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Unanswered questions regarding
the pathogenesis of late onset
posterior capsular opacification
S. M. Rakib-Uz-Zaman1, Lilliana Werner2
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1Department of Biological Sciences, University of Delaware, Newark, DE, United States,
2John A. Moran Eye Center, University of Utah, Salt Lake City, UT, United States
Following extracapsular cataract extraction, residual lens epithelial cells (LECs)

are induced to express pro-inflammatory genes within hours of surgery, then

begin to proliferate while migrating to populate denuded areas of the lens

capsule. If these cells reach the optical axis, they scatter light, resulting in

visual disturbances that are clinically defined as Posterior capsular opacification

(PCO). Historically, PCO occurred at high rates within weeks or months of

surgery, but over the past 10–20 years, this “acute onset” PCO has become

relatively rare following cataract surgery in adults, due to improved surgical

techniques and the ability of square edge intraocular lens (IOL) implants to block

residual LECs from reaching the visual axis. Despite this, PCO rates are still

substantial by 5–10 years following cataract surgery, apparently due to the ability

of these entrapped cells to escape their confinement at the capsular bag

periphery. This review explores the mechanisms by which cataract surgery

elicits acute phenotypic changes to LECs and explores how these changes

may set the stage for late-onset PCO.
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Cataract

Human vision requires the refractive properties of the transparent cornea and lens to

collaborate in order to generate sharply defined images onto the retina, which then detects

and processes these light signals prior to transmission to the brain (1–3). While

opacification of either the cornea or lens compromises vision, defects in lens

transparency, i.e., cataract, are historically the most common cause of human blindness

(4). Cataracts can occur at any time across the lifespan and be triggered by any insult that

disrupts lens anatomy, physiology, or biochemistry. However, cataract is predominately a

disease of older adults as light scatter occurs when lens proteins and lipids are damaged by

decades of exposure to reactive oxygen species and UV light, as well as spontaneous

chemical reactions resulting in the formation of mixed disulfides and protein deamidation
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(5–9). In the earliest stages of age-related cataract, this light scatter

leads to glare when driving at night, but later reduces light

transmission to the retina, resulting in visual disability, and even

complete blindness (9, 10).
Cataract surgery history

As cataract-induced blindness greatly reduces quality of life,

cataract treatment has long been a goal of medicine. The first

effective cataract treatment, developed at the turn of the 20th

century, relied on intracapsular cataract extraction (ICCE),

removal of the entire lens through a large 10-12mm incision (11,

12). This procedure required a long recovery period with minimal

activity, while visual restoration required the patient to wear heavy,

high diopter spectacles to compensate for the loss of the lens’s

refractive power from the aphakic eye (12). Beyond these functional

limitations, ICCE presented serious ocular risks that restricted its

use to advanced cataracts. A complete aphakic state allows the

aqueous and vitreous humors to mix, increasing the risk of vitreous

prolapse and subsequent retinal detachment; studies show aphakic

eyes have a 3-5% lifetime risk of retinal detachment compared to

0.01-0.1% in phakic eyes (13–16). Additionally, the large corneal

incision frequently induced significant astigmatism (typically 4–6

diopters) and carried risks of wound dehiscence (12, 17). These

complications, combined with the frequent development of cystoid

macular edema (occurring in 15-30% of cases), meant the

procedure was typically reserved for patients with mature

cataracts who had already endured years of visual disability (12, 17).

The first attempts to restore the eye’s refractive power following

cataract extraction emerged in the mid-20th century. British Royal

Air Force pilots who had acrylic plastic fragments from shattered

cockpit canopies embedded in their eyes during World War II

showed remarkable tolerance to the foreign material (11, 12, 18).

This serendipitous discovery led to the development of the first

intraocular lens (IOL) made of polymethyl methacrylate (PMMA),

which was implanted several months following extracapsular

cataract extraction (ECCE) that removed the central anterior

capsule and fiber cell mass, while preserving both the equatorial

anterior and posterior lens capsule (capsular bag) (11, 18). These

early IOLs, while revolutionary, presented significant challenges.

The original Ridley lens was placed in the posterior chamber, but

the procedure’s technical difficulty and frequent complications led

to modifications (12). Anterior chamber IOLs were developed for

placement in the anterior chamber or with iris fixation to correct

residual refractive error, but the ocular damage induced by their

placement often caused uveitis-glaucoma-hyphemia (UGH)

syndrome, corneal endothelial damage, and persistent

inflammation (19–25). In the 1970s, ECCE was re-introduced

with the IOL placed within the capsular bag at the time of initial

surgery so that the capsule’s attachment to the ciliary muscle via the

zonules fixed its location within the eye while minimizing damage

to other ocular structures (12, 26, 27).
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Posterior capsular opacification after
ECCE

While ECCE with IOL implantation improved cataract surgery

outcomes, lens epithelial cells (LECs) (28) retained in the capsular

bag following cataract surgery due to their attachment to the

equatorial lens capsule, undergo a wound healing response that

induces them to proliferate and migrate onto the denuded capsule

while differentiating into a mixed population of disorganized lens

fiber cells and myofibroblasts (29–31). If these cells remain in the

periphery of the capsular bag, they form Soemmering’s ring, which

increases the long-term stability of the IOL within the eye (31–34).

