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Synergistic AI-resident approach
achieves superior diagnostic
accuracy in tertiary ophthalmic
care for glaucoma and
retinal disease
Dalia Camacho-Garcı́a-Formentı́ 1*, Gabriela Baylón-Vázquez2,
Karen Arriozola-Rodrı́guez2, Enrique Avalos-Ramirez2,
Curt Hartleben-Matkin2, Hugo Valdez-Flores3,
Damaris Hodelin-Fuentes4 and Alejandro Noriega1

1Tech & Intelligence Department, PROSPERiA, Mexico City, Mexico, 2Glaucoma Department, Instituto
de Oftalmologı́a Fundación Conde de Valenciana Institución de Asistencia Privada (IAP), Mexico
City, Mexico, 3Retina Department, Hospital de Nuestra Señora de la Luz, Mexico City, Mexico,
4Ophthalmology Department, Hospital General Dr. Juan Bruno Zayas Alfonso, Santiago de
Cuba, Cuba
Introduction: Artificial intelligence (AI) shows promise in ophthalmology, but its

potential in tertiary care settings in Latin America remains understudied. We

present a Mexican AI-powered screening tool and evaluate it against first-year

ophthalmology residents in a tertiary care setting in Mexico City.

Methods: We analyzed data from 435 adult patients undergoing their first

ophthalmic evaluation using an AI-based platform and first-year

ophthalmology residents. The platform employs an Inception V3–based multi-

output classification model with 512 × 512 input resolution to capture small

lesions when detecting retinal disease. To evaluate glaucoma suspects, the

system uses U-Net models that segment the optic disc and cup to calculate

cup-to-disc ratio (CDR) from their vertical heights. The AI and resident

evaluations were compared with expert annotations for retinal disease, CDR

measurements, and glaucoma suspect classification. In addition, we evaluated a

synergistic approach combining AI and resident assessments.

Results: For glaucoma suspect classification, AI outperformed residents in

accuracy (88.6% vs. 82.9%, p = 0.016), sensitivity (63.0% vs. 50.0%, p = 0.116),

and specificity (94.5% vs. 90.5%, p = 0.062). The synergistic approach achieved a

higher sensitivity (80.4%) than ophthalmic residents alone or AI alone (p < 0.001).

AI’s CDR estimates showed lower mean absolute error (0.056 vs. 0.105, p <

0.001) and higher correlation with expert measurements (r = 0.728 vs. r = 0.538).

In the retinal disease assessment, AI demonstrated higher sensitivity (90.1% vs.

63.0% for medium/high risk, p < 0.001) and specificity (95.8% vs. 90.4%, p <

0.001). Furthermore, differences between AI and residents were statistically

significant across all metrics. The synergistic approach achieved the highest

sensitivity for retinal disease (92.6% for medium/high risk, 100% for high risk).
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Discussion: AI outperformed first-year residents in key ophthalmic assessments.

The synergistic use of AI and resident assessments showed potential for

optimizing diagnostic accuracy, highlighting the value of AI as a supportive tool

in ophthalmic practice, especially for early career clinicians.
KEYWORDS

glaucoma, cup-to-disc ratio, retinal disease, artificial intelligence, ophthalmology
resident, tertiary care, fundus images
1 Introduction

The need for ophthalmic screenings has increased significantly

due to the high prevalence of risk factors associated with

ophthalmic diseases. Diabetes, hypertension, and increasing age

are relevant risk factors for several conditions. These include

glaucoma, diabetic retinopathy (DR), hypertensive retinopathy,

diabetic macular edema (ME), age-related macular degeneration

(AMD), and cataracts (1–5).

While periodic ophthalmic evaluations are recommended for

these at-risk populations, Mexico faces a significant shortage of

ophthalmologists, with only 4,213 registered in July 2024. Of these,

31.5% are concentrated in Mexico City (6). This scarcity makes

comprehensive screening of all at-risk individuals unfeasible,

considering that over 15 million Mexicans over 20 years old have

diabetes, 40 million have hypertension, and the elderly population

comprises over 18 million people (7–10).

To address the growing need for ophthalmic screenings

worldwide, researchers have developed artificial intelligence (AI)

models for retinal disease screenings using fundus images (11–18),

as well as models that analyze the optic disc for glaucoma suspect

classification (19–21).

Although most AI research in ophthalmology has been

conducted in Asia, North America, and Europe (22), some AI

systems and models have been validated in Latin America (13, 14,

17). For example, Arenas-Cavalli et al. have validated DART, a DR

screening tool, on the Chilean health system (17), and González-

Briceño et al. evaluated their models on primary care data from the

Mexican Institute of Social Security (13).

These validations focused mainly on DR screening in primary

care settings. To our knowledge, AI systems that identify a broader

range of retinal diseases, as well as glaucoma suspects, have not been

evaluated in Latin America. Furthermore, their potential in tertiary

care settings remains unexplored, even though experienced

ophthalmologists exhibit considerable variability in CDR

estimation and retinal disease assessments (19, 23–25).

