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Computational single
fundus image restoration
techniques: a review
Shuhe Zhang*, Carroll A. B. Webers
and Tos T. J. M. Berendschot

University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, Netherlands
Fundus cameras are widely used by ophthalmologists for monitoring and

diagnosing retinal pathologies. Unfortunately, no optical system is perfect, and

the visibility of retinal images can be greatly degraded due to the presence of

problematic illumination, intraocular scattering, or blurriness caused by sudden

movements. To improve image quality, different retinal image restoration/

enhancement techniques have been developed, which play an important role

in improving the performance of various clinical and computer-assisted

applications. This paper gives a comprehensive review of these restoration/

enhancement techniques, discusses their underlying mathematical models,

and shows how they may be effectively applied in real-life practice to increase

the visual quality of retinal images for potential clinical applications including

diagnosis and retinal structure recognition. All three main topics of retinal image

restoration/enhancement techniques, i.e., illumination correction, dehazing, and

deblurring, are addressed. Finally, some considerations about challenges and the

future scope of retinal image restoration/enhancement techniques will

be discussed.
KEYWORDS

retinal image, image enhancement, image restoration, illumination correction,
dehazing, deblurring, diagnosis
1 Introduction

The introduction of the ophthalmoscope by Helmholtz (1) allowed one to obtain

images of the retina and put ophthalmology on the map as a separate sub-area of medicine.

In his design, the ophthalmoscope, the subject’s eye, and the examiner’s eye together form

two optical systems that become the classical design of the successor of the fundus camera

where the examiner’s eye is replaced by a camera sensor. A typical retinal imaging platform

thus can be regarded as two coupled imaging systems, as shown in Figure 1A (2, 3). One is

the ocular system, and the other is a reflective imaging system that normally illuminates the

fundus through the pupil and collects the reflected light from the retina, forming the image

on the camera sensor. Ophthalmologists have been using retinal images for the early
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detection, diagnosis, and monitoring of ocular diseases and their

progression. Morphologic changes due to eye diseases like diabetic

retinopathy (4–7), solar retinopathy (8), glaucoma (9–11), and age-

related macular degeneration (12–14) can be directly observed in

these images. In addition, neurological diseases such as stroke and

cognitive dysfunction can also be diagnosed through retinal images

(15, 16) as well as cardiovascular risk factors (17–19). Diagnosing

efficiency and precision are deeply related to the quality of retinal

imaging. Obviously, the higher the image clarity, the more detailed

information can be observed from the image, and the better their

diagnostic capabilities. Figures 1B1–B4 shows the fundus images

with good visual quality. However, not every retinal image is perfect

and low-quality image occurrence is not a minor problem. Heaven

et al. found 9.5% of all acquired images to be entirely unsatisfactory

in a prospective study of 981 patients with diabetic retinopathy (20).

Scanlon and Stephen found the ungradable image rate to be
Frontiers in Ophthalmology 02
between 19.7% for nonmydriatic photography and 3.7% for the

mydriatic photography study of 3,650 patients with diabetes (21).

Retinal images can be severely degraded by opacities in the

optical media of cataract eyes (22–24), as shown in Figures 1C1–C4,

and retinal images for non-cataract subjects can be degraded by

poor illumination conditions including uneven or insufficient

illuminations. The quality of retinal imaging can be improved by

using high-end fundus cameras such as adaptive optics and laser-

based fundus cameras to tackle the optical aberrations (25) and

media opacities, but will increase financial pressures and limit

access to healthcare for patients since not all clinics have such

high-end equipment. In contrast, image enhancement processing

offers affordable and efficient solution to digitally increase the

image’s quality, such as to correct for illumination artifacts (26–

28), to enhance contrast (29–31), and to reveal the effect of dehazing

algorithms on cataract (32–34).
A

B1 B2

C2

B3

C3 C4

B4

C1

FIGURE 1

Fundus camera and demonstration of retinal images of good and low quality. (A) Sketch of optical design of a fundus camera. (B1–B4) are sample
high-quality images. (C1) Low-quality retinal image with haze and uneven illumination. (C2) Insufficient illumination. (C3) Haze effect. (C4) Uneven
illumination and blurriness.
frontiersin.org

https://doi.org/10.3389/fopht.2024.1332197
https://www.frontiersin.org/journals/ophthalmology
https://www.frontiersin.org


Zhang et al. 10.3389/fopht.2024.1332197
To increase the image clarity again, several contrast-

enhancement methods have been proposed, which can be divided

into two major categories: data domain methods and restored

model methods (35). Data domain methods are further divided

into two types based on their algorithms. The first type is known as

the transform-domain algorithm, which transforms a raw image

into a new function of other parameters such as the spatio-

frequency domain corresponding to Fourier transform (36) or the

structure feature domain corresponding to top-hat transform (37,

38). The image is processed in the transformed domain and then

transformed back, resulting in a new image with enhanced contrast.