However, if these cells migrate into the optical axis (ie, central

posterior capsule), they interfere with vision both due to their

intrinsic tendency to scatter light and ability to wrinkle the posterior

capsule (Figure 1) (34–38). Initially, PCO was a major impediment

to the routine clinical use of ECCE as clinically significant visual

disturbances due to PCO would routinely develop within weeks or

months of cataract surgery which could only be treated by invasive

posterior capsule removal surgery (12, 32, 39–41). Historical reports

from the 1980s and early 1990s indicate that the incidence of

clinically significant PCO following ECCE reached as high as 30–

50% after 1 year PCS (42, 43). In the early 1980s, the clinical impact

of PCO was greatly reduced by the development of Nd: YAG laser

capsulotomy, which can non-invasively ablate the posterior lens

capsule and attached light-scattering cells to restore transparency of

the optical axis (32). However, YAG laser capsulotomy is not

entirely benign as it releases cellular material into the posterior

chamber which can trigger inflammation leading to cystoid macular

edema/retinal detachment, as well as exacerbation of pre-existing

uveitis or glaucoma (32, 44–47). Thus, it was also desirable to

reduce overall PCO rates to further improve the outcomes of

cataract surgery.
Cataract surgery in 2025

Modern cataract surgery has evolved significantly to minimize

the incidence of PCO, with numerous innovations which have

primarily focused on reducing both postoperative inflammation

and the potential of residual lens-derived cells to reach the visual

axis (12, 48, 49). Currently, small-incision phacoemulsification

cataract removal is standard in clinical care as it minimizes the

ocular trauma that appears to trigger some of the acute post-

operative inflammation which drives the most severe potential

acute complications of cataract surgery including cystoid macular

edema, retinal detachment, and chronic inflammation/uveitis while

also reducing the rate of clinically significant PCO in the first year

post surgery (7, 12, 47, 48, 50–53).

In this procedure, a 2.2 mm or smaller incision is made in the

peripheral corneal to access the cloudy lens. This small opening

causes less disruption to the eye’s structure, reduces surgical trauma,

and allows for faster healing. The use of a small incision also helps
frontiersin.or
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prevent postoperative astigmatism (corneal distortion) and lowers

infection risks (12). After creating the incision, a viscoelastic agent

(usually a high molecular weight hyaluronic acid solution) is

injected to stabilize the anterior chamber while protecting the

cornea endothelium from biomechanical damage. The central lens

capsule with attached lens epithelial cells is then separated from the

lens (anterior capsulotomy), either by manually tearing using

forceps (continuous curvilinear capsulorhexis (CCC)), or by use

of a femtosecond laser, which creates the access needed for lens fiber

cell removal and IOL implantation (54). The typical anterior

capsulotomy used in adult cataract surgery ranges from 5-5.5 mm

in diameter, as this is slightly smaller than the optic component of

the IOL. Clinical studies show that appropriate sizing of the anterior

capsulotomy reduces PCO rates, apparently due to enhanced

adhesion between the lens capsule and IOL, which may reduce

the access of residual LECs to pro-inflammatory cytokines and

growth factors present in the aqueous humor (55, 56). Additionally,

this technique induces the lens capsule to “shrink-wrap” around the

IOL which helps fix the IOL into the correct location within the eye

which also likely inhibits LEC proliferation via contact inhibition

while creating a barrier to LEC migration onto the central posterior

capsule (Figure 2D) (57, 58).

After anterior capsulotomy, the fiber mass is separated from the

capsule by injection of balanced saline solution (BSS), a procedure

known as hydrodissection; then the cortical fibers are separated

from the central lens fiber mass (lens nucleus) by forcing BSS into

the fiber mass (hydrodelineation). The nuclear fiber mass can be

further broken down by various chopping techniques, and the

cellular material is then pulverized into a cellular slurry via
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ultrasonic vibration (phacoemulsification) which is removed by

simultaneous suction aspiration. Any residual cortical fibers left

in the capsular bag after dealing with the nuclear material are

removed via irrigation/aspiration. Clinical studies have found that

both minimizing biomechanical forces on the eye during

phacoemulsification and maximizing the removal of peripheral

lens material (cortical cleanup) reduce short term PCO rates,

perhaps by reducing the stimuli that can drive persistent tissue

inflammation following surgery (see below) (59–63). Once all

apparent cellular material is removed from the capsular bag, an

IOL is inserted to restore refractive function. The viscoelastic is then

removed from the eye, and the small incision(s) allowed to self-seal

without the placement of sutures. The short-term visual outcome of

this procedure is excellent, with studies reporting that

approximately 87% to 98% of patients achieve non-spectacle

(uncorrected) visual acuity of 20/60 (equivalent to 6/18 in metric

units) or better within six weeks post-surgery (64, 65).
Modern IOL designs also reduce acute
PCO incidence