Additionally, previous studies have demonstrated that AI can

enhance ophthalmologists’ sensitivity in DR classification (26),

and AI-based cup-to-disc ratio (CDR) measurements have

surpassed the average expert (19).
02
AI can support early career clinicians in the learning process

(27, 28); it could also be valuable in clinical practice, considering

that first-year residents are often responsible for first-time

consultations at ophthalmology hospitals in Mexico.

We present an AI screening tool trained on Mexican data to

identify several retinal diseases, including DR, ME, AMD,

pathological myopia (PM), and the presence of lesions associated

with other retinal diseases. It also provides CDR estimation for

glaucoma suspect classification, identifies possible media opacities,

and offers explainability features.

We evaluated its performance during first-time consultations at

a Mexican ophthalmology hospital and compared it against first-

year ophthalmology residents. Our evaluation focused on CDR

estimation, glaucoma suspect, and retinal disease classifications. We

also compared cataract diagnoses by residents to media opacities

detected by AI. Additionally, we explored a synergistic approach

between AI and residents, highlighting the benefits of AI-human

interaction in patient care.

Compared to previous research, our study presents a Latin

American AI screening tool for multiple ophthalmic conditions and

evaluates the specific use case of AI in an ophthalmology hospital in

Latin America, comparing it against first-year ophthalmology

residents who serve as the standard benchmark in Mexico for

first-time ophthalmology consultations. Thus, we assess the

possible improvements that could be achieved from implementing

AI systems.
2 Materials and methods

To evaluate the screening tool, we conducted screenings on

patients over 18 years old who underwent their first ophthalmic

evaluation by a first-year ophthalmology resident. The study was

carried out from 12 February to 14 March 2024 at Conde de

Valenciana Centro, an ophthalmic institute in Mexico City.

This study adhered to the Declaration of Helsinki guidelines

and was approved by Conde de Valenciana’s Ethics in Research

Committee (CEI-2023/12/01), Biosecurity Committee (CB-0053-

2023), and Research Committee (CI-053-2023).

For each patient, we collected their hospital medical record ID,

personal information, relevant risk factors, and ophthalmic
frontiersin.org
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symptoms. A complete list of variables is provided in

Supplementary Table S1.

Retinal fundus images were also required for screening. These

were captured with a Horus 45° autofocus portable non-mydriatic

fundus camera (Jedmed).
2.1 Data

A total of 464 patients were screened. Nine screenings were

excluded due to registration errors in the AI platform, and six were

removed because of missing images caused by camera malfunctions.

Additionally, 14 patients were excluded due to empty medical

records. Thus, 435 screenings were included in the final analysis.

A patient flow diagram illustrating the number of patients

included in retinal disease evaluations and CDR assessments is

provided in Supplementary Figure S1.

The average patient age was 59.1 years (SD = 15.7). Of the total

sample, 34.0% were male and 66.0% were female, while 32.2%

reported diabetes and 39.3% declared being previously diagnosed

with hypertension.
2.2 Medical records

Patient medical records required for the study were identified

by the medical record ID. The following information was extracted:

CDR per eye, initial diagnosis assigned by the first-year residents,

and whether the diagnosis was associated with glaucoma, retinal

disease, cataracts, or another subspecialty.
2.3 Ground truth annotation for evaluation

A total of 1,013 fundus images were collected during data

acquisition, of which 918 belonged to the 435 patients included in

the analysis.

For CDR ground truth determination, three ophthalmologists

annotated 861 images with visible optic disc, using the LinkedAI

annotation platform (29). The ground truth CDR was calculated as

the average CDR assigned by the three experts.

The Pearson’s correlation coefficients for CDR between

ophthalmologists were as follows: 0.553 between ophthalmologists

1 and 2, 0.820 between ophthalmologists 1 and 2, and 0.650 between

ophthalmologists 2 and 3. The correlation of each ophthalmologist’s

annotations with the ground truth was 0.914, 0.802, and 0.934,

respectively. These values indicate that ophthalmologist 2 exhibited

higher variability compared to ophthalmologists 1 and 3.

Figure 1 presents a correlation matrix illustrating correlation

coefficients between each ophthalmologist, the ground truth, the AI,

and first-year residents.

Glaucoma suspect ground truth was defined as a CDR of 0.6 or

higher or a CDR difference between both eyes exceeding 0.2. These

criteria were based on Harizman et al’s definition of absence of
Frontiers in Ophthalmology 03
glaucomatous optic neuropathy, considering CDR-related

measurements (30).

For retinal disease ground truth determination, all 918 images

were annotated by a retina specialist and an ophthalmic expert. In

cases where the two experts disagreed, ground truth was established

through consensus. An in-house built platform, Televal (31), was

used for retinal annotation. A complete list of all annotated retinal

findings is provided in Supplementary Table S2.