The transform-domain algorithm enables us to globally or locally

modify the weight for different structures within the image.

However, owing to computation costs, the image-domain

algorithm, which is the second type of data domain methods,

is favored.

The core idea of the image-domain algorithm is the gray-level

adjustment. Histogram equalization (HE) and its improved version,

contrast-limited adaptive histogram equalization (CLAHE), are

usually used for quick retinal image enhancement (29). Other

histogram modification methods such as q-quantile (39) and the

gray-scale global spatial entropy method also show promising

results in improving the image’s contrast (10, 40). Global gray-

level adjustment methods including the gamma map (41) and a-
rooting (42) use a fixed function to convert the global gray-level

distribution for adjusting the brightness of retina imaging.

Another group of image-domain algorithms uses filters to

enhance contrast. These algorithms are similar to transform-

domain algorithms but use a convolution kernel to separate the

background and foreground information of an image (42, 43). The

foreground information usually corresponds to the detailed

structure of an image. By modifying the weights between

background and foreground, the contrast of the detailed structure

can be enhanced. In general, data domain methods belong to pure

signal (image) processing techniques that normally take a few

considerations of the physical insight of the image formation

and enhancement.

In order to obtain self-consistent methods for retinal imaging

enhancement, restored model methods have been developed as they

digitally inverse the progress of how a degraded image was formed.

These restored model methods share a similar idea of

computational imaging, i.e., a physical model describes the optical

process of forming an image under the impact of degeneration

agents, which could be optical aberrations, unstable vibrations, or

limited optical resolution. By directly or indirectly measuring the

optical properties of these degeneration agents, one can compensate

for the degeneration agents by digitally mimicking the propagation

of the optical wave and modifying the wavefront of light (44–47).

Imaging through scattering media, for example, is a well-known

application of computational imaging (46, 47).

Different from computational imaging, the restored models for

imaging enhancement do not measure the optical properties of the

degeneration agents but try to find solutions corresponding to

statistical properties in optical or visual aspects. The solutions can

be regarded as rough estimated versions of those degeneration
Frontiers in Ophthalmology 03
agents and can be also compensated by applying them to the

image formation model, resulting in enhanced images.

Restored model methods are widely used for image dehazing (48,

49), underwater image enhancement, and night image enhancement

(50); however, only a few studies have reported their use in retinal

imaging enhancement. To our knowledge, the first publication about

the application of restored model methods in retinal image

enhancement can be traced back to 1989 (22), where the model for

imaging the retina in photographs taken through intraocular scatter is

considered similar to the model used to represent imaging of the earth

from a satellite in the presence of light cloud cover. Here, scattering was

removed (or suppressed) by using the Retinex theory.

Based on an image formation model, Xiong et al. (35) used

intensity correction and histogram adjustment to preprocess the

image, after which a transmission map was generated according to

the intensity of the preprocessed image in each color channel. Haze

could be suppressed through dehazing. Although the performance

of their approach is good, it relies on statistical and empirical

properties of the particular retina imaging database to determine

the algorithm parameters, which makes it hard to apply in different

databases. A subsequent study (26) used the illumination-

reflectance model of image formation to correct the illumination

of retinal images; the research shows that illumination correction is

mathematically equivalent to dehazing when the color of the image

is reversed. With that, the color-reversed dark-channel prior (DCP),

also known as bright-channel prior (51), was employed, showing an

efficient illumination correction. Following the haze image

formation model and dehazing, Mitra et al. (52) proposed a “thin

layer of cataracts” model to achieve contrast enhancement for

cataract fundus images.

Gaudio et al. (53) demonstrated a pixel color amplification

method for retina imaging enhancement, which shows good

performance in enhancing the detailed structure of retina images.

Figure 2 plots the categories of fundus retinal image enhancement

algorithm, and their applications.

In this review paper, we first revisit the mathematical model

used for retinal image restoration, their physical/mathematical

insight, and how they are related to each other in Section 2. We

further show how these image formation models are applied to

retinal image restoration in illumination correction, dehazing, and

deblurring in Section 3. A brief introduction to deep-learning-based

methods is also discussed. In Section 4, the significance and benefits

of the clinical applications of retinal image restoration techniques

are discussed, and the social impact of retinal image enhancement is

described in Section 5. The concluding remarks and future scope are

presented in Section 6.
2 Mathematical models for retinal
image restoration

2.1 Pixel value stretch model

Enhancing the quality of the retinal image can be achieved by

manipulating pixel values. For example, one can enlarge pixel values
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if the original values are too small to be noticed or decrease them if

they are too bright.