Permanent placement of artificial implants into the human

body is generally challenging due to their tendency to trigger the

“foreign body” response, which is a chronic inflammatory reaction

to the material of the implant (66–68). IOLs were one of the first

successful long-term medical implants due to the immune system’s

general tolerance for the plastics used (11, 68–70). However,

numerous studies have found that PCO rates are still heavily
FIGURE 1

Early-onset PCO development following cataract surgery. An illustration demonstrating (A) the capsular bag early after surgery, (B) cells start to
gather at the posterior region (some pearl-like components and some myofibroblasts) and development of matrix deformation/capsular wrinkling;
Soemmering’s ring also starts to appear and (C) the changes that result from a combination of fibrotic and regenerative PCO with formation of
Elschnig’ s pearls and Soemmering’s ring. Figure created with Biorender.
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influenced by the material properties of the plastic that makes up

the IOL, with the lowest PCO rates occurring when the IOL adheres

tightly to the posterior lens capsule, likely creating a physical barrier

that prevents the migration of cells onto the portion of the posterior

capsule within the visual axis, commonly known as the “no space,

no cells” theory of PCO prevention (49, 71, 72).
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IOLs made from hydrophobic acrylic significantly reduce the

migration of LECs onto the posterior capsule compared to older

materials like polymethyl methacrylate (PMMA) or silicone (69,

72–74) due to their ability to preferentially adsorb ECM proteins,

notably fibronectin, from the surrounding ocular environment,

which then crosslink with collagen IV in the lens capsule (75, 76).
FIGURE 2

Development of late-onset PCO. A schematic diagram illustrating (A) the capsular bag early after surgery, (B) LECs start to proliferate and populate
the areas of denuded peripheral lens capsule that they can access, (C) Soemmering’s ring starts to develop, (D) Soemmering’s ring fully develops,
and cells start to gather at the posterior region (myofibroblasts or LECs), (E) development of late-onset PCO showing differentiation of escaped LECs
into Elschnig's pearls (left) or invasion of lecs or myofibroblasts onto the inner surface of the posterior capsule the posterior capsule, differentiation
of escaped LECs into Elschnig's pearls (left) or and matrix deformation/capsular wrinkling due to population of the posterior capsule with
myofibroblasts (right), (F) Late-onset PCO is formed: it can be pearl-like (left) and/or fibrotic (right) in nature, or be a mixture of these types (G).
Figure created with Biorender.
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The acrylate groups in hydrophobic IOLs also form covalent bonds

with the cysteine-rich domains common in capsular proteins (77).

This early adhesion encourages the formation of a capsular bend, a

sharp inward fold where the edge of the capsule wraps around the

IOL (57, 78). This fold, combined with tight adhesion, acts as a

physical barrier that blocks LECs from moving into the visual axis

(57, 78). In contrast, IOLs made from hydrophilic acrylic tend to

form a weaker bond with the capsule (water-rich boundary layer in

hydrophilic acrylic IOLs sterically hinders fibronectin absorption),

resulting in poorer mechanical integration (68, 69, 73, 79, 80). This

weaker adhesion leaves a microscopic gap between the IOL and the

capsule surface, providing an open route for LECs to migrate and

proliferate, leading to higher PCO rates (79, 80).

While the chemical properties of the materials from which IOLs

are made influences acute PCO rates, the “no space, no cells”

principle also drives IOL design as PCO can only occur if residual

lens cells can proliferate to numbers able to scatter light while

migrating from their native location on the peripheral anterior lens

capsule to the central posterior capsule (39, 71, 72). Currently, most

IOLs are designed to include optics with “square” outer edges that are

capable of sealing tightly to the lens capsule so that residual lens cells

encounter a physical barrier to their migration onto the posterior

capsule (55, 81). The cells thus entrapped at the lens periphery also

exhibit reduced cell proliferation, likely due to “contact inhibition”

which is a critical mechanism that epithelial cells use to prevent

cellular overgrowth (82, 83). However, over time, cell growth does

still occur, leading to Soemmering’s ring, an opaque ring of cells

deposited around the IOL (See Figure 3A) (31, 33, 85). Soemmering’s

ring does not typically interfere with vision as it is located outside of

the visual axis (33). It may even be beneficial for long term fixation of

IOL position, as well as long-termmaintenance of the lens capsule, as

cataract patients who lack Soemmering’s ring (a condition called

“Dead bag syndrome”) often experience late-stage cataract surgery

side effects including late lens dislocations (see below) (33, 86, 87).

While the “no-space, no-cells” concept emphasizes that

intimate capsule–IOL apposition limits LEC ingress and PCO

(88), observations from the human capsular-bag model indicate
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that true cell–IOL engagement is not uniform across the optic (89).

In a graded-culture human capsular-bag system, LECs tend to

adhere and/or grow to some degree on the anterior IOL face

within the capsulorhexis margin but show limited engagement

with the remaining IOL surface (89).

It is likely that both IOL material and IOL design work together

to reduce PCO incidence associated with IOLs made from

hydrophobic materials, as it was initially difficult to create

hydrophilic IOLs with consistent sharp edge architecture,

although square edge silicone lenses are now available and also

exhibit reduced PCO rates (90). There is also emerging evidence

that optimizing the geometry of the posterior side of the optic to

match the curvature of the normal human lens can also reduce PCO

rates, likely due to increased IOL-capsule adherence (71, 91, 92).

