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Quantifying the spatial patterns
of retinal ganglion cell loss and
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by applying a deep learning
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approach to optical
coherence tomography
Jui-Kai Wang1,2*, Brett A. Johnson2, Zhi Chen3,4,
Honghai Zhang3,4, David Szanto5, Brian Woods6,7,
Michael Wall2, Young H. Kwon1,2, Edward F. Linton1,2,
Andrew Pouw2, Mark J. Kupersmith5,8,9, Mona K. Garvin1,2,3,4†

and Randy H. Kardon1,2†

1Center for the Prevention and Treatment of Visual Loss, Iowa City VA Health Care System, Iowa City,
IA, United States, 2Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City,
IA, United States, 3Department of Electrical and Computer Engineering, University of Iowa, Iowa City,
IA, United States, 4Iowa Institute for Biomedical Imaging, University of Iowa, Iowa City, IA, United States,
5Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States,
6Department of Ophthalmology, University Hospital Galway, Galway, Ireland, 7Department of Physics,
School of Natural Sciences, University of Galway, Galway, Ireland, 8Department of Ophthalmology,
Icahn School of Medicine at Mount Sinai, New York, NY, United States, 9Department of Neurosurgery,
Icahn School of Medicine at Mount Sinai, New York, NY, United States
Introduction: Glaucoma, optic neuritis (ON), and non-arteritic anterior ischemic

optic neuropathy (NAION) produce distinct patterns of retinal ganglion cell (RGC)

damage. We propose a booster Variational Autoencoder (bVAE) to capture spatial

variations in RGC loss and generate latent space (LS) montagemaps that visualize

different degrees and spatial patterns of optic nerve bundle injury. Furthermore,

the bVAE model is capable of tracking the spatial pattern of RGC thinning over

time and classifying the underlying cause.

Methods: The bVAE model consists of an encoder, a display decoder, and a

booster decoder. The encoder decomposes input ganglion cell layer (GCL)

thickness maps into two display latent variables (dLVs) and eight booster latent

variables (bLVs). The dLVs capture primary spatial patterns of RGC thinning, while

the display decoder reconstructs the GCL map and creates the LS montage map.

The bLVs add finer spatial details, improving reconstruction accuracy. XGBoost

was used to analyze the dLVs and bLVs, estimating normal/abnormal GCL

thinning and classifying diseases (glaucoma, ON, and NAION). A total of 10,701

OCT macular scans from 822 subjects were included in this study.

Results: Incorporating bLVs improved reconstruction accuracy, with the image-

based root-mean-square error (RMSE) between input and reconstructed GCL

thickness maps decreasing from 5.55 ± 2.29 µm (two dLVs only) to 4.02 ± 1.61 µm
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(two dLVs and eight bLVs). However, the image-based structural similarity index

(SSIM) remained similar (0.91 ± 0.04), indicating that just two dLVs effectively

capture the main GCL spatial patterns. For classification, the XGBoost model

achieved an AUC of 0.98 for identifying abnormal spatial patterns of GCL

thinning over time using the dLVs. Disease classification yielded AUCs of 0.95 for

glaucoma, 0.84 for ON, and 0.93 for NAION, with bLVs further increasing the AUCs

to 0.96 for glaucoma, 0.93 for ON, and 0.99 for NAION.

Conclusion: This study presents a novel approach to visualizing and quantifying

GCL thinning patterns in optic neuropathies using the bVAE model. The

combination of dLVs and bLVs enhances the model’s ability to capture key

spatial features and predict disease progression. Future work will focus on

integrating additional image modalities to further refine the model’s

diagnostic capabilities.
KEYWORDS

variational autoencoder (VAE), glaucoma, optic neuritis (ON), non-arteritic anterior
ischemic optic neuropathy (NAION), retinal ganglion cell (RGC) loss, optical
coherence tomography (OCT)
Introduction

Glaucoma, optic neuritis (ON), and non-arteritic anterior

ischemic optic neuropathy (NAION) are distinct ocular diseases

that impact the optic nerve, causing structural damage within the

retinal ganglion cell layer (1–5) (GCL). Glaucoma leads to

progressive optic neuropathy and GCL thinning, characteristically

of the superior and inferior optic nerve axon bundles with a higher

frequency of inferior bundle involvement (2, 6, 7). ON, frequently

linked to multiple sclerosis, is an inflammatory demyelinating

condition causing optic nerve damage and global GCL thinning

(1, 4, 8). NAION, a vascular disorder, results in acute damage to the

optic nerve head (ONH), and disproportionately causes thinning of

the superior optic nerve bundles (1, 3, 9). Each condition causes

different spatial patterns of GCL (the layer containing cell bodies of

the optic nerve bundles) defects, reflecting the corresponding

pathophysiological mechanism and the retinal neurons most

susceptible to damage. Therefore, GCL becomes an ideal target

for spatial pattern analysis of disease-associated changes.

Automating the quantification of GCL spatial patterns and

systematically analyzing these patterns in a statistically

meaningful manner provides a novel approach to improving the

accuracy of optic neuropathy diagnosis and monitoring

disease progression.

Optical coherence tomography (OCT) is a powerful tool for

quantifying optic nerve damage in ocular diseases (1, 5). OCT

provides cross-sectional retinal information, enabling quantitative

assessments of retinal layers. Advanced layer segmentation

techniques facilitate the creation of the ganglion cell plus inner

plexiform layer (GCIPL) thickness maps (10–13), which are
02
essential for identifying and tracing optic nerve damage. Figure 1

presents examples of OCT B-scans with layer segmentation and the

corresponding GCIPL thickness maps. In a normal retina

(Figure 1A), the highest density of ganglion cell bodies and their

dendritic connections are typically located 4 – 6 degrees away from

the fovea center, forming an annular pattern (14). When optic nerve

bundles are injured in conditions like glaucoma, ON, or NAION

(Figures 1B–D), retinal ganglion cells and their axons degenerate,

leading to localized GCIPL thinning. The pattern of thinning

corresponds to the spatial patterns of axon loss, providing a link

between optic nerve damage and changes in GCIPL thickness/

patterns. This relationship is beneficial for estimating the damaged

regions by automated approaches.

