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of keratoconus: a
systematic review
Deniz Goodman † and Angela Y. Zhu*†

Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
Introduction: The application of artificial intelligence (AI) systems in

ophthalmology is rapidly expanding. Early detection and management of

keratoconus is important for preventing disease progression and the need for

corneal transplant. We review studies regarding the utility of AI in the diagnosis

and management of keratoconus and other corneal ectasias.

Methods: We conducted a systematic search for relevant original, English-

language research studies in the PubMed, Web of Science, Embase, and

Cochrane databases from inception to October 31, 2023, using a combination

of the following keywords: artificial intelligence, deep learning, machine learning,

keratoconus, and corneal ectasia. Case reports, literature reviews, conference

proceedings, and editorials were excluded. We extracted the following data from

each eligible study: type of AI, input used for training, output, ground truth or

reference, dataset size, availability of algorithm/model, availability of dataset, and

major study findings.

Results: Ninety-three original research studies were included in this review, with

the date of publication ranging from 1994 to 2023. The majority of studies were

regarding the use of AI in detecting keratoconus or subclinical keratoconus

(n=61). Among studies regarding keratoconus diagnosis, the most common

inputs were corneal topography, Scheimpflug-based corneal tomography, and

anterior segment-optical coherence tomography. This review also summarized

16 original research studies regarding AI-based assessment of severity and

clinical features, 7 studies regarding the prediction of disease progression, and

6 studies regarding the characterization of treatment response. There were only

three studies regarding the use of AI in identifying susceptibility genes involved in

the etiology and pathogenesis of keratoconus.

Discussion: Algorithms trained on Scheimpflug-based tomography seem

promising tools for the early diagnosis of keratoconus that can be particularly

applied in low-resource communities. Future studies could investigate the

application of AI models trained on multimodal patient information for staging

keratoconus severity and tracking disease progression.
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1 Introduction

1.1 Keratoconus

Keratoconus is a progressive corneal ectasia characterized by

stromal thinning and corneal steepening, ranging in severity from

asymptomatic subclinical disease to severe corneal scarring requiring

corneal transplantation for visual rehabilitation (1). As the condition

progresses, patients may experience decreased visual acuity,

photophobia, and image distortion (1). A meta-analysis study

reported that younger patients and patients with a baseline

maximum keratometry steeper than 55 D were more likely to

experience disease progression (2). Patients with a medical history

involving allergic eye disease or atopic conditions were also more likely

to experience keratoconus progression (3). The pathophysiology of

keratoconus involves reduced keratocyte density, loss of stromal

lamellae with fibroblast degradation, redistribution of collagen, and

increased proteolysis leading to a breakdown in structural integrity (4).

This condition most commonly occurs between the second and third

decade of life and has an estimated global prevalence of 1.38 per 1000

individuals (5, 6). The global prevalence of keratoconus varies across

populations but has been previously estimated to range between 0.2-

4790 per 100,000 individuals, with the lowest reported in Russia (5).

The highest prevalence rates have been reported in Asian and Middle

Eastern communities (5).

Multiple ancillary testing modalities have been used in conjunction

with clinical examination for the diagnosis of keratoconus. Placido-

based videokeratoscopy and ultrasonic central pachymetry were

previously used in the diagnosis and severity staging of keratoconus

(7). Modern Placido disc-based corneal topography devices are still

popular, as they provide information about corneal curvature, surface

irregularities, and aberrations by generating color-coded maps (1, 8).

More recently, Scheimpflug-based corneal tomography imaging has

allowed for greater analysis of the cornea by generating three-

dimensional representations of the anterior segment to provide

information about corneal thickness as well as the anterior and

posterior cornea (7, 9). Corneal tomography is now the gold

standard method for corneal ectasia diagnosis, and the Pentacam®

(OCULUS, Arlington, WA, USA) is one of the most common

Scheimpflug-based corneal tomography devices (9, 10). Another

adjunct imaging technology used for evaluation of corneal ectasias is

anterior-segment optical coherence tomography (AS-OCT), which

generates cross-sectional corneal images that can be used to identify

asymmetry in corneal thinning, posterior curvature, and epithelial/total

corneal thickness via epithelial mapping (1). Corneal biomechanics,

including corneal hysteresis and deformation amplitude, can also be

used to diagnose early stages of keratoconus through an association

with central corneal thickness (11).