Accordingly, the gamma correction, given in Equation (1),

provides a straightforward way for pixel adjusting, which is

widely used in medical image analysis (54).

soutput = sginput (1)

where sold is the input image and snew denotes the output image after

the gamma correction. When g < 1, the nonlinear transforms the

small value of pixels to large value so that the pixels become bright,

while if g > 1, the small value is further suppressed.

Another method for pixel adjustment is HE. Taking the image

in Figure 3A as example, when the image is represented by a narrow

range of intensity values, HE is able to make the intensity better

distributed among the full dynamic range, as shown in Figures 3B,

F. To avoid the over- and underexposure effect of HE, CLAHE (55)
Frontiers in Ophthalmology 04
is proposed to adaptively achieve HE according to the local contrast

in the image’s sub-block.

HE and its improved version, CLAHE, are widely used as

preprocessing methods for retinal image enhancement, and the

research has shown that the image formation model-based methods

gain better image restoration results than HE methods as shown in

Figure 3C and F.
2.2 Image formation model

A widely used image formation model for retinal image

enhancement is the illumination model, shown in Figure 4A,

given by

s(x)  = l(x)  · r(x) : (2)

Here, · denotes elementwise multiplication, x denotes the spatial

coordinates, s is the captured image by the camera, l is the

illumination pattern from the light source that is assumed to be

spatially slow varying, and r is the retinal reflectance.

To tackle the haze effect caused by intraocular scattering on

retinal imaging, a haze formation model is adopted. The early-stage

model was directly adopted from Koschmieder and McCartney’s

model (56, 57) of hazy nature scenes shown in Figure 4B and, given

by

s(x)  = t(x)  · o(x)  + a½1 − t(x)� : (3)

Here, o(x) is the haze-free image, and t(x) is the transmission

matrix of the haze medium describing the portion of the light that is

not scattered and reaches the camera. a is the global atmospheric

light, and s(x) is the observed image. Despite the fact that a large
FIGURE 2

Sketch of retinal image restoration tasks, their solutions, and the
effect they bring to the enhanced images.
A B

D E F

C

FIGURE 3

Sketch of retinal image restoration tasks and their solutions. (A) Raw image. (B) Output image enhanced by HE. (C) Output image enhanced by
CLAHE (D), (E) and (F) Histogram of pixel value for image in (A), (B) and (C), respectively.
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number of natural scene dehazing studies were based on Equation

(4) (58), this was developed for natural scenes and is not the optimal

choice for fundus imaging since it ignores the double-pass property

of fundus photography.

To establish an image formation model for retinal imaging, Peli

et al. (22) developed an optical model for imaging the retina

through cataracts, which is

s(x)  = a · l · o(x)  + l½1  − t(x)� : (4)

where l is considered to be the flash illumination of the fundus

camera and a is the attenuation of retinal illumination due to the

cataract. Both l and a are considered to be constant. Different from

Equations (3)-(4), reveals that the illumination pattern also impacts

the quality of retinal imaging. However, as l is constant, Equation (4)

loses the ability to correct the uneven (spatially varying) illumination
Frontiers in Ophthalmology 05
of retinal imaging. In addition, the existing parameter a shows the

idea of the double-pass property where the illumination light

interacts twice with the cataract layer (when the light goes inside

the eye and when it is reflected out from the fundus).

In a previous study (33), we proposed the double-pass fundus

reflection (DPFR) that deals with image formation in retinal

imaging as shown in Figure 5A and B. This DPFR model is given by

s(x) = l(x) · ½t2(x) · o(x) + 1 − t(x)�, (5)

where l(x) is the illumination from the outside of the eye and is

delivered by the illumination system of the fundus camera. Different

from the nature scenes’ hazy formula in Equation (3), the

transmission matrix t is squared, denoting the double-pass feature

of fundus imaging (59, 60), where incident light will transmit twice

through the pupil.
B

C

A

FIGURE 4

Image formation models involved in retinal image enhancement. (A) illumination model. (B) Natural scene haze formation model. (C) Peli’s retinal
image formation model.
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We ignore the illumination light color of a fundus camera and

assume that the retina is illuminated by ideal white light (identical

value in R, G, and B channels), which may have an uneven and

insufficient illumination pattern. t(x) is the transmission matrix of

intraocular scatter including ocular lens and cataract layers.