Despite these advances, PCO still occurs at appreciable rates

following cataract surgery. In some cases, this is due to uneven

sealing of the capsule to the IOL, perhaps due to an uneven

capsulorhexis. In others, it appears that single piece IOL designs

that integrate the haptic (which fixes the IOL into the capsular bag)

with the optic do not create a robust seal between the optic and the

lens capsule (Figure 3B) (84, 93, 94). However, PCO still occurs in

some patients whose surgeries generated ideal capsule geometry and

were implanted with hydrophobic square edge three-piece IOLs

where the square edge barrier is uninterrupted (Figure 3C) (84, 95).
Subclinical versus clinically relevant
PCO

PCO is defined as the presence of light-scattering elements on

the portion of the posterior capsule found within the visual axis (31,

96). However, it may not significantly affect the patient’s quality of

life, particularly if it remains at the periphery of the visual axis and/

or is at low density (97, 98). In most contexts, clinically relevant

PCO is pragmatically defined as that which creates light scatter

severe enough to affect a patient’s life activities (such as onset of

glare that interferes with night driving or reduced overall visual
FIGURE 3

Miyake-Apple views of the posterior capsule of cadaver lenses at extended times post cataract surgery (A) Eye implanted with a 3-piece silicone
square edge IOL 7.58 years prior to death. This eye exhibits a prominent Soemmering’s ring with fibrosis apparent at the rim of the capsulorhexis
opening, but no PCO. (B) Eye implanted with a 1-piece square edge hydrophobic acrylic IOL at 2.25 years prior to death. Peripheral PCO has begun
that emanates from the optic-haptic junction (Arrows). (C) Eye implanted with a 3-piece square edge hydrophobic acrylic IOL at 2.33 years prior to
death. This eye exhibits a less dense Soemmering’s ring, but peripheral PCO is seen at two sites at approximately 3 and 9 o’clock (Arrows). Details of
sample preparation can be found in (84).
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acuity) (99–101) (102). However, even severe PCO may not be

considered clinically relevant if it is present in a patient whose

vision is already impaired for other reasons such as age-related

macular degeneration or glaucoma (103, 104). In research settings,

PCO can be quantified using validated imaging methods such as

POCOman (105) or AQUAII (106) to assess its severity and visual

impact. This allows “clinically significant (vision-threatening)

PCO” , which prompts treatment with Nd: YAG laser

capsulotomy, to be distinguished from “subclinical PCO” where

light scattering within the visual axis is detected but does not

significantly impact the patient’s subjective vision (49, 107).

It should be noted that most large clinical and registry studies of

PCO rates use Nd: YAG capsulotomy as a proxy for the presence of

clinically significant PCO, and these data also underly the predictive

models that estimate risk of a patient undergoing cataract surgery will

require Nd: YAG over time (102, 107). As different health care systems

use different thresholds for “clinically significant PCO”, including

whether patients experiencing severe cognitive decline or other major

health issues are candidates for treatment, this can lead to differences in

reported PCO rates among populations to arise solely from differences

in clinical decision making (108, 109). Further, subclinical PCO is also

relatively difficult to assess in assess in community health care settings

and the resulting underreporting inmedical recordsmeans that the rate

that “subclinical” PCO progresses to later “clinically significant” PCO is

generally understudied.

Thus, in this review, reported PCO “rates” are generally

referring to PCO that was severe enough to be treated by Nd:

YAG laser capsulotomy or other methods. In contrast, the sections

focused on the cataract surgery-induced changes in cell biology that

lead to PCO are relevant to both subclinical and clinically relevant

PCO as well as the production of cells sequestered in Soemmering’s

ring or other locations outside of the visual axis such as those

associated with the equatorial anterior capsule.
Current reported rates of early onset
PCO

Early-onset PCO, also referred to as acute PCO, is defined as

opacification that develops within the first year following cataract

surgery. Its incidence has substantially reduced over the past

decade, largely due to advancements in surgical techniques, IOL

design, and postoperative care (39, 42, 49, 110). Large population-

based studies now report clinically significant early-onset PCO in

approximately 2–4.5% of adult patients within the first
Frontiers in Ophthalmology 06
postoperative year, a marked improvement compared to historical

rates of 10–20% prior to 2000 (Table 1) (107, 119). The most

pronounced reductions have been observed in patients receiving

hydrophobic acrylic IOLs with 360° square-edged optics (Table 2),

particularly when combined with complete cortical cleanup and an

optimized capsulorhexis–optic overlap (30, 110, 124, 125).

Prospective studies utilizing these methods have reported 1-year

PCO rates as low as 1.1% (Table 2) (120). In contrast, higher rates of

early-onset PCO persist in patients implanted with silicone IOLs,

with incidences ranging from 11% to 40.7% reported as early as 6

weeks to 3 months postoperatively (Table 2) (107, 110, 126, 127),

although advances in silicone IOL manufacturing have now led to

the release of square-edged silicone IOLs with lower rates (90, 128).

Certain patient populations demonstrate disproportionately

high susceptibility to early-onset PCO. Pediatric patients exhibit

the highest incidence, with reported rates ranging from 40% to

100% at one-year post-surgery (Table 1) (32, 48, 49, 111, 112). This

elevated risk is driven, at least in part, by biological factors such as

the heightened proliferative capacity of pediatric LECs, increased

TGFb and fibroblast growth factor (FGF) signaling, and more

robust postoperative inflammatory responses (32, 117, 129, 130).

However, a mismatch between the posterior curvature of the

pediatric lens and the adult designed IOLs used “off label” in

these patients likely also influences this enhanced PCO rate as

this would compromise the seal between the IOL and posterior lens

capsule consistent with the “no space, no cells” principle for PCO

prevention (88). Young adults show intermediate risk, with PCO

rates ranging from 11.8% to 28%, again likely due to a more robust

wound healing response (Table 1) (115–118).

