein trafficking, cellular localization, and stabilization of

proteins and protein complexes, as well as modulating neuronal

activity in the CNS (52). Changes in glycosylation of Gper during

postnatal retinal development is likely indicative of changes in

subcellular localization and function. In our Western blot

experiments, the 250 kDa glycosylated Gper band was too faint

relative to the GAPDH loading control for statistical analysis.

Pretreating samples with an endoglycosidase to remove glycans

would provide a means to investigate this question in future

experiments (28, 53).

Colocalization studies reveal Gper association with the Golgi

marker GM130 and punctate cytoplasmic immunostaining

indicative of ER and/or vesicular localization. Notably, the

nuclear localization of Gper, with a speckled appearance,

diminished over time corresponding with a decrease in non-

glycosylated Gper. Gper has a nuclear localization sequence, and

recent reports show Gper can be transported into the nucleus if it is

not glycosylated at N-44 (14, 54). In these studies, cell migration

was dependent on nuclear Gper (54). These observations align with

the hypothesis that non-glycosylated nuclear Gper may coordinate

cell migration of progenitor cells. We did not observe any clear

indication of cell membrane localization, however, we cannot

eliminate the possibility that some Gper was present on the

cell surface.

In conclusion, our study illuminates the spatial and temporal

expression patterns of Gper in the postnatal developing mouse

retina and provides a vital foundation for further investigations.

Future research should aim to elucidate the role of Gper in retinal

cell proliferation, specification, and/or neurite outgrowth and to

determine its mechanism of action during retinal development. An

important aspect of these studies will be investigation of Gper

during embryonic development when proliferation and

specification of many retinal cell types occur. Additionally,

exploring Gper’s function in mature RGCs holds significant

promise in elucidating the role of estrogen signaling in retinal

health and disease. The convergence of these insights promises to

extend our understanding of retinal development and function with

the potential to provide insights into novel approaches to mediation

of glaucoma and other retinal diseases.
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