Equation (5) reveals that the degeneration of the retinal image is

mainly due to three parts (1): an uneven illumination condition (2),

filtering by the human lens, and (3) intraocular scattering.
2.3 Image structures model

Besides the image formation model, there are also image

structure models used for retinal image enhancement (31, 42, 43,

61), and they can be summarized as

s(x) = sbackground(x) + sstructures(x) : (6)

where sbackground is the background information of the observed

image that corresponds to the low-frequency components, while

sstructures denotes the detailed information implying the detailed

structures and textures of the image, as shown in Figure 6. By giving

a large weight to sstructures and suppressing the sbackground, one can obtain

a contrast-enhanced image. The background components, sbackground,

can be obtained by low-pass filtering of s(x) (42, 61) and total variation

regularization (31), while sstructures can be obtained by high-pass filtering

of s(x) or subtracting sbackground from s(x). Note that Equation (6) is not
Frontiers in Ophthalmology 06
based on the optical process of how the image is formed and the

physical insight is different from Equations (2) and (4).
2.4 Retinex theory

It is worth noting that the illumination model [Equation (2)]

and image structure model [Equation (6)] can be unified by the

Retinex theory, which was developed first to explain the land effect

in a visual prospective (62). It was later developed for uneven

illumination correction in computer vision. Retinex can be

categorized into several types including variational Retinex (63–

65), PDE Retinex (66–68), threshold Retinex (69), and center/

surrounded Retinex (known also as filtering-based Retinex) (70,

71), while the filtering-based Retinex gained a lot of research

interest due to its computational efficiency and simple

implementation. Taking the logarithm to both sides of Equation

(2), we obtain

logs(x) = logl(x) + logr(x), (7)

which is identical to Equation (6) in their mathematical forms, so

that the illumination component is split as a linear term that is

added to the reflection component. Since l(x) is assumed to be

spatially slow-varying, a good estimation of l(x) can be given by

low-pass filtering of s(x). Then, the reflectance r(x) is given as

r = exp logs − log(F⊗ s)f g, (8)
B

A

FIGURE 5

The double-pass fundus reflection model. (A) Optical path in a fundus camera. (B) Sketch of double-pass fundus reflection.
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where F is a low-passing filter, which is known also as surround

function. ⊗ denotes the 2D convolution. In practical

implementation, a pixel value normalization should be applied to

Equation (8), to avoid distorting pixel intensity.
3 Retinal image restoration

3.1 Intensity correction

Retinal image intensity correction is a very important task for

retinal image restoration. Statistical analysis shows that many

retinal images suffer from problematic, uneven, and insufficient

illumination, which is highly related to the performance of

photographers, the imperfect head/eye position of subject

participants, and the potential poorly designed illumination path

of the fundus camera.

Since human visual assessment on image quality is highly

related to the image’s brightness, intensity correction on a retinal

image can produce significant improvements on the image’s quality

for visual assessment. In this section, we briefly introduce two

solutions according to Section 2—the gamma correction and

Retinex method for retinal image intensity corrections—and

demonstrate their output on sample fundus images.

3.1.1 Gamma correction
An intensity correction can be achieved by a Gamma correction

if g < 1 in Equation (1). As shown in Figure 7A, when g = ½.2, a

small value, say, 0.218, becomes 0.5 after the Gamma correction.

Accordingly, we can transform the input RGB retinal image shown

in Figure 7B to the HSV-color space, and then perform a gamma

correction to its V-channel (Value). After that, the image is

transformed back to the RGB-color space, resulting in

illumination-corrected images, as shown in Figure 7E. By

adjusting the value of g, one can achieve different strengths of
Frontiers in Ophthalmology 07
illumination correction, while the image contrast is not yet

significantly improved.

3.1.2 Center-surrounded Retinex
As mentioned in Section 2.4, intensity correction can also be

achieved using Retinex. The low-frequency component of the V-

channel can be a good estimation of the illumination pattern, as

shown in Figure 8A, B and C. Subtracting the illumination pattern

from the original V-channel (Figure 8D) and applying the intensity

normalization so as the intensity value is between 0 and 1, the

output V-channel is shown in Figures 8D, E for the RGB image

where the uneven pattern is corrected.

Besides the Gaussian-filtering Retinex method shown above,

researchers have developed a more complex framework, such as

variational Retinex (63–65) with a different regularization and non-

local Retinex (72) to achieve illumination correction. The application

on the retinal image and how the retinal image can benefit from the

Retinexmethod can attract a large amount of research interest. It is also

worth noting that the Retinex theory linked image illumination

correction and image dehazing through simple algebra. This

property will be further discussed in Section 3.2.2.
3.2 Dehazing

In case of intraocular scattering, the captured image may have a

haze-like effect, which is similar to the haze effect occurring in

natural scenes. In these cases, a dehazing process is needed to

enhance the quality of retinal images.

3.2.1 Dehazing using dark-channel prior
The DCP (73) has been widely used for natural scene dehazing

including underwater image enhancement and haze removal even for

thick fog situations. Here, the dark channel is obtained by first filtering

the three color channels of the image using a local minimum filter with
FIGURE 6

Image structure decomposition.
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a size of w pixels, and then calculating the minimum value within three

color channels.