Variational autoencoders (15) (VAEs) are a type of deep-

learning generative model and have been widely applied to

disentangle image features and create synthetic images that

morph among objects (16–19). During training, the VAE encoder

decomposes input images into lower-dimensional latent variables

(LVs), while the co-trained decoder reconstructs the input images

from these LVs. Previous studies have demonstrated that VAE

models can be used for ophthalmic images in the cornea or retina

and for different diseases (20–28) (e.g., keratoconus and glaucoma).

Recently, we proposed a customized VAE model to visualize the

glaucomatous GCL thinning patterns in OCT using only two LVs

and still maintaining smooth pattern transitions in two-

dimensional (2D) latent space (LS) montage maps (6). We further

refined our VAE design to categorize OCT-based ONH optic nerve

swelling patterns in the LS for various severities of papilledema,

based on the Frisén grades provided by experienced neuro-

ophthalmologists (29). These studies indicate that VAE models
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are flexible and have great potential to synthesize and integrate

meaningful patterns of optic nerve damage from multiple diseases.

In this study, we propose a booster VAE (bVAE) model that

computes two display latent variables (dLVs) to synthesize

meaningful optic nerve patterns organized in a 2D LS montage

map, capturing statistically meaningful GCL spatial patterns for

glaucoma, ON, and NAION. Eight booster latent variables (bLVs)

are designed and employed to encode additional features/details

beyond which two dLVs can represent. We also incorporate

specialized loss functions to encourage the LS to reflect the

natural transition of GCL thinning patterns. Furthermore,

machine learning classifiers [XGBoost (30)] are utilized to

leverage both dLVs and bLVs to identify the GCL thinning and

classify the cause. This study establishes a foundational framework

for organizing GCL spatial patterns across three prevalent optic
Frontiers in Ophthalmology 03
neuropathies. The identified GCL patterns serve as anchor points

for a future unified latent space, enabling the feasible integration of

images from different locations in the retina (e.g., ONH and/or

widefield OCT) and modalities (e.g., visual fields, color fundus

photos, OCT texture images, and OCT angiography) for

comprehensive disease analysis.
Materials and methods

Overview

Figure 2 illustrates the framework of the proposed bVAEmodel,

comprising an encoder, a display decoder, and a booster decoder.

After training, the display decoder can synthesize GCIPL thickness
FIGURE 2

Flowchart of the proposed booster variational autoencoders (bVAE) model.
FIGURE 1

Examples of OCT B-scans with layer segmentation and their corresponding GCIPL thickness maps: (A) normal, (B) glaucoma, (C) optic neuritis, and
(D) non-arteritic anterior ischemic optic neuropathy. The dashed line on the thickness map indicates the location of the B-scan. The GCIPL, defined
as the region between the red and yellow surfaces, includes the ganglion cell and inner plexiform layers. The white 'x' marks the fovea center.
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maps from input dLV pairs, which can be organized to form the LS

montage map (Figure 3), displaying meaningful and statistical

GCIPL spatial patterns.
Data

This study includes four independent datasets. For the normal

and glaucoma groups, data were obtained from 66 and 189 subjects,

with a total of 937 and 4,192 macular OCT scans, respectively, from

the University of Iowa Hospitals and Clinics. The NAION dataset

comprised 351 subjects with 2,957 OCT macular scans, sourced

from a subset of the Quark Pharmaceutical Clinical Trial (31)

(ClinicalTrials.gov Identifier: NCT02341560). The ON dataset

included 216 subjects with 2,615 OCT macular scans from New

York Mt. Sinai Hospital. This optic neuritis dataset only included

patients with typical optic neuritis and did not include those with

myelin oligodendrocyte glycoprotein antibody-associated disease

(MOGAD) or neuromyelitis optica (NMO) optic neuritis. Each

subject had macular OCT volumetric scans available for either

single or both eyes, with data collected from a single or multiple

visits. For each disease, 10 and 25 subjects were randomly selected

for the validation and test sets, respectively; no OCT scans from the

same subjects were included across the training, validation, and test

sets. To ensure the VAE model was exposed to a wide range of

GCIPL patterns, all available OCT scans (including both good and

bad scans; details of image quality control are provided in the

Supplementary Document) in the training set were included in the

training process. The validation dataset was used to help decide

when the model should stop training. The test dataset were used to

evaluate reconstruction errors and for estimation of the spatial

patterns of GCL thinning over time. The study was approved by the

Institutional Review Boards (IRBs) of the University of Iowa and

the Mount Sinai School of Medicine and adhered to the tenets of the

Declaration of Helsinki.

There were a total of 10,701 OCT macular volumetric scans, of

which 10,686 of these scans were Cirrus scans (Carl Zeiss Meditec,

Dublin, CA) covering 6 × 6 × 2 mm³. The Cirrus device employed

two protocols: one with 200 B-scans (200 × 1024 pixels) and

another with 128 B-scans (512 × 1024 pixels). Additional 15

scans from the normal dataset were obtained using the Optovue

XR Avanti System (Visionix USA, Inc., Lombard, IL), also covering

6 × 6 × 2 mm³, with a protocol of 400 B-scans (400 × 640 pixels).

After layer segmentation, all GCIPL thickness maps were resized to

200 × 200 pixels for the input into the bVAE model.