Early keratoconus diagnosis is important for successful

management and prevention of disease progression (12). Corneal

cross-linking (CXL) is a procedure developed in 2003 that promotes

bond formation between corneal collagen fibrils using riboflavin and

ultraviolet-A light, which has demonstrated excellent long-term

efficacy in reducing progression of keratoconus but has a threshold

of procedural safety for the thinnest pachymetry value that can be

treated (12). As CXL alone does not significantly improve visual
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outcomes, early detection and disease management can also allow for

enhanced visual rehabilitation of patients without requiring

keratoplasty, including options of hard contact lenses, intracorneal

ring segment implantation, intraocular collamer lens implantation,

and CXL combined with laser ablative procedures (e.g.

photorefractive keratectomy) (12).
1.2 Models of artificial intelligence

The application of artificial intelligence (AI) in the diagnosis

and management of ophthalmic diseases has been rapidly

increasing since the 1970s (13). AI associates a particular

outcome with variables of different weights, and trained models

can be applied in establishing disease diagnosis, determining

management, and predicting the prognosis of patients (14).

Machine learning (ML) is a subset of AI that uses a training

dataset for tasks but does not require programming (15). Features

from the input data, which may include imaging and patient

demographic information, are used to form a feature vector

which then serves as the starting point for the ML model (16).

Supervised ML is trained on a set of inputs with correct outcome

labels available (17). In contrast, unsupervised ML models receive

inputs without outcome labels (18). ML techniques include logistic

regression, decision tree, random forest, support vector machine,

and multilayer perceptron (Table 1) (15, 16).

Deep learning (DL) is a subset of machine learning that includes

convolutional neural networks and does not require manual feature

extraction from the research team (15, 29). DL models are composed

of neural network layers that represent operations, and the output of

one layer serves as the input of the next layer (30). Convolutional

neural networks consist of convolution layers, pooling layers, and a

fully connected network layer (16). Back propagation, normalization

of input, dropout, and residual networks may be used to reduce error,

reduce overfitting, and improve training (16).

The application of AI models is evaluated through several

measures, which most commonly include accuracy, sensitivity,

specificity, and area under the receiver operating curve (AUC or

AUROC). The output of AI models in the majority of included

studies is a class prediction (i.e. keratoconus versus healthy).

Accuracy is the proportion of predictions that are true positives

and negatives among all predictions. Sensitivity of a class is the

proportion of true positives among all predictions of that class.

Specificity describes the rate of true negatives (31). AUC ranges

from 0 to 1 and is the area under the curve of the function modeled

by sensitivity and 1-specificity. This provides a measure of

diagnostic accuracy, with higher scores (closer to 1) representing

greater accuracy (32).
1.3 Ophthalmic applications of
artificial intelligence

The application of AI models in ophthalmology has been widely

studied, particularly for posterior segment diseases including

diabetic retinopathy, glaucoma, age-related macular degeneration,
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and retinopathy of prematurity (ROP) (33, 34). Ng et al. reported

that AI algorithms for diabetic retinopathy may be closest to

application in clinical medicine (33). DL systems are able to

detect diabetic retinopathy, predict disease progression, and

predict diabetic macular edema using fundus images (33). There

also exist DL algorithms to detect glaucoma and predict progression

using fundus photographs, optical coherence tomography, and

Humphrey visual fields (33). AI systems are particularly useful for

detecting ROP from fundus imaging given that there is grading

variation among experts, and some low-resource countries have

heavy disease burden with limited access to specialist care (33). DL

algorithms have demonstrated high AUC, sensitivity, and specificity

for identifying retinopathy of prematurity requiring further

management (33).