The principle of DCP tells that in any haze-free image (in RGB color

space), as shown in Figure 9A, at least one pixel has zero intensity in at

least one channel, as shown in Figure 9C. As such, the transmission map

of a hazy image (Figure 9B) can be estimated using the dark channel of

the image, as shown in Figure 9D. According to the image formation

model in Equation (3), the dehazed image can then be calculated.

Although results of DCP dehazing are promising, the

performance of DCP on retinal image dehazing is limited,

especially for thick cataracts due to different color statistical

features between natural scene images and retinal images. DPC

fails to estimate the transmission map of the retinal image in RGB
Frontiers in Ophthalmology 08
color space; however, it works in the intensity domain since DCP is

valid for gray-scaled image dehazing (74).

Accordingly, one is able to convert the retinal image from RGB

color space to, for example, the CIE-LAB color space, and then

perform dehazing to the L-channel (intensity channel). After that,

the dehazed retinal image is obtained. Figure 10 shows the dehazing

results on the cataractous retinal image after the illumination

correction was applied. The haze effect is significantly suppressed.

3.2.2 The duality between intensity correction
and dehazing

Nature scene image dehazing seems to be unrelated to intensity

correction since they deal with different problems. Later, as pointed
A

B

DE

C

FIGURE 7

Retinal image intensity correction using Gamma correction. (A) Gray value curve shows the mapping of gamma correction. (B) Raw image. (C) V-
channel of image in the HSV color space. (D) V-channel after Gamma correction. (E) Enhanced image.
A B

DE

C

FIGURE 8

Retinal image intensity correction using the Gaussian filtering Retinex method. (A) Raw image. (B) V-channel of the raw image. (C) Low-pass filtering
of (B). (D) Intensity-corrected V-channel. (E) Output image.
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out in Ref (69)., they are connected by an algebra modification of

the haze formation model in Equation (3) by assuming that the

input image is globally white-balanced, that is, s = t · o +  (1  − t).

With some algebra, it can be rewritten as (1  − s)  = t ·  (1  − o) . By

considering (1  − s)  = snew and (1  − o)  = r , we are able to convert

the haze formation model to the illumination model in Equation

(2). This implies an interesting phenomenon such that the color-

inversed hazy image looks like an image suffering from insufficient

illumination, as shown in Figure 11.

According to the Retinex theory, by assuming t is spatially slow-

varying and using Equations (2) and Equation (3), we have
Frontiers in Ophthalmology 09
o = 1 − Retinex(1 − s) = Dehazing(s) : (9)

It is also proven in (75), and shows that the dehazing task can be

finished under the Retinex theory. Acccording to Equation (9), the

Retinex theory is the bridge to image dehazing and image

illumination correction (76). The application of the Retinex

theory in retinal image dehazing shares a similar idea of an image

structure model and filtering-based Retinex, where the haze layer is

regarded as the slow-varying background component of the retinal

image, and the dehazed image can be obtained by subtracting the

background component from the hazy one (42, 61).
A

B D E

C

FIGURE 9

Dehazing using dark-channel prior. (A) Hazy-free image. (B) Haze image of (A). (C, D) are dark channels of (A, B), respectively. (C) is the dehazed
image. (E) is the dehazed image.
FIGURE 10

Restoration of cataractous retinal images. First row: raw images. Second row: restored images. The image was dehazed using the DCP after the
illumination correction was performed.
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FIGURE 11

Dehazing task can be converted into an intensity correction task in color-inversed domain.
TABLE 1 List of publications on non-deep-learning based methods of single retinal image enhancement.

Literatures Image
formation model

Key idea Functions

Illumination correction Contrast enhancement Dehazing

(22) Equtaion (4). Filtering, Retinex N/A Yes Yes

(27) Image Filtering Yes Yes N/A

(29) CLAHE N/A Yes N/A

(43) Equation (7). Filtering Retinex Yes Yes N/A

(77) Equations (2). and (7) Filtering Retinex Yes Yes N/A

(26) Equations (2). and (3) DCP, Retinex Yes N/A N/A

(35) Equation (3). HE, Filtering Yes Yes Yes

(78) Equation (7). CLAHE Yes Yes N/A

(79) HE Yes Yes N/A

(52) Equation (7). Filtering Retinex, HE Yes Yes Yes

(41) Equation (2). Gamma correction, CLAHE Yes Yes N/A

(39) Equation (2). Gamma correction, HE Yes Yes N/A

(80) Equation (2). HE Yes Yes N/A

(61) Equations (2). and (7) Filtering, Retinex Yes Yes Yes

(42) Equations (2). and (7) Filtering, Retinex Yes Yes Yes

(53) Equation (3). DCP, extension of DCP Yes Yes Yes

(30) Equation (3). Extension of DCP Yes Yes Yes

(31) Equations (2). and (7) Filtering, Retinex Yes Yes N/A

(81) Gamma correction, HE Yes Yes N/A

(33) Equation (5). Filtering Retinex, DCP. Yes Yes Yes

(82) Equations (2). and (7) Filtering, Retinex Yes Yes N/A
F
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Generally speaking, algorithms for retinal image illumination