The criteria for prediagnosis were based on established clinical

guidelines (4, 32–34), while the criteria for risk classification were

informed by follow-up and treatment guidelines, including those

from the Mexican Institute of Social Security (35) and the AMD

Preferred Practice Pattern (4). Further details are provided in

Section 4 of the Supplementary Material.
2.4 AI screening tool

The screenings for this study were conducted using retinIA

(v3.3.1), an AI-based ophthalmic screening tool developed with

Mexican data by PROSPERiA (36). Compared to other screening

tools, such as EyeArt, DART, SELENA+, and Retinalyze, which

primarily focus on detecting DR, AMD, or glaucoma, retinIA offers

a more comprehensive assessment (11, 12, 17, 37–39). It identifies a

broader range of retinal diseases, including DR, ME, AMD, and PM,

as well as the presence of other retinal diseases and risk of visual

loss. It also provides CDR estimation for glaucoma suspect

classification, detection of possible media opacities and other

ophthalmic conditions, and explainability features to enhance

clinical interpretability.

This AI platform operates on cloud-based services, reducing

computational demands on the user’s device. The minimum system

requirements include a device with at least 4 GB of RAM, 200 MB of

free storage, and a USB port or adapter; a supported web browser,
FIGURE 1

Pearson’s correlation coefficient matrix for CDR.
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including Google Chrome (v90+), Mozilla Firefox (v78+), Safari

(v14+), or Edge (v91+); and an internet connection with at least 1.6

Mbps speed (or 3G for mobile connections).

2.4.1 Retinal disease assessment
For retinal disease analysis, a multi-output convolutional neural

network is used to determine image quality, laterality, presence of

DR, ME, macular degeneration, pathological myopia, retinal

lesions, and associated risks of vision loss.

The convolutional base corresponds to the Inception V3

architecture (40). This is followed by a dense layer of 2,048 units,

which then splits into two branches: one for image quality and

laterality and another for retinal disease and risk of vision loss

analysis. Each output works independently for each classification

task, resulting in architecture with multiple classification outputs.

The complete architecture is shown in Figure 2.

As a pre-processing step, images are resized to 512 × 512.

Typically, the input for Inception V3 is 299 × 299; however, we

increased the input size to 512 × 512 to maintain the visibility of
Frontiers in Ophthalmology 04
microaneurysms and small drusen after resizing. We also applied an

image enhancement method based on Graham’s approach (41).

Other computer vision models, such as EfficientNet and Vision

Transformers (ViT), have demonstrated better performance

compared to Inception V3 in various tasks (42, 43). However,

given the required input size of at least 512 × 512, using EfficientNet

would require EfficientNet B6 (input size of 528 × 528), which has

76% more parameters than the selected model (45,256,650 vs.

25,706,075 parameters), significantly increasing computational

requirements for both training and deployment.

Furthermore, pretrained ViT models such as RetFound (44)

have input sizes of 224 × 224, which would result in the loss of small

lesion details upon resizing. Additionally, implementing RetFound

would increase the model size by a factor of 10.9 compared to the

current Inception V3–based model (306,613,738 vs. 25,706,075

parameters). Moreover, internal validation has shown that

Inception V3 performs well as a convolutional base.

The model was trained on Mexican data with a private dataset

consisting of 104,216 fundus images collected between October
FIGURE 2

Model architecture for retinal image analysis. It has an input of 512 × 512 and returns multi-output classification.
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2020 and October 2023. Images were gathered from various

screening locations, including optometry retail stores, primary

care clinics, and cardiometabolic clinics. Collection sites spanned

multiple Mexican states, including Mexico City, Mexico State,

Chihuahua, Guanajuato, Nayarit, and Jalisco.

The images were captured using non-mydriatic fundus

cameras, including the Horus 45° autofocus portable fundus

camera from Jedmed (77.7%), DRS from Centervue (10.4%), and

Visuscout 100 from Zeiss (2.2%). The remaining 9.7% of images

were acquired using other camera models; however, these were only

included in the training set. For internal validation and evaluation,

only images from the Horus, DRS, and Zeiss cameras were used,

with the majority of evaluation images (90.9%) coming from the

Horus camera. While distribution across camera types is not

balanced, the dataset represents data obtained in real-

world screenings.

The average patient age, where this information was available,

was 52 years, with 65% being female, 36% reporting diabetes, and

34% reporting hypertension.

Potential biases may arise from the dataset’s demographic

characteristics. The average age in the dataset was 23 years older

than the median age in Mexico in 2020 (29 years) (8). Additionally,

the proportion of female patients was higher than that of the general

population (51.2%). Consequently, diseases that are more prevalent

in younger populations or in males may be underrepresented.

Furthermore, since most of the data comes from individuals at

risk of developing DR, signs associated with this condition may be

overrepresented. It is also important to note that the dataset does

not fully represent the general patient population, as tertiary care

settings often exhibit greater variability in disease presentation

compared to more homogeneous profiles typically observed in at-

risk individuals in primary care.

A total of 91,884 images were used for training, 6,156 for

validation, and 6,176 for internal testing. No data augmentation

was applied during training.

All images were graded by either an ophthalmologist or a retina

expert. The labeling approach involved annotating the presence of

specific retinal lesions and applying logical rules based on disease

classification guidelines to determine retinal disease presence and

severity. The list of annotated lesions is presented in Supplementary
Frontiers in Ophthalmology 05
Table S2, and the logical rules are detailed in Supplementary

Table S3.

This AI tool also includes explainability features for retinal

image analysis. These features provide a heat map for retinal

anomalies, generated by combining GradCam (45) and

SmoothGrad (46) methods.