There has also been an increase in reports evaluating the

application of AI systems in detecting anterior segment diseases,

including keratoconus, infectious keratitis, cataract, and pterygium

using anterior segment photographs and AS-OCT images (35). AI

has also been used to screen patients for post-corneal transplant

rejection as well as to grade cataracts (35). However, several studies

regarding the application of AI in anterior segment disease

diagnosis and management were limited by a small sample size

with low heterogeneity (35).

As shown, clinical utilization of AI models in ophthalmology

has rapidly increased in the past 7 years since the first reports of DL

systems trained for screening of retinal pathologies (36, 37). Due to

the greater variety of anterior segment imaging and variable use in

evaluating different conditions, widespread adoption of ML/DL

algorithms for corneal pathology has not yet occurred. However,

as imaging-based evaluation of keratoconus has now become

standard of care due to improved technology, this study aims to
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provide a systematic review on the current state of utilizing AI and

ML/DL platforms in the diagnosis, evaluation, management, and

prognosis of keratoconus and corneal ectasias.
2 Methods of literature search

2.1 Search strategy

Using the Preferred Reporting Items for Systematic reviews and

Meta-Analyses (PRISMA) framework as a guide, a systematic review

technique was used to evaluate studies describing artificial

intelligence and keratoconus. The search strategy was created based

on the population, interventions, comparators, outcomes, and study

design (PICOS) architecture, resulting in the study question: “Is

artificial intelligence a sensitive and specific tool for the diagnosis

and management of keratoconus or other corneal ectasias compared

to clinical diagnosis and management led by ophthalmologists?” The

systematic search was conducted using the PubMed, Web of Science,

Embase, and Cochrane databases from inception to October 31, 2023,

to select full-length, English articles in peer-reviewed journals. The

MeSH keywords included in the search strategy were keratoconus,

corneal ectasia, artificial intelligence, machine learning, and deep

learning, with all combinations of these terms searched.
2.2 Inclusion and exclusion criteria

Original, English-language research articles published in peer-

reviewed journals regarding the use of any AI, ML or DL model in

the evaluation of the diagnosis, pathophysiology, severity, clinical
TABLE 1 Description, use, and examples of machine learning techniques in medical literature.

ML Technique Description Preferred Use Example of
Clinical Application

Logistic Regression Prediction based on predetermined input
parameters (16)

Classifier (16) Distinguish benign and malignant breast
nodules using radiomic features from
ultrasound (19)

Decision Tree Uses binary decisions on selected features and
criterion to form the final decision (16)

Multi-class problems, (20) defining
groups based on a combination of
features and similar outcomes (21)

Predicting classes of membrane proteins
(integral, peripheral, and lipid-
anchored) (22)

Random Forest Uses randomization to form several decision trees
and combines the output of the decision trees with
voting or averaging (23)

Prediction tasks, interactions
between predictor variables (23)

Prediction of tumor relapse, secondary
malignant tumor, or all- cause death among
patients with breast
cancer after neoadjuvant chemotherapy (24)

Support Vector Machine Training set is divided into 2 classes based on a
hyperplane and a formula for the hyperplane is
determined (16)

Binary classification problems (20) Discriminating malignant versus normal
gastric tissue (25)

Multilayer Perceptron Feedforward neural network with the following
layers: input, output, hidden. (26) Each layer
contains communicating and connected nodes
similar to synapsing neurons. (27) Nodes have an
activation function that acts on the input to
produce the output. (27) The weight of
connections between nodes is
based on ability to produce outcome (27)

Pattern classification, recognition,
prediction, approximation, class
associations (26, 27)

Predict mortality among patients with
respiratory cancer in the intensive care
unit (28)
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progression, or evaluation of the response to management of

keratoconus and other corneal ectasias were included in this

study. Case reports, editorials, commentaries, conference

abstracts, and literature reviews were excluded. Non-English-

language articles were also excluded. Publications were not

restricted by year. Figure 1 displays PRISMA diagram of the

study selection methodology (38).
2.3 Data extraction

The following variables were collected for each included study:
Fron
• Type of artificial intelligence

• Input used for training

• Output

• Ground truth or reference standard

• Dataset size (number of images, eyes, and patients, when

applicable and available)

• Availability of algorithm/model

• Source and availability of dataset

• Major study findings
2.4 Quality assessment

The Quality Assessment of Diagnostic Accuracy Studies-2

(QUADAS-2) tool was used to assess the risk of bias and

applicability concerns of studies regarding the diagnosis, severity,
tiers in Ophthalmology 04
and clinical grading of keratoconus and other corneal ectasias (39).