correct ion and dehazing do vary in their definit ion,

implementation, underlying structure, and relationship that a

concise description is needed to decide which to use. Table 1 lists

some of the start-of-the-art publications on non-deep-learning

methods of single retinal image enhancement.
3.3 Deblurring

Image blind deconvolution has been developed and is mainly

used for natural scene image deburring (83, 84). Much prior

knowledge, including but not limited to the heavy-tail prior (85,

86), gradient L0 prior (87), the dark-channel prior (88), and the

local maximum gradient prior (89), has been explored to facilitate

single-image blind deconvolution tasks. Nevertheless, blind

deconvolution for retinal images is still problematic and

challenging since there are a large number of retinal images

suffering from poor illumination conditions that hide the

structure (edge) information that is essential for proper

deconvolutions. To the best of our knowledge, only few studies

have reported on single retinal image blind deconvolution (90–93),

which rather aimed to correct blurriness caused by aberrations and

motions during image capture.

Andrés et al. proposed a two-step retinal image blind

deconvolution method (91), in which the first step is estimating

and compensating for the uneven illumination using a fourth-order

polynomial. The second step is blind deconvolution with TV

regularization corresponding to the heavy-tail prior to natural

scene deburring. However, this method requires at least two

paired retinal images of one identical subject. Francisco et al.

limit the shape of the convolution kernel to a Gaussian shape and

perform a line search to determine the size of the Gaussian kernel

corresponding to the peak image quality score (92). This method
Frontiers in Ophthalmology 11
does not correct the illumination pattern of the retinal image; in

addition, not all retinal images are degraded by a simple

Gaussian kernel.

In (93), an image formation model based on the DPFR feature

developed a differentiable non-convex cost function that jointly

achieves illumination correction and blind deconvolution. Figure 12

shows the results of this approach on retinal image deconvolutions,

where the uneven illumination and blurriness are corrected.

Nevertheless, the method has limitations. First, the model parameters

should be manually adjusted, which is a common drawback of non-

learning-based blind deconvolution methods. Second, blind

deconvolution can be time-consuming as it requires several iterations

for solving the latent images, especially for retinal images with large

resolutions. Third, the deconvolution will not significantly increase the

image contrast as CLAHE does. Further combination of retinal image

deconvolution and contrast enhancement is possible to improve the

image quality of deconvolution methods.
3.4 Deep-learning-based retinal
image restoration

With the development of computational power, deep-learning-

based retinal image enhancements attracted a lot of interest (94).

Because of the lack of paired real retinal images for good and

degenerated quality, most learning-based retinal image restoration

methods published recently can be categorized as extensions of

GAN. These methods convert the retinal image restoration task into

a style-transform task that transforms the image style from a bad-

quality retinal image to a good-quality one. To mitigate the risk of

GANs introducing unexpected artifacts, many focus on preserving

information fidelity.

Since there are no paired real retinal images, researchers use

synthetic/simulated degenerated retinal images to train the
FIGURE 12

Restoration of retinal image using blind deconvolution.
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networks. For instance, based on the image formation model

proposed by Peli et al. (22), Luo et al. (32) trained an unpaired

GAN to achieve cataract retinal image dehazing for mild cataract

cases. Li et al. (34) proposed an annotation-free GAN for

cataractous retinal image restoration. Based on the natural scene

haze formation model, Yang et al. (95) trained a modified cycle-

GAN for artifact reduction and structure retention in retinal image

enhancement. Shen et al. (96) proposed a new mathematical model

to formulate the image-degrading process of fundus imaging and

train a network for retinal image restoration. Others have modified

the structures of the network or loss function to improve the

performance of the networks (97, 98).

While these learning-based methods produce impressive

restoration results in both quality and naturalness preservation,

they have limitations. Over-fitting on synthetic data and lack of

generalization are potential issues as we will show in the

experimental sections. Additionally, the performance of trained

networks is limited by the input image resolution (typically 512 ×

512), which is too small for clinical applications where image

resolution, in general, is larger than 2,000 × 1,000 (99).

Furthermore, these methods lack interpretability and may

introduce unexpected artifacts or elimination of important retinal

structures, as shown in Figure 13, which can be detrimental to

clinical applications. Thus, there is still a long way to go in both

technical and ethical aspects of learning-based retinal image

enhancement methods (102).
Frontiers in Ophthalmology 12
3.5 Retinal image quality metrics

Despite the fact that the enhanced images will be finally evaluated

by specialists for supporting clinical applications, evaluating the image

quality in an objective way is important for understanding and

analyzing the performance of different restoration algorithms. The

image quality can be calculated, objectively, using well-designed

programs, known as quality metrics, with reference-based and non-

reference-based ways. Some metrics have been widely used in the field

of image processing, and new metrics are still being developed. This

subsection gives a brief introduction to the quality metrics used in

retinal image analysis.