Figure 3 illustrates an example of image preprocessing for

model input and the corresponding explainability heatmap

produced during post-processing.
2.4.2 CDR estimation
CDR estimation involves several steps. First, images are resized

to 256 × 256, and a U-Net architecture (47) is used to segment the

optic disc and identify the region of interest (ROI) where the optic

disc is present. The optic disc ROI is extracted and resized to 256 ×

256. Image quality is then verified using a convolutional neural

network based on Inception V3 with 256 × 256 input. If quality

meets the criteria, a second U-Net is used to extract the optic cup.

The segmented image is rescaled to the original ROI size, and the

heights of the optic cup and optic disc are extracted to

calculate CDR.

A close-up of the optic disc is provided by the AI tool, with

markings indicating the optic disc and optic cup heights, along with

the CDR estimate. Figure 4 graphically illustrates the process of

estimating CDR. The final image corresponds to the explainability

output provided by the AI tool.

The optic cup and optic disc segmentation models were trained

on 18,446 images: 15,477 for training, 1,490 for validation, and

1,479 for internal testing. Corresponding masks were annotated by

an ophthalmologist. Images were captured using various non-

mydriatic fundus cameras, including the Horus 45° autofocus

portable fundus camera from Jedmed, the Visuscout 100 from

Zeiss, and the DRS from Centervue.
2.4.3 Media opacities
Logical rules for detecting possible media opacities were defined

with input from ophthalmologists and validated against patients

with a diagnosis in an internal dataset. For media opacity

assessment, the platform considers the following variables: image
FIGURE 3

Pre-processing and explainability. The image indicates how the original image is pre-processed and shows explainability heatmap generated by the
AI tool.
frontiersin.org

https://doi.org/10.3389/fopht.2025.1581212
https://www.frontiersin.org/journals/ophthalmology
https://www.frontiersin.org


Camacho-Garcı́a-Formentı́ et al. 10.3389/fopht.2025.1581212
quality (resulting from the retinal analysis), patient age, and

cataract-related symptoms, including blurry vision, changes in

color perception, increased sensitivity to light, and difficulty

seeing at night. As an example, if a patient is at least 60 years old,

has blurry vision, and none of the images taken meet the quality

threshold for retina evaluation, then the patient is classified as

having possible media opacities.
2.5 Synergistic approach

The synergistic approach for both glaucoma suspects and

retinal disease assessments considers the outcome as positive if

either the residents or the AI tool identify a positive result.
3 Results

For both glaucoma suspects and the presence of retinal disease,

we calculated accuracy, specificity, sensitivity, positive predictive

value (PPV), and F1-score. To determine statistically significant

differences between AI and residents, we calculated p-values using

the bootstrap estimation method. For glaucoma suspect

classification, we also computed the receiver operating

characteristic (ROC) curve, using the maximum estimated CDR

per patient as the model. Additionally, for CDR estimation, we

evaluated absolute and relative errors, calculated the Pearson

correlation coefficient (r), and presented Bland-Altman plots for

residents and AI compared to ground truth values. Furthermore, we
Frontiers in Ophthalmology 06
assessed media opacities and cataract classification by evaluating

accuracy and Cohen’s kappa.
3.1 Glaucoma suspect and cup-to-disc
ratio

The AI software analyzed CDR in 61.6% of patients, while in

38.4%, it determined that the image quality was insufficient for CDR

analysis. In contrast, ground truth CDR values were obtained for

78.6% of patients. Ophthalmology residents, who conducted in-

person evaluations, recorded CDR values for 95.4% of patients.

We compared the residents’ CDR annotations with their

referrals for further glaucoma assessment. Among the referred

patients, 89.4% had a CDR ≥ 0.6. Meanwhile, 73.6% of patients

with a resident-assigned CDR ≥ 0.6 were referred to a glaucoma

subspecialist or complementary testing.

The performance analysis was conducted on 245 patients

(56.3%), specifically those for whom CDR values were available

from the residents, the AI tool, and all three ophthalmologists.

Metrics for glaucoma suspect classification are presented in Table 1.

For AI classification, patients were identified as glaucoma suspects if

their estimated CDR was 0.55 or higher, a threshold optimized for

the maximum F1-score.

When comparing the performance of AI to that of the

ophthalmology residents, AI consistently outperformed the

residents across all metrics. AI achieved 88.6% accuracy versus

82.9% for residents, 63.0% sensitivity versus 50.0% for residents,

and 94.5% specificity versus 90.5% for residents. Statistically
FIGURE 4

Process involved to determine CDR estimation.
frontiersin.org

https://doi.org/10.3389/fopht.2025.1581212
https://www.frontiersin.org/journals/ophthalmology
https://www.frontiersin.org


Camacho-Garcı́a-Formentı́ et al. 10.3389/fopht.2025.1581212
significant differences were found for accuracy (p = 0.016), PPV (p =

0.02), and F1-score (p = 0.026). However, differences in sensitivity

(p = 0.116) and specificity (p = 0.062) were not statistically

significant. The synergistic approach achieved the highest

sensitivity (80.4%) and differed significantly from both AI alone

(p < 0.001) and resident performance (p < 0.001).