Ocular co-morbidities can also lead to a higher incidence of

PCO following cataract surgery. Individuals with high myopia

exhibit higher PCO rates likely due to biological factors like

higher levels of intrinsic ocular inflammation (107, 131).

However, these patients also experience a geometric mismatch

between the IOL and posterior lens capsule as they are implanted

with lower-power IOLs with less posterior curvature to achieve

spectacle-free 20:20 vision (92, 132). This is likely exacerbated by

the weakened zonular fibers common in high myopia, which would

lead to poor capsular tension and further reduced IOL-capsule

adhesion (131, 133). In uveitis, chronic ocular inflammation

elevates cytokine (IL-6, TGFb) and matrix metalloproteinase

(MMP-2 and MMP-9) levels, which collectively degrade the

capsular basement membrane, stimulate LEC proliferation, and

promote EMT (134–138). The known cellular responses to

cataract surgery that likely contribute to PCO are described below.
TABLE 1 Early-onset PCO rates (≤1 Year following cataract surgery) varies by age.

Age group 1-year PCO rate Key risk factors References

Infants (<1 yr) 58% to 100% Congenital cataracts, no primary capsulotomy (32, 48, 49, 111, 112)

Children (1–17 yrs) 22-70% Trauma, silicone IOLs (113, 114)

Young/Adults (18-59) 11.8-28% High myopia (>6D), Type 1 diabetes (115–118)

Elderly (>60 yrs) 4.4-29.9% Pseudoexfoliation, small pupil, high myopia (107, 110, 115)
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PCO is still prevalent in elderly
patients at prolonged times following
cataract surgery

While advanced IOL designs that sequester remnant LECs

outside of the visual axis and surgical techniques that minimize

ocular trauma/inflammation have significantly reduced the rate of

clinically significant PCO development over the first year PCS for

those treated for age-related cataract, substantial numbers of these

patients still develop PCO at longer times PCS (107, 121, 139, 140)

(Table 3). Further, similar to acute PCO, late-onset PCO is more

common in patients with ocular co-morbidities such as high

myopia (axial length ≥26 mm), Marfan’s syndrome, and Chronic

Uveitis (Table 4) (145, 147, 149). Late-onset PCO is also more

common in patients implanted with hydrophilic IOLs (107, 121,

142). Despite these similarities between acute and late-onset PCO, it

should be noted that late-onset PCO typically occurs in “quiet” eyes

that completed “active” wound healing in response to cataract

surgery years prior (150). Below, we explore what is currently

known about the acute response of residual LECs to cataract

surgery and present hypotheses about how this initial response

can set the stage for late-onset PCO.
Current understanding of the
molecular basis of short-term/acute
PCO

Small incision cataract surgery removes the central lens capsule

and attached LECs, then uses phacoemulsification to remove the

fiber cell mass (7, 31, 151). However, the equatorial LECs are

resistant to removal due to both their tight adherence to the lens

capsule and location relative to the surgical incision (Figure 1) (49,

117). It is accepted that PCO material is largely derived from these
Frontiers in Ophthalmology 07
residual LECs, and it has long been understood that enhanced

growth factor signaling (TGFb, FGF and others) induced by

cataract surgery drives their proliferation, migration, and

differentiation into either aberrant fiber cells (cellular basis of

Elschnig’s “pearl-like” PCO) or myofibroblasts (cell type

responsible for fibrotic PCO) (31, 32, 152–156). However, the

mechanisms by which cataract surgery induces these processes

have been traditionally less investigated.

LEC cultures are used to investigate the cell signaling pathways

responsible for the phenotypic conversion of LECs to the

myofibroblasts and fiber-like cells that comprise PCO material

(117, 157–161). While these approaches have garnered important

information about the pathways regulating some of the cellular

responses leading to PCO, established lens epithelial cell lines have a

profoundly different transcriptome than bona fide LECs residing

within the mammalian lens, and often have dysregulated cell cycles

resulting from either transformation with SV40 or just selection for

growth in culture (162–166). Many of these limitations can be

overcome by the use of primary LEC cultures established by lens

dissociation (167, 168), LEC explants grown on their native lens

capsule (169–174), or the human lens capsular bag model where

cadaver lenses are subjected to similar manipulations as occur

during cataract surgery, followed by culture (58, 175–178).

However, they are only able to model the response of LECs to the

in vitro cell culture environment without consideration of the

complexity of the ocular or wider organismal response to the

surgery, so these investigations are enhanced by the use of

animal-based in vivo cataract surgery models including monkeys

(179), pigs (180), rabbits (181), rats (182) and mice (183–185). Here

we outline what is currently known about timing (Figure 4) and

nature of the molecular events occurring in LECs following cataract

surgery that are likely to contribute to acute onset PCO.
LECs rapidly upregulate the expression of
pro-inflammatory cytokines in response to
lens manipulations/injury or cataract
surgery

Cataract surgery induces a phenotypic change in the retained

peripheral LECs, which leads to their proliferation, migration, and

differentiation into the myofibroblasts and dysgenic lens fibers that

contribute to Soemmering’s ring, and PCO (30, 89, 186). However, it

was believed that LECs are not primarily affected by surgical

manipulations or placement into explant culture; instead, the
TABLE 3 Incidence of long-term PCO in eyes implanted with IOLs of different materials.