The peak signal-to-noise ratio (PSNR) and structured similarity

measure (SSIM) are reference-based metrics that can evaluate the

image quality if the ground truth is known (73, 103–105). One

drawback of these metrics is that they are not consistent with

human-visual feeling. Sometimes, they will generate unexpected

evaluation results that violate human assessment. To illustrate the

problem, we collect good-quality (GQ) images (18 images) and the

corresponding bad-quality (BQ) images (18 images) from the HRF

dataset (106). We also perform illumination correction and contrast

enhancement using CLAHE on both GQ and BQ images. One

example is shown in Figure 14.

We calculated the PSNR and SSIM between (1) GQ images and

BQ images (2), GQ images and enhanced GQ images, and (3) GQ

images and enhanced BQ images as listed in Figure 14. In all these
FIGURE 13

Cataractous retinal image enhancement using three network methods and one nonlearning method. Network 1 (34):. Network 2 (100):. Network 3
(95):. MUTE (101):.
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calculations, the GQ images were set as the reference images as

shown in Figure 14A, while the metrics imply that Figures 14C, D

have worse image quality than Figure 14B, which conflicts with

human visual assessment. In this case, the decrease in PSNR and

SSIM is largely due to the change of the image’s intensity level,

especially for SSIM as it depends on the intensity level between the

given image and the reference image. Since uneven and insufficient

illumination are common problems in fundus images, using PSNR

and SSIM to assess the performance of our proposed model lacks

fairness and practicality, especially for medical images where the

real ground truth is not well-defined. Additional examples that

demonstrate the unpredictable behavior of SSIM and PSNR are

shown in Figure 14. Even the image is degraded by some major

types of distortions such as Gaussian blur, motion blur, and noises,

and the related SSIM and PSNR scores can be larger than the

enhanced image, which far contradicts human visual prospect.

More related works showing the drawback of SSIM and PSNR

can be found in (73, 107–109).

Reference metrics are usually not applicable since a good

reference for medical image usually does not exist or is hard to

obtain. As such, non-reference metrics are developed to score the

image’s quality based on human visual sensation. The underwater

image quality metrics (109) are good candidates to adapt. They
Frontiers in Ophthalmology frontiersin.org13
include Underwater Image Sharpness Measure (UISM) and

Underwater Image Contrast Measure (UIConM). Both the UISM

and the UIConM do not rely on the statistical property of images

and thus can be applied to retinal images, regardless of the statistical

difference between retinal images and underwater images.

Moreover, image entropy (IE) describes the randomness

distribution of the image and its value denotes the amount of

image information (76, 110). The multi-scale contrast of the image,

CRAMM, was calculated with a pyramidal multi-resolution

representation of luminance (111). Lastly, the fog-aware density

evaluator (FADE) (112, 113) was used to numerically predict

perceptual hazy density, which can be used to evaluate the image

quality of cataractous retinal images.
4 Potential applications

4.1 Diagnosis

Restored/enhanced retinal images can potentially increase

diagnostic accuracy. An example is diabetic retinopathy with

areas with hard exudates and hemorrhages, as shown in

Figures 15A, B and C. The enhanced images increased the visual
Good quality bad quality Enhanced of A Enhanced of B

SSIM = 0.7124
PSNR = 12.7914

SSIM = 0.9729
PSNR = 37.5850

GT Enhanced Cartoon
SSIM = 0.9895
PSNR = 42.1166

SSIM = 0.9698
PSNR = 35.9451

SSIM = 0.8558
PSNR = 20.7607

Gaussian blur Motion blur Un-related

Box blur

SSIM = 0.9235
PSNR = 31.9889

Salt & pepper noise

SSIM = 0.8328
PSNR = 27.1638

Cheating the metrics

PSNR: 22.9488
SSIM: 0.8116

PSNR: 12.8905
SSIM: 0.5078

PSNR: 11.1248
SSIM: 0.5053

FIGURE 14

Demonstration of how to cheat the metrics.
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quality of the retinopathy area, without unexpected artifacts to

guarantee structure fidelity, as shown in Figures 15D1–D4.

Some hard exudates that were barely observable in the raw

image (Figure 15D3) can be clearly seen in the enhanced images in

Figure 15D4 due to the increased contrast. The enhanced image also

has a high visual quality in areas with hemorrhages, as shown in

Figures 1E1–E4, as the contrast between hemorrhage areas and the

background increases in enhanced images (see Figures 15E2–E4).