The Quality Assessment of Prognostic Accuracy Studies (QUAPAS)

tool was used to assess the risk of bias and applicability concerns of

studies regarding the prediction of disease progression and response

to treatment/management (40). A quality assessment for studies

regarding the etiology and pathogenesis was not completed due to

the absence of a validated assessment tool for this type of study.
3 Results

The search strategy yielded 93 original research studies. These

studies are summarized in Table 2, and we discuss some key studies

in the following Results section. There were no concerns regarding

the applicability of any studies given the broad nature of our review

question and strict application of the inclusion and exclusion criteria.
3.1 Diagnosis of keratoconus

Among the included studies, AI was most frequently used for

the diagnosis of keratoconus and other ectasias, particularly in

subclinical cases (n = 61, Supplementary Table 1) (31, 41–100). The

earliest study using artificial intelligence to detect keratoconus was

published in 1994 by Maeda et al. (65) This study used eight indices

from TMS-1 videokeratoscope data (Computed Anatomy Inc., New

York City, NY, USA) to detect keratoconus among a set of eyes with

normal corneas and corneas with various diagnoses (65). The linear

discriminant function generated a Keratoconus Prediction

Index value that was used to classify eyes as “keratoconus” or

“nonkeratoconus” based on a cutoff value (65, 100). The model

demonstrated sensitivities of 100% and 89% with three false-

positives and one false-positive in the training and validation set,

respectively (65). More recently, Silverman et al. evaluated the use

of stepwise linear discriminant analysis and neural networks in

detecting keratoconus using corneal epithelial and stromal

thickness maps from Artemis 1® (StarFish Medical, Victoria, BC,

Canada) very high frequency ultrasound arc-scans (96). Eyes with

keratoconus were reported to have focal epithelial and stromal

thinning with a surrounding ring of epithelial thickening (96, 101).

The majority of the included studies regarding keratoconus or

corneal ectasia diagnosis with AI used data from corneal

topography (47, 51–53, 56, 57, 67, 73, 74, 77, 78, 83, 91, 92, 94,

100), Scheimpflug-based tomography (43, 45, 49, 54, 55, 59, 60, 62,

64, 66, 70, 76, 79, 80, 84, 86–88, 90, 95, 99), or optical coherence

tomography (OCT) (31, 46, 50, 53, 68, 69, 72, 80, 84) as the input.

For example, de Almeida et al. utilized 52 parameters from

Pentacam® (OCULUS, Arlington, WA, USA) tomography to

generate the Corneal Tomography Multivariate Index (CTMVI)

using paraconsistent feature engineering and a support vector

machine classifier (90). CTMVI was then used to discriminate

between very asymmetric ectasia with normal topography and

healthy corneas. When using these 52 features, CTMVI

demonstrated a sensitivity, specificity, and AUC of 0.844, 0.874,

and 0.926, respectively (90). After combining CTMVI and the

Pentacam Random Forest Index, the model demonstrated a
FIGURE 1

Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) diagram of the study selection methodology for
this review.
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sensitivity and specificity of 0.99 and 0.84, respectively. Other input

for AI-based keratoconus or corneal ectasia diagnosis included data

from corneal deformation videos (42, 55, 71, 97), air-puff tonometry

(50), corneal endothelial images from specular microscopy (81),

and lateral segment photographs (93).