Figure 5 presents the ROC curves for AI and residents, using the

maximum patient-level CDR as the model for both. The ROC curve

for the synergistic approach was generated by analyzing sensitivity

and specificity across various combinations of cutoff points for

residents and AI CDR estimates. The area under the ROC curve

(ROC-AUC) was 0.848 for AI, 0.801 for residents, and 0.898 for the

combined approach.

We identified five operating points: (1) the residents’ diagnoses,

(2) AI’s high specificity point (optimal F1-score), (3) the point

where AI’s specificity equaled that of the residents (67.4%

sensitivity, 90.5% specificity), (4) the point where AI alone

matched the sensitivity of the combined approach (80.4%
Frontiers in Ophthalmology 07
sensit ivity, 80.4% specificity), and (5) the synergistic

approach results.

We further analyzed CDR estimates for the 362 eyes evaluated

by all three ophthalmologists, the residents, and the AI tool. The

mean absolute error for CDR estimation was 0.056 (SD: 0.042) for

AI and 0.105 (SD: 0.074) for residents. The relative error was 10.9%

(SD: 7.9%) for AI and 20.8% (SD: 14.4%) for residents. Performance

differences were statistically significant (p < 0.001).

Figure 6 illustrates the comparison between ground truth CDR

values and estimates from both AI and residents, including both

absolute estimates and Bland–Altman plots. A significant

correlation was observed for both AI and residents (p < 0.001);

however, AI achieved a higher Pearson correlation coefficient (r =

0.728) compared to the residents (r = 0.538). The Bland–Altman

analysis reinforces this finding, with AI showing narrower limits of

agreement (−0.15 to 0.07) than residents (−0.28 to 0.20), indicating

greater consistency and lower variability in AI estimates. Moreover,

the plot suggests a trend in residents’ estimations: underestimation
FIGURE 5

Receiver operating characteristic (ROC) curves comparing glaucoma suspect classification performance based on maximum cup-to-disc ratio (CDR)
per patient. The graph displays individual performance curves for ophthalmology residents and AI systems, alongside a synergistic approach curve
that integrates both assessment methods. The curve for the synergistic approach was derived by evaluating sensitivity and specificity metrics across
multiple threshold combinations of resident and AI CDR estimations.
TABLE 1 Performance metrics for glaucoma suspect classification.

Classification
Approach

Accuracy Sensitivity Specificity PPV F1 score

Resident diagnosis 82.9% (78.0%, 87.3%) 50.0% (35.3%, 64.8%) 90.5% (86.2%, 94.1%) 54.8% (39.1%, 69.7%) 52.3% (38.0%, 64.5%)

AI 88.6% (84.5%, 92.2%) 63.0% (50.0%, 77.3%) 94.5% (91.1%, 97.6%) 72.5% (57.1%,86.1%) 67.4% (55.2%, 77.8%)

Resident or AI 85.3% (80.4%, 89.4%) 80.4% (68.3%, 91.5%) 86.4% (81.2%, 90.7%) 57.8% (44.9%, 69.6%) 67.3% (55.4%, 76.0%)
The values considered for AI correspond to a high specificity point, where the best F1-score is met.
Bold values indicate the highest value for each evaluation metric.
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of smaller CDRs and overestimation of larger ones, whereas AI

maintains a relatively uniform variability across the range of values.

Notably, both AI and residents exhibited a slight negative mean bias

of −0.04, reflecting a mild underestimation relative to the

ground truth.

While the AI tool provided more accurate CDR estimates and

the synergistic approach outperformed residents alone, only 61.6%

of patients could be evaluated with AI due to image

quality limitations.

To better understand factors affecting image quality, we

compared the prevalence of residents’ diagnoses between patients

with ground truth CDR values (78.6%) and those without (21.4%).

Diagnoses with at least a 25% relative increase in prevalence among
Frontiers in Ophthalmology 08
patients without ground truth CDR included PM (6.7% vs. 0.5%),

retinal detachment (10.0% vs. 1.2%), vitreous hemorrhage (7.5% vs.

1.5%), uveitis (0.8% vs. 0.2%), non-functional eye or prosthesis

(5.8% vs. 1.5%), AMD (1.7% vs. 0.5%), DR (5.8% vs. 4.4%), and

cataracts (9.2% vs. 7.2%). These findings suggest that retinal

detachment, vitreous hemorrhage, and cataracts contribute to

reduced image quality. Additionally, high myopia (associated with

PM) may lead to blurry images, further impacting AI performance.

As an additional verification, we evaluated the impact of

removing quality assessments on performance metrics.

Specifically, we excluded the Inception V3 model, which is used

to verify the quality of OD images. Without this step, 96.8% of

patients would have a CDR assessment by AI. This resulted in
FIGURE 6

Comparison of cup-to-disc ratio (CDR) estimates with ground truth CDR and Bland-Altman plots. Top left: ground truth CDR against ophthalmology
residents. Top right: ground truth CDR against AI estimates. Bottom left: Bland-Altman plot comparing residents to ground truth. Bottom right:
Bland-Altman plot comparing residents to ground truth.
TABLE 2 Performance metrics for AI in different subsets with groundtruth values without quality assessment component at a patient level.