Note that it is of importance to check if algorithms introduce

unexpected artifacts or erase the important structure from the image.

To do this, one can collect cataractous retinal images before and after

cataract surgery, perform the algorithm on the image before cataract

surgery, and check if any structures are added or removed by

comparing the latter to the actual image after the surgery.
4.2 Blood vessel tracking

Retinal image blood vessel segmentation allows parameterization

of blood vessels, which is important for clinical diagnosis as

morphological changes of blood vessels are biomarkers for diseases

such as lacunar stroke (114), cognitive dysfunction (115),

cardiovascular risk (116), diabetes (117), and glaucoma (118).
Frontiers in Ophthalmology 14
Blood vessel segmentation can be retrieved by either human

specialists or computer software. The former provides accurate results

but is time-consuming. The latter option provides fast segmentation

results but is less accurate compared to human specialists. Moreover,

because of the poor image contrast of the cataractous retinal image,

hand-based segmentation is even more time-consuming, and

automatic segmentation for hazy retinal images can be error-prone.

With enhanced retinal image, blood vessel segmentation can be better

performed due to the increment of image visual quality (119, 120).
4.3 Retinal image registration

Image registration is an important application in computer

vision, pattern recognition, and medical image analysis (121–123).

It aligns two or more retinal images together to provide an overall

comprehensive understanding (121). Retinal image registration

relies on precise feature detecting and matching for images to be

registered. Registration of cataractous retinal images can be

bothersome as the features used to register may be obscured by

haze or low-contrast pixels. With the enhancement of image

contrast, the registration algorithm can better find the paired

feature for accurate registration.
A B

D1

E1

D2 D3

E2

D4

E3 E4

C

FIGURE 15

Enhancement of retinopathy areas using (101). (A) Montage of raw and enhanced images. (B) Labels of hard exudate areas. (C) Labels of hemorrhage
areas. (D1–D4) are enlarged parts of raw and enhanced images corresponding to green and blue boxes in (B). (E1–E4) are enlarged parts of (C).
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4.4 Ultra-wide field retinal
image enhancement

Ultra-wide field (UWF) imaging system allows the capture of

200 degrees of the retina (approximately 82% of retinal surface

area) in a single shot. It provides non-contact, high-resolution

images for clinicians to analyze retinal disorders (124, 125).

Imaging using the UWF system can also suffer from

illumination problems and haze effects due to imperfect

photographing conditions. Here, we demonstrate the application

of InQue in enhancing UWF images.

Figure 16A shows the raw image with insufficient illumination

and prominent haze. The enhanced one is shown in Figure 16B,

while the retinal structures including the optical disk and blood

vessels are zoomed in Figures 16C1–F2. Accordingly, the image

clarity of the enhanced image is significantly improved, and blood

vessels can be clearly observed.
5 Impact of retinal image restoration

5.1 Early detection of eye diseases

Retinal image enhancement algorithms improve the quality of

images, making it more accurate to identify early signs of eye

diseases such as glaucoma, macular degeneration, and diabetic

retinopathy (126, 127). Early detection of findings through

cataractous retinal images may improve the outcome of treatment
Frontiers in Ophthalmology 15
of retinal diseases. It may be helpful in the decision-making process

of surgery, specifically in combined cases of cataract and retinal

disease, to prevent unnecessary interventions (3).
5.2 Access to healthcare

The high cost of equipment and the lack of trained professionals

can limit access to techniques of retinal imaging, particularly in low-

income and rural areas. Low-cost fundus cameras (128, 129)

combined with novel image processing algorithms can make

retinal imaging accessible and affordable for patients in these areas.
6 Conclusion and prospects

We discussed different image formation models and methods of

retinal image enhancement/restoration, and how they can be of

benefit in clinical applications like blood vessel segmentation, image

registration, and diagnosis. These algorithms exhibited variations in

their definitions, implementations, underlying structures, and

mathematical relationships. Two seemingly unrelated topics,

namely, retinal image illumination correction and dehazing, are

deeply related to each other in their mathematical insight; thus, a

concise description is needed when choosing them for retinal

image enhancement.

Ongoing research in retinal image restoration focuses on

developing more robust and generalizable methods. This includes
FIGURE 16

Enhancement for UWF retinal image. (A) Raw images. (B) Enhanced. (C1, C2) are zoomed-in images of the blue box. (D1, D2) are zoomed-in images
of the green box. (E1, E2) are zoomed-in images of the purple box, and (F1, F2) are zoomed-in images of the white box.
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addressing challenges related to increasing the performance of non-

learning-based methods, which usually distort the naturalness of

retinal image after enhancement, negatively affecting clinical

applications since some forms of retinopathy are deeply related to

the color of the tissues.
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