Beyond diagnosing subclinical keratoconus or keratoconus,

Ahn et al. demonstrated that AI can be used to screen patients in

a primary care setting that may need further evaluation with corneal

topography for keratoconus. Using input parameters of subjective

visual impairment (based on a patient survey), visual acuity,

intraocular pressure, and autokeratometry parameters, they

compared the performance of five previously-reported AI models

(102–106). The ensemble model with soft voting method

demonstrated superior performance with this task with a

sensitivity of 90.5% and 96.4% in the internal and external test

datasets, respectively (44). Intraocular pressure and mean corneal

power were the most highly ranked in the feature importance

analysis (44). A soft voting ensemble classifier has been

previously used to predict major adverse cardiovascular events

among patients with acute coronary system (107).

In the absence of a large dataset of eyes with keratoconus, Lavric

et al. and Subramanian et al. used SyntEyes KTC to generate a

sufficiently large set of corneal topography images for model

training (57, 97). The SyntEyes KTC model was developed by

Rozema et al. using Scheimpflug tomography, ocular biometry,

and wavefront data of 145 eyes with keratoconus (108).

Abdelmotaal et al. used a conditional generative adversarial

network (CGAN) called pix2pix to produce images of

keratoconus eyes (95). The pix2pix CGAN is composed of a

Generator that uses the input image to form the output image,

and a Discriminator that determines the similarity of the generated

image to an image from the original dataset or an image from the

Generator (95). The authors reported that the model produced

subjectively and objectively plausible images of keratoconus, early
Frontiers in Ophthalmology 05
keratoconus, and normal eyes (95). They trained a VGG-16 deep

convolutional neural network on combinations of original images

and images synthesized by the pix2pix CGAN. The VGG-16 model

trained with all original images and synthesized images

demonstrated the highest accuracy of 99.56% in discriminating

early keratoconus, keratoconus, and normal eyes (95).
3.2 Etiology & pathogenesis of keratoconus

Only three studies have investigated the utility of AI in

exploring the genetic etiology and mechanical pathogenesis of

keratoconus (Supplementary Table 2) (109–111). Hosoda et al.

conducted a genome-wide association study (GWAS) of central

corneal thickness using IBM’s Watson for Drug Discovery AI

technology. They found the STON2 rs2371597 and SMAD3

rs12913547 loci to be involved in keratoconus development.

STON2 and SMAD3 have roles in extracellular matrix (ECM)

remodeling, so these variants may contribute to the stromal ECM

changes described in keratoconus (109, 112). The authors noted

that additional GWAS may be used to identify pathways driving

keratoconus development (109). Wang et al. identified 8

differentially expressed genes (AREG, BBC3, DUSP2, MAP3K8,

SMAD7, CDKN1A, JUN, and LIF) between patients with and

without keratoconus using the random forest model, support

vector machine model, and generalized linear model (110). These

genes may affect cell mitosis (AREG), macrophage dysfunction

(BBC3), cell cycle arrest (CDKN1A), apoptosis (DUSP2,

CDKN1A), and proliferation, differentiation, and death (JUN)

(110). The authors concluded that abnormal cell proliferation,

differentiation, and autophagy pathways may be involved in

keratoconus development (110).

Given the reported association between mechanical eye rubbing

and pathogenesis of keratoconus, Nokas et al. built a wrist-mounted
TABLE 2 Overview of the number of studies, types of AI models implemented for each study aim, and quality assessment of studies included in this
review. The types of AI models include multilayer perceptron (MLP), convolutional neural network (CNN), generative adversarial network (GAN),
traditional machine learning (ML), ensemble, and natural language processing (NLP).

Study Aim Number of
Studies (n=93)

Types of AI
Models Implemented

Risk of Bias Assessment Summary

Diagnosis 61 MLP, CNN, GAN,
ML, ensemble

Patient Selection: 75.4% High, 6.6% Low, 18.0% Unclear;
Index Test: 62.3% Low, 37.7% Unclear; Reference

Standard: 96.7% Low, 3.3% Unclear; Flow and Timing:
82.0% Low, 18.0% Unclear

Etiology & Pathogenesis 3 NLP, ML Not applicable

Severity & Clinical Grading* 16 MLP, ML,
ensemble, CNN,

Patient Selection: 69.2% High, 7.7% Low, 23.1% Unclear;
Index Test: 92.3% Low, 7.7% Unclear; Reference Standard:
100% Low; Flow and Timing: 76.9% Low, 23.1% Unclear