Subset Accuracy Sensitivity Specificity PPV F1 Score

All GT values 83.3% (79.5%, 87.1%) 66.2% (55.2%, 76.6%) 87.8% (83.9%, 91.6%) 58.8% (48.1%, 69.7%) 62.3% (52.5%, 70.7%)

Sufficient quality 86.5% (82.4%, 90.6%) 67.4% (53.1%, 80.0%) 91.0% (87.0%, 94.9%) 63.3% (7.5%, 28.3%) 65.3% (53.7%, 75.0%)

Insufficient quality 76.7% (67.8%, 84.4%) 66.7% (46.7%, 85.7%) 80.3% (70.4%, 89.2%) 55.2% 15.8%, 56.2%) 60.4% (42.3%, 74.1%)
Bold values indicate the highest value for each evaluation metric.
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having an AI assessment for all images with ground truth values.

However, this would also include images deemed ungradable by

ophthalmologists, making it impossible to evaluate performance

against ground truth in these cases.

Table 2 shows how performance metrics are affected when the

quality component is missing. For those patients with sufficient

quality images, sensitivity increases (67.4% vs. 63.0%), but

specificity is lower (91.0% vs. 94.5%). In this subset, differences

arise from additional images being evaluated by AI for a given

patient instead of only evaluating those with sufficient quality.

However, for the subset without gradable images, accuracy

decreases to 76.7%, and there is a substantial increase in false

positives, with specificity dropping to 80.3%.

Moreover, the Pearson correlation between AI and resident

assessments is 0.537 for images with sufficient quality. In contrast,

for cases without ground truth, the correlation drops to 0.378,

indicating greater discrepancies in assessments. This discrepancy

may also correspond to larger errors in images that

ophthalmologists considered ungradable.
3.2 Retinal disease

The analysis was performed on 395 patients (90.8%) where at

least one eye was evaluated by AI to determine the presence of

retinal disease. If the AI tool detected DR, ME, AMD, PM, or any

other retinal disease, the case was considered positive for

retinal disease.

Table 3 presents performance metrics. We distinguished three

categories for sensitivity analysis. The first category included the

presence of all retinal disease, including those associated with mild

stages of retinal disease (excluding tessellated fundus). The second

category is associated with a medium or high risk of vision loss, and

mild diseases are excluded. The third category corresponds to high

risk of vision loss and encompasses findings such as vitreous

hemorrhages, retinal detachment, and neovascularization. A

complete list of what is included in each category is provided on

Supplementary Table S3 of Supplementary Material.

For both AI and ophthalmology residents, sensitivity improves

as the risk of vision loss increases. Across all categories, AI

demonstrated significantly higher sensitivity than the residents

(p < 0.001). For all retinal diseases, AI achieved a sensitivity of
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76.3%, significantly surpassing the resident’s sensitivity of 51.9%.

For retinal disease associated with medium or high risk, AI’s

sensitivity was 90.1% compared to residents’ 63.0%, and for high

risk, AI reached 100% sensitivity versus 80.5%. Significant

differences were observed across all metrics. Performance metrics

are shown in Figure 7.

The synergistic approach resulted in improved sensitivity

values: 84.0% for all retinal disease, 92.6% for medium or high

risk, and 100% for high risk. PPV for this approach is 81.4%, which

is better than the baseline PPV of the residents’ diagnoses.

Of the total patients analyzed for retinal disease, 9.2% had

fundus images of insufficient quality, preventing AI-based analysis.

Among these cases, remote ophthalmologists who reviewed the

images classified 76.9% as ungradable. In contrast, ophthalmology

residents conducting in-person evaluations categorized 25.6% of

these patients as having cataracts and 15.4% as having either

vitreous hemorrhage or retinal detachment—conditions that can

obscure the retina and compromise image quality.

Additionally, Section 5 of the Supplementary Material presents

an ablation study assessing the impact of image pre-processing and

model outputs on ROC-AUC for retinal disease detection. It also

includes a comparative table of ROC-AUC values for

other technologies.
3.3 Cataract and media opacity
comparison

During data collection, we gathered information on cataract

diagnoses and referrals for cataract surgery. Additionally, media

opacity detection is one of the possible outputs of the AI tool.

Although there was no ground truth for cataract diagnosis, and the

AI platform currently lacks the ability to differentiate cataracts from

other media opacities, we compared the residents’ diagnoses with

the AI tool’s results.

The percentage of agreement between ophthalmology residents

and the AI tool was 86.0%. Table 4 shows the confusion matrix that

compares media opacity detection from AI and cataract diagnosis

from ophthalmology residents.

Despite a high percentage of agreement, the confusion matrix

reveals poor agreement in terms of actual detection. This is reflected

in the low Cohen’s Kappa value (k = 0.237) (48). This low
TABLE 3 Performance metrics for the presence of retinal disease.