It is worth noting that, as in real-world clinical practice, the

populations of subjects with healthy nerves or glaucoma, ON, and

NAION in these datasets have differences in demographic

composition. Although age and race may influence overall GCIPL

thickness, these factors may have limited effects on the anatomical

spatial patterns of the GCIPL. The bVAE model employs an

unsupervised framework to organize GCIPL thickness maps in LS

based solely on spatial pattern similarity. More details are provided

below in the bVAE model design.
Frontiers in Ophthalmology 04
Ganglion cell + inner plexiform layer
thickness maps

For each OCT macular scan, the GCIPL was automatically

segmented using our hybrid deep learning algorithm [Layered

Optimal Graph Image Segmentation for Multiple Objects and

Surfaces; Deep LOGISMOS (10)]. Following segmentation, all

GCIPL thickness maps underwent quality control by an OCT

expert (J-KW). This process involved correcting any errors in the

automated identification of the fovea location and flagging

thickness maps with unacceptable image quality, such as those

where segmentation failed due to poor OCT signal strength. Any

cases that failed quality control were flagged. Also, despite the use of

three OCT scan protocols in our data, all OCT scans cover the same

physical dimensions with adequate numbers of B-scan to render a

volume scan, leading to consistent GCIPL thickness map quality

across the dataset and across different OCT instrument

manufactures. Examples of typical layer segmentation and GCIPL

thickness maps for normal, glaucoma, ON and NAION cases are

shown in Figure 1.

Next, for each eye with more than three visits, the GCIPL

thickness maps that passed quality control were reviewed

longitudinally to assess changes over time. The presence or

absence of GCIPL thinning was determined based on visual

inspection. Each eye was then assigned one of two labels: GCIPL

thickness changes beyond the normal range over time or the

changes that remained within the normal range. Details on data

quality control and the visual inspection of GCIPL thickness

changes are provided in the Supplementary Document.
Booster variational autoencoders

In this study, we propose a novel VAE architecture (Figure 2),

referred to as the booster VAE (bVAE), by modifying our previous

bi-channel VAE model, which was initially designed for determining

the patterns and changes in ONH swelling due to papilledema (29).

This new bVAE consists of an encoder (E), a display decoder (DD),

and a booster decoder (DB), which are co-trained but do not share

parameters. After training, the encoder E decomposes an input

GCIPL thickness map (x) into two display latent variables (dLVs;

d1 and d2) and eight booster latent variables (bLVs; b1 – b8). Next,

DD reconstructs a fovea-centered cropped version of the input (xC)

using only the two dLVs (d1 and d2), producing a fovea-centered

reconstructed map (yD). Simultaneously, the booster decoder DB

utilizes all latent variables (d1, d2, and b1 – b8) to enhance the

reconstruction by compensating for the display decoder and adding

finer details (yB), resulting in a more accurate final output

(y = yD + yB).

Although the OCT scan protocol focused on the macula, the

images were not always perfectly centered at the fovea (e.g., x in

Figure 2). During training, we designed specific reconstruction loss

functions to ensure that the outputs from both decoders (yD and yB)

are fovea-centered. This design allows the reconstructed GCIPL
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thickness maps to be directly used for further machine-learning

tasks without the need for additional alignment steps. Additionally,

the encoder estimates the fovea location (fx and fy) and generates a

flag (fEXC) to identify the input GCIPL thickness maps with poor

image quality.

An important feature of our bVAE model is the customization of

the dLVs to reflect the GCIPL annulus patterns. Along with Kullback-

Leibler (K-L) divergence (15) to regulate the dLVs during training, we

applied additional penalties to d1 and d2 based on the ratio of GCIPL

annulus thickness in the inferior and superior regions, respectively.

This design guided the 2D LS to follow a predefined organization:

top-left for inferior thinning, top-right for normal and thickening,

bottom-left for diffuse thinning, and bottom-right for superior

thinning (Figure 3). Notably, no clinical information (e.g., disease

labels) was used during training, so the bVAE remains unsupervised

to disease classifications. Further details on loss function design are

provided in the Supplementary Methods.
Latent space montage map visualization

After training, each available GCIPL thickness map was

encoded into a data point in the 2D LS montage map, organized

by the display latent variables (dLVs; d1 and d2) that capture major

spatial patterns of GCIPL thinning. Disease labels corresponding to

the data points are color-coded and displayed in the LS montage

map, providing a visualization of spatial patterns associated with

specific optic neuropathies. The normal distribution of data points

is outlined by kernel density estimation (KDE) contours, generated

using a Gaussian kernel to create a smooth boundary around the

data points’ locations [Python package Seaborn (32)]. By plotting

individual scans or longitudinal trajectories onto this map,

researchers can observe progression over time, compare stages

across diseases, and assess spatial deviations from normative

patterns. This setup offers an intuitive tool for diagnostic insights

and disease progression monitoring.
Classification of GCIPL thinning status

Because the primary focus of this study is the bVAE model and its

LS display and booster latent variables (dLVs and bLVs), any standard

machine learning classifier could be applied to use these latent variables

as features to classify GCIPL thinning status. For this study, we selected

XGBoost (30), which is a gradient-boosting algorithm well-suited for

structured data. XGBoost incorporates multiple techniques to prevent

overfitting, including L1 and L2 regularization, tree pruning,

subsampling, and a shrinkage parameter to control the learning rate.

XGBoost also provides feature importance metrics, which could aid

future studies in evaluating the influence of each latent variable on

thinning status classification.
Model evaluations

To assess the reconstruction errors among the original (and the

fovea-centered version, xC), dLV reconstructed (yD), and fully
Frontiers in Ophthalmology 05
reconstructed (y) GCIPL thickness maps, three metrics were

employed to evaluate the proposed bVAE’s performance from

different perspectives. The image-based root-mean-square error

(RMSE) was first included, because it is a common metric to

determine how closely a generative model can reconstruct the

input images. However, RMSE can be sensitive to existing noise

or artifacts in the input images. In our case, the GCIPL thickness

maps may not be fovea-centered or contain non-neuropathy-

related features (e.g., epiretinal membrane or vessel shadows).