Keratoconus Progression 7 MLP, CNN Participants: 14.3% High, 57.1% Low, 28.6% Unclear;
Index Test: 100% Low; Outcome: 100% Low; Flow and
Timing: 85.7% Low, 14.3% Unclear; Analysis: 100% Low

Response to
Treatment/Management**

6 MLP, ML, CNN Participants: 20.0% High, 40.0% Low, 40.0% Unclear;
Index Test: 100% Low; Outcome: 100% Low; Flow and
Timing: 100% Low; Analysis: 80% Low, 20% Unclear
*3/16 studies were not included in the risk of bias assessment because the QUADAS-2 tool was not applicable to their study design.
**1/6 studies were not included in the risk of bias assessment because the QUAPAS tool was not applicable to the study design.
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sensor that used an accelerometer, gyroscope, and machine learning

algorithms to detect eye rubbing activity and remind the user to

cease such activity (111). With limited AI-based studies on this

topic, future research could further investigate susceptibility genes

and utility of behavior modification in keratoconus pathogenesis.
3.3 Severity & clinical grading
of keratoconus

Sixteen original research articles identified in this review

assessed severity or other clinical features of patients with

keratoconus (Supplementary Table 3) (104, 113–127). Among

studies evaluating keratoconus severity, the ground truth included

staging based on topography findings (104, 113, 118, 120, 125, 127),

tomography findings (116), the Ectasia Screening Index (114),

Keratoconus Severity Index (119), and Amsler-Krumeich criteria

(120, 121, 126). Chen et al. compared six convolutional neural

network models trained with one or a combination of four color-

coded corneal tomography maps (axial, anterior elevation, posterior

elevation, and pachymetry) as well as a majority voting strategy

model to predict the presence and stage of keratoconus (121). The

model trained with all four maps demonstrated the best AUC in

distinguishing healthy from keratoconus eyes (121). Interestingly,

the majority voting model and the model using the back elevation

map demonstrated the highest AUC for discriminating healthy and

stage 1 keratoconus eyes, as well as stage 1 and stage 2 keratoconus

eyes, respectively (121).

Dong et al. and Dos Santos et al. both used deep learning

models to segment corneal OCT scans (122, 123). Dong et al. used a

corneal segmentation algorithm to measure the thickness of

epithelial and stromal tissue with an error of less than 4 microns

(123). The OCT images were taken by the Optovue RTVUE 100

device (Optovue, Inc., Fremont, CA, USA). They reported that as

keratoconus progressed, total corneal thickness decreased,

particularly temporal and inferior to the pupil center (123).

Epithelial thickness also decreased as keratoconus severity

increased (123). However, keratoconic eyes with stromal scarring

demonstrated a larger epithelial thickness with irregular variations

(123). Dos Santos et al. developed CorneaNet, a neural network to

segment OCT images of eyes with and without keratoconus and

produce thickness maps of the epithelium, Bowman layer, and

stroma (122). The image scans were acquired on a custom-built,

ultra-high resolution OCT system (128). CorneaNet achieved an

accuracy of 99.56% with this task, but the authors noted that

accuracy may be limited by network architecture, image noise, as

well as insufficient and incorrect training data (122).
3.4 Keratoconus progression

Seven studies investigated AI-based prediction of disease

progression in eyes with keratoconus (Supplementary Table 4)

(129–135). The majority of these studies only provided binary

categorization of keratoconus eyes as progressive or

nonprogressive. Kundu et al. developed two AI models, based on
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either tomographic changes or clinical risk factors, to identify risk

factors underlying keratoconus progression and label patients with

either likely disease “progression” or “no progression.” (129) They

found that elevated serum immunoglobin E (IgE), systemic allergies,

eye rubbing, and serum vitamin D level were important

characteristics in the evaluation for the risk of keratoconus

progression (129). Patients categorized into the progression group

had a significantly higher serum IgE compared to those categorized

into the no progression group (129). Eye rubbing may also be due to

ocular irritation, fatigue, and stress (129). Eye rubbing reduces

keratocyte density and modifies intraocular pressure, which can

contribute to keratoconus development (129). The results of this

study were limited in their generalizability given that the study was

based only on an Asian Indian group of patients (129).