IOL materials 5 years (%) 9 years (%) References

Hydrophobic 25.2 39.3 (107, 141, 142)

Hydrophilic 51.4 63.1 (107, 141, 142)

Silicone 19.4 30.8 (107, 142)

Mixed (Hydrophobic+ Hydrophilic) 67.7 N/A (107)

PMMA 56 N/A (107, 143)
TABLE 2 Incidence of early-onset PCO depending on IOL material.

IOL type PCO rate References

Hydrophobic acrylic 1.1-3.6% (107, 120, 121)

Hydrophilic acrylic 11.9% (107, 121)

Silicone 11-40.7% (110)

PMMA 11.8-30% (119, 122, 123)
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phenotypic changes seen in these cells days after surgery derive from

the LEC response to the environment of the eye (173, 187, 188). This

view was supported by numerous studies that found rat LEC explants

(173, 189, 190) or human LECs (178, 191) cultured in the capsular bag

model largely retain their epithelial character in the first few days of

culture, but respond robustly to treatment with numerous growth

factors, most notably active TGFb (189, 190) or heparan bound FGF

(190–192). However, an early report suggested that LECs rapidly

change crystallin localization upon lens isolation (193), and now

RNAseq experiments have shown that chicken (194), mouse (61,

195), rat (196), and human (160, 197, 198) LECs remodel between

10-33% of their transcriptome within a day of isolation including a

robust upregulation of immediate early transcription factors and

proinflammatory cytokine expression upon either isolation in culture

(194), or following lens fiber cell removal surgery in vivo (61, 195). By

24 hours post lens injury, LECs are producing high levels of numerous

proinflammatory cytokines proteins including CXCL1, S100a9, CSF3,

COX-2, CCL2, LCN2, and HMOX1 which correlates temporally with

neutrophils reaching the eye between 18–24 hours post lens injury in a

mouse in vivo model of cataract surgery (Figure 4) (160, 199), and the

onset of maximal “flare” a measure of ocular inflammation, in humans

following cataract surgery (200–202).

Historically, it was believed that ocular inflammation post

cataract surgery arose exclusively from mechanical disruption of

the blood-aqueous barrier (BAB) during surgery, which allows

serum proteins and immune cells to enter the eye (166, 203).

However, this postulate does not consider how expression of pro-

inflammatory cytokines by other ocular structures, including

residual LECs, could initiate loosening of the BAB tight junctions,

as is seen in other injured tissues such as the gut (204) and heart

(205), to create aqueous flare following cataract surgery (61). The
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relative contributions of direct mechanical distortion of the tissues

comprising the BAB and loosening of BAB tight junctions in

response to the release of pro-inflammatory cytokines by injured

ocular tissues on the ocular inflammatory response following

cataract surgery require future investigation.

While the molecular mechanisms by which experimental or

surgical manipulation of the lens drives the rapid upregulation of

pro-inflammatory cytokine expression in LECs are currently

unclear, LECs do rapidly induce Erk phosphorylation when

isolated from animals (61) and this pathway is known to directly

trigger immediate early transcription factor expression in other

tissues (206, 207). Future studies are needed to determine how/why

lens manipulations trigger Erk activation, and how this pathway

influences later injury responses.
The onset of the LEC fibrotic response
after lens injury

The transcriptional changes induced in LECs within 6 hours of

lens injury in mice subjected to lens fiber cell removal surgery do

not include fibrotic markers associated with LEC conversion to

myofibroblasts (61). However, these genes are robustly upregulated

at the mRNA level within 24 hours PCS in both rodent (196) and

human culture models (160) as well as following in vivo lens injury

in mice (183, 199). This appears to be a conserved response/timeline

in mammals as a cross-species comparison of transcriptomic

changes in mouse and human LECs at 24 hours post fiber cell

removal revealed that 23 genes from the “HALLMARK EMT” gene

set were commonly regulated, including classical EMT markers

such as aSMA and tenascin C (160). Notably though, neither
FIGURE 4

Injury response time course in lens epithelial cells PCS in an in vivo mouse model of cataract surgery (184). Figure created with Biorender.
TABLE 4 Late-onset PCO in eyes with ocular co-morbidities.

Condition PCO rate (%) Time frame References

High Myopia (Axial > 26 mm) 14.8% – 56.8% 2–4 years (144–146)

Marfan’s Syndrome 23-69% Up to 5 years (147, 148)

Uveitis >55% Within 3 years (149)

Cystoid macular edema ~16% Within 3 years (149)
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morphological remodeling of LECs into myofibroblasts nor the

upregulation of fibrotic marker protein levels are detected at 24

hours post lens injury in vivo (183). However, by 48 hours PLI in

the in vivo mouse lens fiber cell removal surgery model, variable

amounts of enhanced fibrotic protein expression are associated

with LECs including polymerized aSMA, and fibrotic ECM

molecules such as fibronectin and tenascin C (183, 185, 199).