Therefore, the structural similarity (SSIM) index (33, 34), ranging

from 0 (no similarity) to 1 (identical images), was also included to

quantify structure changes between xC and reconstructed images

(yD and y). Additionally, sectorial thicknesses in a GCIPL elliptical

annulus grid were computed to provide a clinically meaningful

evaluation metric. This annulus grid covers the same area as Zeiss

Cirrus software analyzing GCIPL thickness with a vertical inner and

outer radius of 0.5 and 2.0 mm; and a horizontal inner and outer

radius of 0.6 and 2.4 mm, respectively. The annulus was further

divided into six sectors, which include superior nasal (SN), superior

(S), superior temporal (ST), inferior temporal (IT), inferior (I), and

inferior nasal (IN) sectors.

To evaluate the ability of dLVs and bLVs to identify spatial

patterns of GCIPL thinning beyond the normal range over time,

XGBoost (30) was used for classification, with the dLVs alone or

both dLVs and bLVs as input features from three time points. The

first time point was chosen from the first visit, and the third time

point was from the last visit. The second time point was chosen as

the visit most equidistant from the first and last visits when there

were more than three visits. The XGBoost parameters were

optimized by using our training and validation datasets, with a

maximum tree depth of 15, a step size shrinkage of 0.3, and “multi:

softprob” as the objective to predict the probability of thinning.

XGBoost classifications were performed in two experiments. The

classifier estimated the probability of an eye being classified as

showing a spatial pattern of GCIPL thinning beyond the normal

range versus remaining within the normal range, based on the data

from the first, second, and third time points. Second, instead of

binary classification, the XGBoost model estimated the probability

of each specific label (i.e., within normal range, glaucoma, ON, and

NAION) for each eye across the same three visits. Multiclass

Receiver Operating Characteristic (ROC) curves and area under

the curve (AUC) were further utilized to assess performance based

on the estimated probabilities for each eye in the independent

test dataset.
Results

Table 1 presents the demographic and data distribution for the

training, validation, and test sets, all of which were randomly

selected at the subject level. The training set includes 692 subjects

with a mean age of 56.14 years and a total of 8,934 OCT scans,

which were all (including both good and bad scans) used for

training the bVAE model. The validation set includes 30 subjects

with a mean age of 54.99 years and 267 OCT scans, and the test set

includes 100 subjects with a mean age of 51.94 years and 1,500 OCT
frontiersin.org
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scans. GCIPL thickness measurements, reported as the mean

thickness across six sectors for scans passing quality control, are

provided for each group.

Figure 3 shows a GCIPL 2D latent space (LS) montage, where

each tile was generated by inputting dLV pairs (d1, d2) ranging in

values from ( − 5,  −5) to (8,   4). There were a total of 10,701 GCIPL

thickness maps in our dataset, where 10,639 (99.42%) thickness

map dLV pairs were in this range. Based on the model design, The

LS montage map’s top-left, bottom-left, and bottom-right regions

correspond to GCIPL inferior, diffuse, and superior thinning,

respectively. The blue contour lines were drawn using the KDE

plot [by the Python package Seaborn (32)] to indicate the

distribution of the Iowa normal data points. Note that a

glaucoma eye in the training set with repeated visits had an

epiretinal membrane which produced an artifactual spatial

pattern of segmented GCIPL thickness that was outside of the

patterns encountered due to optic nerve disease. This resulted in the

encoding of spatial patterns in the extreme upper left corner of

the latent montage that did not correspond to thinning caused by

optic nerve pathology. Next, Figure 4 displays the distributions of all

available data points for eyes from the glaucoma, ON, and NAION

datasets, respectively. Each dot represents a GCIPL thickness map

based on its dLV pair.
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Three examples are presented in Figure 5, utilizing the bVAE LS

montage map to visualize GCIPL thickness data over time to assess

progressive thinning. Figures 5A–C show the data trajectories for a

glaucoma, ON, and NAION eye, respectively, with the time between

patient visits (in months) indicated. By tracking the location of

these trajectories within the LS montage maps, this novel bVAE LS

visualization offers a comprehensive way to observe the progression

of GCIPL changes over time due to different causes. Figures 5D–F

display the original fovea-centered GCIPL thickness maps (left

column), the reconstructed maps (yD; the middle column) using

only the two dLVs (i.e., d1 and d2), and the fully reconstructed

maps (y = yD + yB; the right column) using both two dLVs and eight

bLVs (i.e., b1 to b8). The reconstructed maps from dLVs alone (yD)

demonstrate that the display decoder captured the main spatial

patterns of GCIPL thinning. When both dLVs and bLVs were used,

the final reconstructed map (y) closely approximated the original

GCIPL thickness map, which captured finer spatial features. In

other words, the bVAE could represent the GCIPL thinning

patterns using only two parameters (dLVs: d1 and d2), while the

full GCIPL reconstruction could be achieved using just 10

parameters (dLVs and bLVs: d1, d2, b1 to b8).

In a glaucoma eye example shown in Figure 6, an epiretinal

membrane resulted in artifactual thickening in the superior
FIGURE 3

The generated GCIPL latent space (LS) montage map shows the spatial patterns of GCIPL thickness generated by the bVAE model, utilizing both
display and binary latent variables (dLV’s and bLV’s). The LS was trained based on a training set of GCIPL thickness maps from normal eyes and eyes
with glaucoma, optic neuritis and NAION. Each spatial pattern tile is defined by its latent variables. The two main display latent variables d1 and d2
are plotted on the x and y axis, respectively. The blue KDE (32) contour lines represent the distribution of the Iowa normal dataset, defining a normal
range of spatial patterns encountered. Regions of the latent space corresponding to inferior, diffuse, and superior thinning are labeled. When an
individual patient eye’s GCIPL thickness map is derived from the bVAE model, it can be plotted onto this LS montage map. This allows one to
immediately visualize how normal or abnormal the pattern is and its location on the montage provides information on the spatial pattern (e.g.
thinning in the superior or inferior retina or diffuse thinning). Plotting multiple time points also allows one to track whether the spatial pattern is
changing over time to assess progression of disease (examples shown in Figure 5). The extreme top-left region of the montage demonstrates an
unusual spatial pattern of GCIPL thickness not due to optic nerve damage, which was influenced by a patient’s eye in the training set having an
epiretinal membrane, which distorted the spatial pattern of the segmented GCIPL layer.
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TABLE 1 Demographics and data distribution of the training, validation, and test datasets.