Alternatively, Kamiya et al. used a deep learning model to

predict keratoconus progression with color-coded maps from AS-

OCT (133). They reported that after adjusting for age, the accuracy

of their algorithm improved from 0.794 to 0.849 (133). However,

this study was limited by the absence of external validation and

confirmation of repeatability, small sample size, possibly inaccurate

keratoconus diagnosis, and the effect of contact lenses (133).
3.5 Response to treatment/management

Six studies featured the use of AI in characterizing the response

to different treatment modalities, such as by predicting

postoperative outcomes or the need for future intervention

(Supplementary Table 5) (136–141). Both Valdés-Mas et al. and

Lyra et al. employed machine learning to predict postoperative

refractive outcomes after intracorneal ring implantation, including

corneal curvature, astigmatism, asphericity, and keratometry (138,

140). Liu et al. utilized machine learning to predict postoperative

visual acuity and keratometry two years after corneal crosslinking

(139). While these studies demonstrate the potential of AI models

to aid in disease prognostication after different treatments,

validation studies are necessary prior to their widespread

generalization and adoption.
4 Discussion

Keratoconus is a corneal ectatic disease that can be diagnosed

through several imaging modalities, including corneal topography

and tomography (1). Furthermore, early detection of keratoconus

and other corneal ectasias with prompt management can help slow

disease progression and reduce the risk for vision loss or need for a

corneal transplant (12). Therefore, AI systems that can process

images and generate predictions may be used to reduce the rate of

missed or delayed diagnoses, thereby improving patient outcomes.

We conducted a systematic review to evaluate the state of AI

systems that have been applied in the diagnosis and management

of keratoconus and other corneal ectasias among adult patients.

We found that the majority of original research studies involving

the clinical application of AI algorithms among patients with

keratoconus are based on disease diagnosis. The most current and
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highest impact studies in the field include Al-Timemy et al., Tan et al.,

Ambrosio et al., Kuo et al., Kamiya et al., and Chen et al. (42, 52, 72,

82, 88, 121) The majority of these studies used a convolutional neural

network AI model, which is a DL method that does not require

manual feature extraction from the research team unlike ML

algorithms (15, 29). Most of these studies also used Scheimpflug-

based corneal tomography scans or indices as their model’s input.

This may be explained by the ability of Scheimpflug-based corneal

tomography to provide additional information about the posterior

cornea, which has been shown to exhibit ectatic changes earlier than

the anterior cornea in keratoconus, allowing for earlier diagnosis

(142). Additionally, the Belin ABCD classification system (A: anterior

radius of curvature, B: back (posterior) radius of curvature, C:

minimal corneal thickness, and D: best spectacle distance visual

acuity) was developed to monitor disease progression evident on

the posterior corneal surface in the absence of anterior corneal surface

changes (142). Given that the aforementioned studies demonstrated

relatively high diagnostic accuracy of DL algorithms trained on

tomography input, further refinement and validation of AI systems

evaluating information from Scheimpflug-based tomography may be

adopted in clinical practice to streamline the identification of patients

with subclinical keratoconus that may benefit from close monitoring

for progression to clinical disease. Additionally, a mobile-based

application with this technology can be used to develop a screening

program for subclinical keratoconus and other corneal ectasia in low-

resource countries.

AI models have been less commonly used in other contexts, such

as identifying genetic susceptibility and predicting disease

progression. Unlike disease diagnosis, these contexts may rely on

model input that involves more subjective elements, such as

demographic, environmental risk factors, and other clinical factors.