Classification
Approach

Accuracy Sensitivity Sensitivity
medium risk
and over

Sensitivity
high risk

Specificity PPV F1 score

Resident diagnosis 75.2%
(70.9%,79.7%)

51.9%
(44.0%,59.9%)

63.0%
(52.2%,73.3%)

80.5%
(67.9%,92.1%)

90.4%
(86.4%,93.9%)

77.9%
(70.0%,85.4%)

62.3%
(54.9%,69.0%)

AI 88.1%
(84.8%, 91.1%)

76.3%
(69.9%, 82.6%)

90.1%
(83.5%, 96.1%)

100.0%
(100.0%, 100.0%)

95.8%
(93.1%, 98.3%)

92.2%
(87.3%, 96.5%)

83.5%
(78.7%,87.6%)

Resident or AI 86.1%
(82.8%, 89.4%)

84.0%
(78.4%, 89.9%)

92.6%
(86.5%,97.7%)

100.0%
(100.0%,100.0%)

87.4%
(82.9%,91.2%)

81.4%
(75.3%,86.7%)

82.6%
(78.1%,86.9%)
Risk of vision loss is defined in terms of retinal lesions according to criteria on Supplementary Table S3.
Bold values indicate the highest value for each evaluation metric.
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agreement may be due to the presence of opacities or cataract-

related symptoms that correspond to different diseases. Also, the

presence of some cataracts still allows fundus imaging with

sufficient quality for analysis of the retina and therefore may not

be considered by the AI tool as opacities.
4 Discussion

In this study, we evaluated the performance of an AI tool, the

initial diagnoses made by ophthalmology residents, and a combined

approach for retinal disease analysis, CDR estimation, and

glaucoma suspect classification.

The AI tool demonstrated superior performance compared to

ophthalmology residents in CDR estimation, achieving a lower

average error (0.056 vs. 0.105, p < 0.001) and a higher Pearson

correlation coefficient (0.728 vs. 0.538). This result was expected, as

CDR estimation remains challenging even for experts (19, 23).

Glaucoma detection remains highly dependent on optic disc

(OD) assessments, including a large CDR, significant differences in

CDR between eyes, evaluation of the ISNT rule (disc rim thickness

of inferior ≥ superior ≥ nasal ≥ temporal), and the presence of OD

hemorrhages (30). CDR has been established as a key indicator of

glaucoma (49). Our findings further support this, as 89.4% of
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patients referred for further glaucoma testing or to a glaucoma

specialist had CDR estimates ≥0.6. In this study, we classified

patients as glaucoma suspects if their CDR was ≥0.6 or if the

CDR difference between both eyes exceeded 0.2, in accordance with

established criteria for glaucomatous optic neuropathy

assessment (30).

Under these criteria, AI achieved higher sensitivity and

specificity (63.0% and 94.5%) compared to residents (50.0% and

90.5%). However, these differences were not statistically significant

(p = 0.116 and p = 0.062).

When employing a synergistic approach, sensitivity

significantly increased to 80.4% (p < 0.001) while maintaining a

specificity of 86.4%, highlighting the potential benefit of integrating

AI with resident assessments in clinical practice, reducing false

negatives with a minor effect on false positives. Furthermore, AI

alone could serve as a valuable tool in primary care settings where

patients at risk of developing ophthalmic conditions are evaluated

by general physicians or are not evaluated at all.

Based on these findings, implementing this AI tool could

standardize CDR measurements and enhance glaucoma suspect

detection. However, we did not assess whether the AI tool’s

explainability features could assist residents in determining CDR

measurements. Future research should explore the potential

benefits of incorporating visual aids for CDR estimation.

Other imaging techniques, such as optical coherence

tomography (OCT), provide additional biomarkers that correlate

more strongly with glaucoma than CDR, such as retinal nerve fiber

layer thickness (50). However, OCT evaluations are typically

conducted after an initial screening, whereas this study focuses on

fundus imaging and first-time assessments performed by residents.

For retinal disease detection, there was a notable difference in

sensitivity between AI and residents. For retinal diseases with a

medium or high risk of visual loss, AI achieved a sensitivity of
TABLE 4 Confusion matrix for comparing media opacity detection from
AI platform and cataract diagnosis from ophthalmology residents.

Resident diagnosis
\ AI output

No media
opacity (AI)

Media
opacity (AI)

No cataract (resident) 360 35

Cataract (resident) 26 14
FIGURE 7

Sensitivities by risk of visual loss and specificity for retinal diseases for ophthalmology residents, AI, and the synergistic approach.
frontiersin.org

https://doi.org/10.3389/fopht.2025.1581212
https://www.frontiersin.org/journals/ophthalmology
https://www.frontiersin.org


Camacho-Garcı́a-Formentı́ et al. 10.3389/fopht.2025.1581212
90.1%, compared to 63.0% for residents. Even when sensitivity

increased for high-risk findings, residents only reached 80.5%

sensitivity compared to the 100% achieved by AI. AI also

demonstrated higher specificity, resulting in an overall

superior performance.

Furthermore, AI demonstrated statistically significant

superiority across all metrics. Although not all patients require

referral for further testing or to specialist evaluation, high sensitivity

is crucial for optimizing referral decisions and providing more

effective recommendations regarding self-care and follow-up.