Training Set

Normal Glaucoma NAION ON Total

Subject Count 41 154 316 181 692

Age (Mean ± SD y.o.) 39.68 ± 19.43 65.68 ± 9.89 61.43 ± 7.74 42.65 ± 13.26 56.14 ± 14.61

Sex (M/F) 24/17 68/86 238/78 51/130 381/311

Race

White 39 144 211 119 513

Black 2 7 1 13 23

Asian 0 1 103 3 107

Hispanic 0 2 0 5 7

Other 0 0 1 41 42

Visit
Mean Number 4.27 ± 4.66 7.40 ± 3.03 4.07 ± 1.25 5.61 ± 4.13 5.22 ± 3.20

Interval (Days) 126.02 ± 100.41 282.34 ± 270.24 65.48 ± 68.41 269.96 ± 328.12 194.19 ± 256.02

OCT Count 630 3451 2639 2214 8934

Good Scan
(†GCIPL Thickness)

620
(78.68 ± 5.95)

3309
(65.48 ± 11.34)

2553
(72.03 ± 14.64)

2062
(71.29 ± 13.04)

8544
(69.79 ± 13.13)

‡Bad Scan 10 142 86 152 390

Validation Set

Normal Glaucoma NAION ON Total

Subject Count 0 10 10 10 30

Age (Mean ± SD y.o.) — 69.68 ± 7.93 56.50 ± 3.66 38.79 ± 16.17 54.99 ± 16.45

Sex (M/F) — 8/2 5/5 4/6 17/13

Race

White — 10 10 7 27

Black — 0 0 0 0

Asian — 0 0 1 1

Hispanic — 0 0 0 0

Other — 0 0 2 2

Visit
Mean Number — 5.40 ± 2.99 4.10 ± 0.74 3.60 ± 2.91 4.37 ± 2.48

Interval (Days) — 383.41 ± 321.24 65.98 ± 65.72 289.69 ± 359.70 258.31 ± 310.93

OCT Count 0 111 82 74 267

Good Scan
(†GCIPL Thickness)

—
83

(68.96 ± 10.51)
82

(77.73 ± 15.05)
74

(68.81 ± 9.46)
239

(71.92 ± 12.66)

‡Bad Scan 0 28 0 0 28

Test Set

Normal Glaucoma NAION ON Total

Subject Count 25 25 25 25 100

Age (Mean ± SD y.o.) 38.41 ± 20.30 67.62 ± 9.66 57.56 ± 5.58 44.17 ± 12.78 51.94 ± 17.36

Sex (M/F) 17/8 9/16 16/9 6/19 48/52

Race

White 22 24 15 18 79

Black 3 0 0 0 3

Asian 0 0 9 1 10

(Continued)
F
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temporal sector of the scan. The display bVAE encoder ignored this

artifact due to its high spatial order characteristics, but the bLV

model with 10 latent variables captured this feature. Comparing

differences in the decoded spatial pattern using two dLVs vs. 10

variables (2 dLVs + 8 bLVs) can help reveal higher degree spatial

features that may or may not be clinically useful, depending on the

disease and how it is affected by pathology.

For the quantitative results, the bVAE encoder yielded an

accuracy of 98.47% (sensitivity: 0.82 and specificity: 0.99) in

identifying spatial patterns of GCIPL thickness maps with poor

image quality in the independent test dataset that could be

excluded. Among the 1,451 GCIPL thickness maps that passed

quality control (Table 1), the bVAE encoder achieved a mean

signed difference (i.e., estimated fovea location minus true fovea

location) ± standard deviation of -0.05 ± 3.81 pixels in the x-direction

and -0.27 ± 3.52 pixels in the y-direction.

To ensure that each eye was represented only once per visit, one

OCT scan was randomly selected from each eye per visit, resulting

in a total of 933 OCT scans from 179 eyes in the test dataset. The

overall image-based RMSE between the original GCIPL thickness

maps (x) and the dLV reconstructed maps (yD) was 5.55 ± 2.29 μm.

With the inclusion of bLVs, the image-based RMSE improved to

4.02 ± 1.61 μm, which is significantly decreased (p-value ≪0.001).

For sectorial thickness estimation, compared to x, yD yielded an

overall standard deviation of 1.80 μm across the entire Zeiss Cirrus

GCIPL annulus grid. Specifically, the standard deviation of the

thickness difference was 1.07 μm for the normal group, 2.69 μm for

glaucoma, 1.24 μm for ON, and 1.36 μm for NAION. When bLVs

were incorporated, the overall standard deviation improved to 0.94

μm across the same annulus grid, with successfully decreased

variability across all neuropathy groups and sectors, indicating an

enhancement in reconstruction accuracy with bLVs. Finally, SSIM

index showed very similar mean and standard deviation results

between x vs. yD and x vs. y for all neuropathy groups. This implies

that while the fully reconstructed image y (incorporating bLVs)

offered improved reconstruction accuracy compared to yD (which is

only based on two dLVs), the SSIM index suggests that yD alone can

capture the essential GCIPL spatial patterns effectively. Table 2

provides detailed values for all comparisons.
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Figures 5, 6 have shown how dLVs can be used to visualize

GCIPL thinning over time through trajectory lines. To further

quantify the effectiveness of the latent variables in detecting

GCIPL thinning over time, dLVs and bLVs from each eye’s first,

second, and third time points were used as features for XGBoost to

estimate the thinning probabilities. Figure 7A shows the multiclass

ROC curves and AUCs based on XGBoost classifiers that used only

dLVs from the three time points as features. For the binary

classification of thinning beyond the normal range versus within

the range, the longitudinal dLVs achieved an AUC of 0.98.