By 72 hours PCS, fibrotic protein upregulation is established, lens

epithelial marker expression has downregulated, and remnant lens

cells undergo a burst of cell proliferation (Figure 4) (199, 208). At

5 days PCS and beyond, there is the sustained survival of cells with a

myofibroblast phenotype as measured by morphology, high levels

of aSMA fibrils, robust production of fibrotic ECM, along with low

levels of typical LEC markers such as E-cadherin and Pax6

(Figure 4) (183, 199, 208, 209).
Known molecular mechanisms driving LEC
fibrosis following lens injury/cataract
surgery

Currently, it is generally accepted that production of fibrotic

tissue following lens injury leading to anterior subcapsular cataract,

or after cataract surgery to create cells capable of contributing to

fibrotic PCO, is driven by transdifferentiation of LECs to

myofibroblasts via epithelial to mesenchymal transition (36, 49,

153, 185). However, it has been proposed that at least a portion of

the myofibroblasts found associated with capsular bags post cataract

surgery are derived from a tissue resident population of epiblast-

derived MyoD/Nog cells, as capsular bag fibrosis is reduced upon

depletion of this cell population (210, 211). It is also plausible that

some of the myofibroblasts detected post lens injury are derived

from differentiation of circulating fibrocytes, which reach the lens

during the acute inflammatory response to injury (212, 213). While

definitive answer to the source of all myofibroblasts that are

associated with the lens following its injury will likely await

genetic lineage tracing approaches, much is known about the cell

signaling pathways required for myofibroblast production and

prolonged maintenance following injury/surgery, all of which are

potential entry points for the development of drug based

therapeutic interventions capable of reducing PCO incidence

following cataract surgery (185, 214–217).
TGFb-mediated processes drive
myofibroblast production after lens injury/
surgery

It is widely recognized that TGFb is a major player driving the

pathogenesis of fibrotic conditions throughout the body, including

both anterior subcapsular cataract and PCO (153, 167, 215).

Mammalian TGFbs are a family of three related proteins (TGFb1,
TGFb2, and TGFb3) that are produced by cells in a latent form

(218, 219). Latent TGFb originates in the endoplasmic reticulum,

where pro-TGFb and its associated latency-binding protein (LTBP)
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are co-translated (220). Pro-TGFb undergoes dimerization and is

covalently linked to LTBP through disulfide bonds, forming the

large latent complex (LLC) (220, 221). TGFb is cleaved from its pro-

domain, the LAP, in the trans-Golgi network, where they remain

noncovalently bound and continue to form the LLC (221). After

secretion, the LLC can be found in both body fluids or bound to

extracellular matrix components, where it can remain inactive for

substantial lengths of time (221).

In order to trigger signaling, latent TGFb requires “activation”

which involves separation of the functional growth factor from the

LTBP and LAP (183, 220), a process that can occur via diverse

mechanisms. The released active TGFb then binds to the type II

TGFb receptor to form an active receptor complex (183). In

canonical TGFb signaling, the receptor complex phosphorylates

the type I receptor, which activates the SMAD anchor receptor

activation (SARA) to recruit SMAD 2 or SMAD 3 to the type I

receptor (183). Once recruited, SMAD2/3 are phosphorylated and

form heteromeric complexes with the co-mediator SMAD4 (183,

222). These complexes then translocate into the nucleus, where they

drive the transcription of pro-fibrotic genes while suppressing

epithelial gene expression, thereby initiating EMT and subsequent

fibrosis (183). In addition to this canonical SMAD-mediated

pathway, non-canonical TGFb-induced signaling pathways,

notably the MAPK/ERK, appear to also play critical, synergistic

roles in the induction and progression of EMT in LECs (167, 223).

TGFb can activate the Ras–Raf–MEK–ERK pathway via tyrosine

phosphorylation of the adaptor protein Shc upon binding to

TGFbRI (224). This phosphorylation event enables formation of

the ShcA/Grb2/SOS complex, leading to Ras activation, sequential

kinase signaling, and ERK1/2 phosphorylation, which contributes

to EMT-associated transcriptional events (224). Simultaneously,

TGFb induces activation of the p38 and JNK MAPKs through a

distinct SMAD-independent mechanism involving TRAF6 and

TAK1 (MAP3K7) (225). Upon TGFb receptor engagement,

TRAF6 undergoes K63-linked polyubiquitylation and associates

with TAK1, facilitating downstream phosphorylation of MKK4/6

and subsequent activation of JNK and p38 (226). These kinases then

phosphorylate SMAD linker regions, amplifying fibrotic and EMT

responses independently of canonical SMAD activation (225, 226).

Notably, phosphorylated SMAD2/3 (pSMAD2/3) is not

detected in LECs during the first 24 hours after lens injury in

vivo, and this readout of canonical TGFb signaling is not robustly

detected in remnant LECs until 72 hours PCS, likely due to the need

of injured LECs to upregulate the genes needed for TGFb activation

(199). These likely include the matrix metalloproteases MMP2 and

MMP9, whose expression upregulates following LEC injury,

potentially leading to cleavage of the LAP protein to release active

TGFb (49, 173, 227, 228). In addition to MMPs, mechanical injury

resulting from surgery can significantly increase the influx of blood

proteins via opening of the BAB including proteases (49), such as

cathepsins (229), plasmins (230), and ADAM17 (231), all of which

can cleave latent TGFb. Interrogation of the Lens Injury Response

Time Series (LIRTS) viewer, which is a compendium of RNAseq

analyses of mouse LECs following lens fiber cell removal surgery,

also found that remnant LECs upregulate the transcripts encoding
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these proteases at 48H PLI, coinciding with the first detection of

pSMAD2/3 in remnant LECs (208). Beyond protease activity,

injured LECs upregulate the protein levels of aVb8 integrin, and

this is required for TGFb activation PLI (209). Notably, fibrotic

transformation of LECs can be blocked by treatment with

functional blocking aVb8-integrin antibodies, suggesting that this

is a viable approach to the prevention of myofibroblast formation

(and potentially fibrotic PCO pathogenesis) following cataract

surgery (209).