It is also important to acknowledge AI’s limitations, particularly

in terms of false positives and false negatives. For glaucoma

detection, AI achieved a specificity of 94.5%, indicating a low rate

of false positives. However, its sensitivity was 63.0%, reflecting a

relatively high number of false negatives. Nonetheless, this remains

an improvement over residents, whose sensitivity was 50.0%,

aligning with current standards for first-time assessments in

tertiary care. While further training could enhance AI’s

sensitivity, its performance already meets or exceeds the current

standard of care.

For retinal disease detection, AI achieved a specificity of 95.8%

and a PPV of 92.2%, indicating that only 7.8% of identified cases

were false positives. AI’s sensitivity for retinal diseases with medium

to high risk of vision loss was 90.1%, meaning that only 9.9% of such

cases were missed. In comparison, residents failed to detect 37.0% of

these cases. Thus, AI not only improves sensitivity but also reduces

both false positives and false negatives compared to resident

assessments. This improvement was particularly pronounced

when examining high-risk cases.

For these high-risk cases, AI’s sensitivity reached 100%, while

residents’ sensitivity was only 80.5%. Although the confidence

interval for AI was 100% to 100% using the bootstrap resampling

method, it does not guarantee perfect generalization. Instead, it

reflects no observed variability in sensitivity within this specific

sample. This underscores the importance of validating AI models

on larger datasets.

The implementation of the AI tool holds significant promise for

enhancing sensitivity in retinal disease assessments and improving

the accuracy of CDR measurements. However, it is crucial to

emphasize that the final diagnosis must always be based on a

comprehensive ophthalmological evaluation.

Poor image quality significantly affects AI’s ability to assess the

OD and the retina. For OD evaluation, AI successfully estimated the

CDR in only 61.6% of cases, whereas all three ophthalmologists

deemed 78.6% of images of sufficient quality. This suggests that

adjusting AI’s quality criteria could improve OD evaluations.

Alternatively, using higher resolution fundus cameras may enhance

image quality, though this could increase implementation costs.

However, even with improved imaging, quality issues may persist

in patients with media opacities or high myopia, as physiological

variations can make obtaining high-quality images challenging.

Although removing quality checks increases the number of

patients receiving an AI evaluation for CDR and glaucoma, it also
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increases the number of false positives, reflected in a lower specificity.

This trade-off underscores the importance of incorporating quality

controls to ensure diagnostic reliability. Moreover, performance

cannot be meaningfully assessed on images without ground truth,

as these were deemed ungradable by experts.

Beyond OD evaluation, image quality also affects retinal disease

detection. In cases where AI deemed images ungradable, 76.9%

were also classified as ungradable by remote ophthalmologists,

reinforcing the inherent limitations of remote assessments when

image quality is poor. Furthermore, 25.6% of these patients had

cataracts and 15.4% had vitreous hemorrhage or retinal

detachment, conditions that obscure the retina and compromise

image quality. Given the significant role of media opacities in image

degradation, in-person ophthalmologic evaluations remain

essential when AI determines that an image is of insufficient quality.

This study focused on fundus images for both AI analysis and

ground truth values. However, OCT may offer better visualization

of retinal layers, enhancing lesion assessment and annotation

accuracy. This could provide a more comprehensive evaluation of

both the AI system and ophthalmology residents. Although OCT

was not used—due to hospital protocols limiting its use to selected

cases—future studies could benefit from comparing OCT-based

ground truth to further validate and refine AI performance.

Ophthalmologists conduct thorough evaluations that extend

beyond digital imaging, encompassing the peripheral retina,

anterior segment structures, and media opacities that may

obscure image clarity. These critical aspects of clinical evaluation

cannot be fully replicated by AI. Additionally, the final decision-

making process—whether to refer a patient to a subspecialist,

request further studies, or determine that no referral is needed—

remains a fundamental responsibility of the clinician.

Despite these limitations, AI serves as a valuable tool in retinal

disease assessment by standardizing CDR estimates, improving

sensitivity, and guiding decisions regarding additional

examinations, referrals, and follow-ups.

Currently, Mexico and other Latin American countries are in

the process of developing regional regulations and best practice

guidelines for AI-based tools in healthcare, particularly in the

context of Software as a Medical Device (SaMD). Our study

contributes to this ongoing discussion by highlighting the

potential of AI in healthcare systems, especially in regions with

limited resources for early disease detection and vision

loss prevention.

While this study successfully evaluated the comparative

performance of AI-assisted ophthalmic assessments and its

potential to enhance diagnostic sensitivity, several key directions

for future research remain.

The study design prioritized establishing baseline performance

metrics before introducing AI into direct patient care. Future

research should focus on integrating AI into clinical workflows,

assessing its impact on patient outcomes, and exploring its role in

ophthalmology resident training. Specifically, future studies should

(1) conduct a dedicated user study to examine how ophthalmology
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residents benefit from AI assistance in clinical settings and evaluate

the clinical interpretability of explainability features such as

heatmaps generated using GradCam and SmoothGrad, (2)

document real-world case studies in which AI directly influences

diagnosis or treatment decisions, (3) expand the dataset to include a

more diverse patient population, and (4) conduct longitudinal

studies to assess the real-world clinical performance of the system

over extended periods.

These next steps will provide critical insights as we transition

from performance assessment to the responsible clinical integration

of AI.
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