However, when distinguishing among specific conditions, the

AUCs decreased to 0.95 for glaucoma, 0.84 for ON, and 0.93 for

NAION. Incorporating bLVs, which improved the reconstruction

errors, as shown in Table 2, also considerably enhanced the

prediction performance. The AUCs increased to 0.96 for

glaucoma, 0.93 for ON, and 0.99 for NAION (Figure 7B),

highlighting the critical role of bLVs in improving both

reconstruction accuracy and predictive ability when incorporating

the time course of GCIPL thinning over multiple time points.
Discussion

This study represents the first application of a VAE approach

to display statistically meaningful spatial patterns of RGC loss in

glaucoma, ON, and NAION within the GCIPL thickness maps.

Unlike conventional global or regional thickness measurements,

which use predefined grids for numerical analysis of GCIPL

thinning, the proposed bVAE LS montage map introduces a

novel, comprehensive perspective. Our previous work (6),

limited to 899 OCT macular scans from 25 glaucoma subjects,

successfully demonstrated the potential of LS montage mapping to

capture glaucomatous RGC loss patterns. In this study, we

substantially expanded the dataset to over 10,000 OCT scans

from hundreds of patients across the spectrum of optic

neuropathies. This larger, more diverse dataset enabled a

smoother, more naturally morphing LS montage map

(Figure 3), providing a refined visualization of RGC loss.

Additionally, by integrating residual blocks (19, 29, 35) into the
TABLE 1 Continued

Test Set

Normal Glaucoma NAION ON Total

Hispanic 0 1 0 1 2

Other 0 0 1 5 6

Visit
Mean Number 3.80 ± 4.65 7.40 ± 2.97 4.60 ± 1.53 6.00 ± 4.49 5.45 ± 3.84

Interval (Days) 107.17 ± 91.14 273.84 ± 288.98 62.40 ± 65.87 256.12 ± 260.31 195.30 ± 239.50

OCT Count 307 630 236 327 1500

Good Scan
(†GCIPL Thickness)

305
(80.86 ± 6.02)

610
(65.32 ± 12.45)

226
(71.05 ± 15.35)

310
(71.67 ± 11.67)

1451
(70.84 ± 13.13)

‡Bad Scan 2 20 10 17 49
†GCIPL Thickness represents the mean thickness (μm) across the six sectors of the GCIPL annulus for the corresponding dataset.
‡Bad scans are the OCT images with bad image quality, unsuccessful layer segmentation, fovea off-center, and/or incorrect labels.
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bVAE architecture, the model’s reconstruction capabilities were

further enhanced, also contributing to creating more realistic and

continuous transitions among patterns in the LS montage map.

Quality control in layer segmentation, particularly regarding

verifying fovea location and accurately identifying GCIPL boundary

surfaces, is labor-intensive and time-consuming. As current studies

increasingly utilize larger datasets, the burden of preprocessing,
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such as aligning GCIPL thickness maps to the fovea and excluding

those apparently off-center images, has become more demanding.

Our proposed bVAE model addresses these challenges by bypassing

the need for extensive preprocessing. The model is designed to

directly reconstruct fovea-centered GCIPL thickness maps while

simultaneously providing a probability to identify scans of poor

quality, offering a more efficient and convenient way to prepare
FIGURE 4

Distributions of display latent variables (dLVs) for all the available GCIPL thickness maps. (A) Glaucoma dataset: the red dots indicate thickness maps
from the same eye showing thinning beyond the normal range over time, some of which started out in the normal range, while the green dots
indicate thickness maps that remained within the normal range due to that eye having only very mild or no glaucomatous damage within the
macula. (B) ON dataset: the gray dots indicate maps from the same eye showing thinning beyond the normal range over time, after starting out in
the normal range; the green dots indicate thickness maps that remained within the normal range in either the affected eye or the fellow eye without
optic neuritis. (C) NAION dataset: the purple dots indicate maps from eyes with NAION over time. At early time points there may be thickening due
to optic disc edema and these eyes initially fell into the normal range or showed thickening, but over time the GCIPL became thin in the same eye;
the green dots indicate maps from fellow eyes that had normal spatial patterns of GCIPL thickness.
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datasets for use in other large-scale machine learning models. In

clinical practice, the bVAE model could also be used to identify

poor-quality scans so that they do not significantly impact clinical

decisions regarding diagnosis and treatment.

While the bLVs have demonstrated an enhanced encoding of

more details from the dLV-reconstructed image (yD), Table 2 shows

that the SSIM index for yD is comparable to that of the fully

reconstructed image (y) in terms of preserving image structure,

which is a key feature of tracking RGC loss. This observation is

particularly noteworthy, as it raises an important question about the

best metrics to evaluate generative models. The primary concern

should be capturing meaningful spatial patterns of pathology rather

than reconstructing all fine details, such as vessels, minor

segmentation inaccuracies, off-centered fovea adjustments, or even

epiretinal membrane artifacts (Figure 6). Thus, any alternative

metrics should better reflect how effectively the model learns

relevant features without being distracted by non-essential image

characteristics or artifacts. Currently, our bVAE model achieves a

promising balance by separating dLVs and bLVs to address both

capturing critical spatial patterns and reconstructing finer image

details. However, there remains room for exploration to further

optimize these components and refine their respective contributions.