For example, Kundu et al. recently developed an AI model using the

random forest algorithm to predict progressive keratoconus using

clinical and ocular surface risk factors determined from a patient

questionnaire (129). Their system demonstrated an AUC of 0.81,

and 76% of cases classified as progressive by an AI model trained on

tomographic changes were also classified as progressive by the

clinical risk factors AI model (129). Within each nondiagnostic

context, the AI systems demonstrated relative variability in their

performance in completing classification or prediction tasks, and

further research is needed to draw conclusions regarding the

application of AI models in nondiagnostic contexts for

keratoconus. In the future, validated AI models trained on

environmental and clinical risk factors could be particularly useful

in predicting disease progression to identify patients at risk for severe

disease. These identified patients may potentially benefit from

prophylactic corneal crosslinking to strengthen corneal integrity

and reduce risk of progression.

Some studies included in this review were limited by their

design. For example, only one specialist determined the presence of

keratoconus for the reference standard of some diagnostic accuracy

studies, including Almeida Jr. et al., Lucena et al., Lopes et al.,

Chandapura et al., Cohen et al., Zéboulon et al., Mosa et al., and

Zaki et al. (45, 47, 49, 53, 54, 75, 87, 93) This could have resulted in

biased classification of eyes. Additionally, some studies included a

relatively low sample size of study groups, which reduced the power
Frontiers in Ophthalmology 07
of the study. Ahn et al. included only 69, 39, and 43 patients in the

subclinical keratoconus study group in the training, internal, and

external datasets, respectively (44). Other studies, such as Cohen

et al., do not include parameters for demographic information, such

as age, sex, or race/ethnicity which can affect the baseline corneal

curvature and thickness (54, 143–145).

The strengths of this study lie in the comprehensiveness of

clinical contexts included in this systematic review. While

previously published reviews regarding the application of AI in

keratoconus and other corneal ectasia focus on diagnostic accuracy

(146–149), we also included studies regarding grading disease

severity, predicting disease progression, understanding etiology and

pathogenesis, and predicting response to treatment or management.

However, our review has several limitations. To begin with, except for

nine studies published prior to 2013, the majority of studies included

in our review were published within the last decade. This may be

explained by the fact that the application of ML/DL in medicine,

including ophthalmology, has grown in popularity more recently

(150). Furthermore, we searched a limited number of medical

databases, including PubMed, Embase, Web of Science, and

Cochrane. Studies meeting our eligibility criteria but not indexed in

these databases may have been excluded from this review. While we

completed a qualitative data extraction among included studies, we

were unable to conduct a meta-analysis with statistical methodology

given the contextual and methodological variation between studies

and their AI systems. Lastly, some studies included in this review

were based on specific patient populations with low diversity, which

decreases the generalizability of this review’s findings.

With the incorporation of ML/DL AI algorithms and

advancements in corneal imaging technology, the potential ability of

clinicians to detect and treat keratoconus at earlier stages to prevent

disease progression is promising. AI can also be used to determine

ectasia severity, identify susceptibility genes, categorize the keratoconus

as progressive or non-progressive, and predict response to surgical

management. These applications are particularly important for low-

resource nations which may have a scarcity of cornea specialists. In

these underserved areas, the incorporation of validated AI models

could help reduce the rate of missed or delayed corneal ectasia

diagnoses. For example, validated smartphone applications could

allow for longitudinal at-home screening of keratoconus among

patients with risk factors for the condition. Looking ahead, some

clinical applications of AI include using multimodal patient data (a

combination of corneal images, demographic information, and

environmental risk factors) as the input to determine the

keratoconus stage and track disease progression.

Additionally, AI can be used in the surgical planning of some

therapeutic options for keratoconus that are growing in popularity,

such as ray-tracing-guided transepithelial photorefractive keratectomy

with accelerated crosslinking, which may help reduce refractive

overcorrection and stromal tissue ablation (151). Mazzotta et al. used

a tissue-preservation algorithm involving ray tracing among 38 patients

with stable keratoconus undergoing this procedure (151). They

reported that the algorithm and surgical treatment significantly

improved visual outcomes in their cohort (151). This demonstrates

that AI-based algorithms could personalize surgical planning to

improve postoperative outcomes, so the implementation of these
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algorithms for other surgical procedures for visual rehabilitation in

keratoconus patients should be investigated.
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