The proposed bVAE LS montage map provides advantages over

traditional methods like principal component analysis (PCA) by

capturing complex, nonlinear spatial patterns of GCIPL thinning

within an interpretable latent space. Our previous studies (36, 37)
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using PCA to analyze Bruch’s membrane shape changes due to

increased intracranial pressure indicated the difficulty of displaying

all shape combinations in a single 2D morphing map. In contrast,

the bVAE’s nonlinear framework organizes statistically meaningful

GCIPL spatial patterns using only two display latent variables,

enabling smooth transitions across thickening to thinning in

various severities. Our bVAE approach supports both intuitive

visualization and tracking of disease progression, making the

bVAE model a promising alternative for phenotyping optic

neuropathies. For instance, the data distributions in the LS

montage maps in Figure 4 visually support the current

understanding that glaucoma, ON, and NAION data are more

frequently associated with patterns of inferior, diffuse, and superior

GCL atrophy, respectively.

Our bVAE model uses the bLVs to capture finer, higher spatial

frequency features in the GCIPL thickness maps, allowing the

primary dLVs to focus on pathological spatial patterns of optic

nerve injury. This design minimizes the influence of mild artifacts

(e.g., those from epiretinal membranes [ERMs], major vessels, or

minor segmentation errors) on the core disease representations in

the LS montage map and dLV reconstructed thickness maps. For

instance, Figure 6 demonstrates how the model used the dLVs to

synthesize a reasonable GCIPL thickness map (yD) despite the

presence of the artifact from ERM. By training with both high-

quality and suboptimal GCIPL thickness maps, the bVAE model

effectively distinguishes pathological changes from artifacts,
FIGURE 5

Visualization of longitudinal GCIPL thickness data using the VAE LS montage map. (A–C) Data trajectories for a glaucoma, ON, and NAION eye, with
details between patient visits shown. (D–F) Original GCIPL thickness maps (the left columns), reconstructed maps using only two dLVs (yD; the
middle columns), and fully reconstructed maps using both dLVs and bLVs (y; the right columns). The bVAE model captures the key features with
only two parameters (dLVs) and closely approximates the input with just 10 parameters (dLVs and bLVs: d1, d2, b1 – b8).
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enhancing its reliability in tracking optic nerve damage over time

across varying image qualities.

When classifying GCIPL thinning over time, the XGBoost

classifiers had the lowest AUC for the ON group compared to

other groups (Figure 7). This can be attributed to the diffuse nature

of GCIPL thinning commonly seen in ON, where RGC loss tends to
Frontiers in Ophthalmology 11
be more widespread. In glaucoma and NAION, damage typically

follows the spatial patterns of optic nerve axon bundle loss, making

the condition more predictable by our classifiers. This suggests that

the bVAE model captures key features relevant to these patterns. In

contrast, the progression of GCIPL thinning in ON can vary

dramatically due to different factors, such as the severity of
FIGURE 6

An example of a glaucoma eye that shows thickening in the superior temporal sector due to an epiretinal membrane. (A) A trajectory line of a
glaucoma eye showing progression. (B) Original GCIPL thickness maps (the left column), reconstructed GCIPL thickness maps using only two dLVs
(the middle column), and reconstructed GCIPL thickness maps using both dLVs and bLVs (the right column). Note that the dLVs minimize the impact
of such anomalies, and the bLVs, which encode finer spatial details, compensate for the details not encoded by the two dLV’s, providing a means of
encoding spatial information that is statistically less common. Differences between the thickness maps encoded by the two dLVs vs. the 10 latent
variables (dLVs + bLVs) can reveal common artifacts, such as an epiretinal membrane in this example.
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demyelinating episodes, the degree of recovery, comorbid

conditions like multiple sclerosis, or other causes, such as

neuromyeolitic optica. The episodic nature of ON, characterized

by such acute vision loss with partial or almost complete recovery,

introduces variability in the pattern and timing of RGC layer

thinning, making it more challenging for the XGBoost model to

classify the ON outcome compared with the thinning due to

glaucoma and NAION. In the future, incorporating the actual

time between visits (e.g. days) is likely to provide further

information that will help differentiate different causes of optic

neuropathy that have a time course of thinning that is more specific

for that cause. For example, the slower time course of progression in
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glaucoma vs. NAION or ON or compressive optic neuropathy can

be used to better classify disease in addition to the spatial pattern of

nerve loss. In addition, incorporation of bVAE models using spatial

patterns of retinal nerve fiber layer (RNFL) thickness, optic disc

morphology and visual field loss provide a multimodal approach to

classification of disease and monitoring of treatment.

There are a few limitations to this study. The age distributions

of subjects differed among the three diseases due to their distinct

pathophysiological profiles; ON patients were generally younger,

NAION patients were older, and glaucoma patients represented the

oldest cohort in this study. A notable strength of the NAION

dataset is that it originated from the Quark NAION study (31),
TABLE 2 Evaluations of reconstructions between the original (x) and bVAE reconstructed GCIPL thickness maps (yD and y).

Original (x) vs. dLVs
Reconstructed GCIPL Maps (yD)

Original (x) vs. dLVs+bLVs
Reconstructed GCIPL Maps (y)

Normal G ON NAION “All” Normal G ON NAION “All”

†RMSE
Mean (± Std)

4.17
(0.88)

6.84
(2.68)

4.41
(1.14)

6.37
(2.38)

5.55
(2.29)

*3.28
(0.51)

*5.14
(1.88)

*3.14
(0.61)

*4.30
(1.76)

*4.02
(1.61)

‡SSIM
Mean (± Std)

0.93
(0.02)

0.87
(0.04)

0.93
(0.02)

0.90
(0.03)

0.91
(0.04)

0.93
(0.02)

0.87
(0.05)

0.93
(0.02)

0.91
(0.03)

0.91
(0.04)

Original (x) – dLVs
Reconstructed GCIPL Maps (yD)

Original (x) - dLVs+bLVs
Reconstructed GCIPL Maps (y)

Normal G ON NAION “All” Normal G ON NAION “All”

Annulus
-0.39
(1.07)

0.73
(2.69)

-0.50
(1.24)

0.22
(1.36)

0.04
(1.80)

-0.82
(0.40)

0.17
(1.49)

-0.53
(0.43)

-0.52
(0.58)

-0.40
(0.94)

SN
0.16
(2.16)

3.21
(6.49)

-0.98
(2.51)

2.09
(3.60)

1.18
(4.45)

-0.07
(0.81)

1.35
(3.27)

0.12
(0.99)

0.04
(1.25)

0.39
(1.98)

S
-0.28
(1.77)

0.18
(3.95)

-0.26
(2.38)

0.28
(2.20)

0.00
(2.74)

-0.76
(1.14)

-0.09
(2.55)

-0.79
(1.26)

-0.76
(1.14)

-0.59
(1.67)

ST
-0.29
(2.02)

-1.00
(4.89)

-0.22
(1.90)

-0.11
(2.04)

-0.41
(3.03)

-0.89
(1.19)

-0.38
(2.23)

-0.62
(1.13)

-0.52
(1.26)

-0.58
(1.53)

IT
-0.51
(1.71)

-0.78
(2.98)

-0.29
(1.72)

-0.94
(2.55)

-0.64
(2.34)

-1.12
(1.09)

-0.51
(2.48)

-1.02
(0.94)

-0.57
(1.34)

-0.78
(1.61)

I
-0.94
(1.96)

0.44
(4.18)

-0.12
(1.88)

-1.02
(2.51)

-0.37
(2.87)

-1.34
(1.30)

0.10
(2.61)

-0.70
(0.98)

-0.83
(1.39)

-0.64
(1.76)

IN
-0.49
(2.68)

2.33
(5.78)

-1.12
(2.82)

1.04
(3.89)

0.50
(4.26)

-0.71
(0.99)

0.56
(2.11)

-0.20
(0.95)

-0.49
(1.43)

-0.17
(1.53)
fr
†RMSE, image-based root-mean-square error (μm); *represents a significant reduction compared to the same disease category (all p-values ≪0.001).
‡SSIM, image-based structural similarity index (33, 34), ranging from 0 (no similarity) to 1 (identical images).
“All”, refers to the data included from all categories (normal, glaucoma, ON, and NAION).
Thickness in Annulus Grid.
Mean Signed Difference (± Std) in Micrometer (μm).
G, glaucoma; ON, optic neuritis; NAION, non-arteritic anterior ischemic optic neuropathy; Thickness in the annulus grid (μm); Annulus, the whole region; SN, superior nasal; S, superior; ST,
superior temporal; IT, inferior temporal; I, inferior; IN, inferior nasal.
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which included participants within 14 days of symptom onset,

allowing for the capture of the acute phase of the disease. However,

the timing of visits in the Quark study OCT imaging protocol could

not be matched to the glaucoma and ON datasets due to differences

in data collection protocols and timelines. In the future, we intend

to incorporate the actual time between visits into the prediction

model and include progression rates across diseases. This approach

will enable us to further assess how latent variables’ movement

within the latent space reflects disease progression, enhancing

bVAE model’s clinical relevance.

Another limitation of this study is the absence of additional

clinical parameters such as mean deviation (MD) from visual fields,

intraocular pressure (IOP), visual acuity, and mean peripapillary

RNFL (pRNFL) thickness, which can impact staging and tracking

the clinical course of optic neuropathies. However, this study

focuses on developing a novel approach to visualize and quantify

spatial patterns in data using bVAE latent variables and latent space.

Clinical data will eventually be added as labels, but its absence here

does not compromise the primary significance of this work, which

lies in the visualization and quantification of spatial patterns of

nerve loss, providing additional insights into traditional OCT global

metrics, like the average pRNFL thickness. We are currently

applying the bVAE to quantify spatial patterns of visual field test

results in latent space so that both structure (OCT) and function

(visual field) can be visualized and monitored over time in a

similar way.

Additionally, the determination of whether GCIPL thinning

progressed beyond or remained within the normal range over time

was based on visual inspection by an OCT expert (J-KW). While the
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primary aim was to demonstrate that the bVAE’s latent variables

could effectively capture key spatial patterns of GCL thinning,

future work could further refine these subjective labels by using

linear regression to determine GCIPL thinning status and

incorporating clinical diagnoses supported by additional

parameters or evidence (e.g., MD, IOP, visual acuity, etc.)

A further limitation of this study is the need for external dataset

validation to confirm the generalizability of the proposed bVAE

model. Although the mixed dataset in this study comprises 10,710

OCT scans from 822 subjects across multiple sources (including the

Quark clinical trial, New York Mt. Sinai Hospital, and the

University of Iowa) further testing on new, independent datasets

would provide additional support for the model’s robustness across

diverse populations. Validating the bVAE model with external data

would also enhance its utility in varied clinical environments and

ensure that the latent space organization remains consistent for

broader applications.

In summary, this study introduces a novel approach for

visualizing the pattern and severity of RGC loss by utilizing latent

variables to capture key spatial patterns associated with different

causes of optic nerve disease and its progression. More future work

by our group will involve incorporating additional data formats,

such as OCT RNFL thickness maps, optic disc morphology, visual

field measurements, and OCT angiography, further enhancing the

model’s ability to visualize, analyze, and demonstrate disease

diagnosis and progression as well as treatment effects. The

unsupervised nature of the bVAE model allows for flexibility and

adaptability to different clinically relevant parameters, making it a

highly versatile tool for future applications.
FIGURE 7

Multiclass Receiver Operating Characteristic (ROC) curves and area under the curve (AUC) for the XGBoost classifier, illustrating the bVAE’s ability to
identify GCIPL thinning over time beyond the normal range, within the normal range, glaucoma, ON, and NAION in the independent test dataset.
(A) The classifier only used the dLVs as input features based on three time points (i.e., the first, middle, and last visits). (B) The classifier used both
dLVs and bLVs as input features from the same three time points.
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