Notably, this result creates a contradiction in the literature on

which TGFb isoforms are responsible for LEC EMT following lens

injury in vivo. The groundbreaking work of the McAvoy laboratory

first discovered that LEC EMT is likely controlled by TGFb
signaling via treatment of lens epithelial explants with purified

active TGFb1, TGFb2 or TGFb3, and suggested that TGFb2 was the
most potent isoform in vitro (232). Later, it was realized that TGFb2
is the most abundant TGFb isoform in the uninjured eye, where it is

found at high levels in a latent form in the ocular humors (233).

This led to the concept that fibrotic transformation of LECs is

triggered by exposure of LECs to this high level of TGFb2 upon

breach of the lens capsule (89, 234) and exposure of this latent

molecule to proteases such as MMPs (235). However, it is now

apparent that ocular TGFb2 in healthy eyes is likely to be at least in

part produced by the lens as uninjured LECs express this gene at

high levels endogenously, so naïve LECs are constantly exposed to

latent TGFb2 (208, 233, 236, 237). Further, aVb8-integrin, which is

required for TGFb signaling in LECs following lens injury, is only

capable of activating TGFb1 and TGFb3, as the LAP of TGFb2 lacks
the RGD sequence needed for integrin-mediated TGFb activation

(209, 238). Notably, injured LECs upregulate the expression of both

TGFb1 and TGFb3 between 24 and 48 hours PL1, which

corresponds to the first detection of pSMAD2/3 in remnant LECs

at 48 hours PCS (183, 208, 209). Additional investigations into the

function of the TGFb1 and TGFb3 produced by LECs in the fibrotic

response of LECs to lens injury are thus needed.

Further complicating this picture, macrophages closely

associate with the lens following cataract surgery/lens injury from

24 hours PLI until at least a week or more PLI in vivo, which likely

derive from a mixture of resident ocular phagocytic cells (172, 239–

241) and those arriving from the circulation (199). Initially, these

macrophages appear to have a pro-inflammatory M1 phenotype

which are best known for their ability to engulf tissue debris and

bacteria, but later M2 macrophages (242), which in other systems

produce active TGFb to quell the inflammatory response are

detected (243) although their role in inducing the fibrotic

response of LECs is currently unclear as cellular ablation of

circulating macrophages did not appear to ameliorate capsular

bag fibrosis following lens injury in rats (244).
Creation of fibrotic matrix

By 24 hours PLI, remnant LECs begin to upregulate the

expression of numerous extracellular matrix (ECM) molecules

typically associated with tissue fibrosis including fibronectin, type
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I collagen, ECM1, and tenascin C (183). Fibronectin deposition

around injured LECs particularly appears to play a key role in

myofibroblast production and persistence PLI (185). Deletion of the

fibronectin gene from mouse LECs did not affect the initiation of

TGFb signaling at 48 hours PLI, but it blocked sustained TGFb
signaling at 72 hours PLI and beyond, greatly reduced injury-

induced LEC proliferation, and the assembly of fibrotic ECM

(Figure 4) (185). In other systems, fibronectin is established to

play multiple roles in the fibrotic response including serving as a

pioneering ECM needed to trigger other ECM molecules to

assemble into matrix, and as a binding partner for numerous

integrins where it mediates both cellular attachment and cellular

signaling (245–248). Further, fibrotic ECM is known to contribute

to the increased stiffness of fibrotic tissues, and this stiffness is

essential for sustained TGFb responses as stiff ECM induces

mechanical strain and can help position latent TGFb near MMPs,

facilitating the liberation of active TGFb (31, 249). This role of

fibrotic ECM in the myofibroblast production/persistence needed

for ASC and fibrotic PCO pathogenesis is supported by key roles for

other fibrotic ECM components such as Tenascin C (TNC) (250),

SPARC (251), lumican (252), and vitronectin (253). In murine lens

injury models, TNC mRNA levels sharply increase by 24 hours

post-injury in wild-type lenses (183), whereas TNC-null (KO) mice

display markedly diminished EMT-like LEC elongation, reduced

capsule wrinkling, and a delayed transition to fibroblast-like

morphology, even at day 10 PLI (250). Moreover, in other tissues,

TNC modulates YAP/TAZ signaling through integrin a5b1,
influencing mechanotransduction and fibrotic responses (254),

pathways that likely converge with TGFb-SMAD signaling in

PCO contexts. In addition, SPARC (Secreted Protein Acidic and

Rich in Cysteine), a matricellular protein also involved in cell–ECM

interactions, collagen deposition, and TGFb signaling modulation,

also plays a role in the lens injury response (251, 255, 256). SPARC-

null mice develop early-onset lens opacification and exhibit

aberrant ECM organization, characterized by reduced laminin

and fibronectin deposition (257). In vitro studies using LECs

from SPARC-deficient animals reveal exaggerated responses to

exogenous TGFb, including heightened expression of fibronectin

and aSMA, suggesting that SPARC serves as a negative regulator of

TGFb-driven EMT in the lens (49, 257). Moreover, glucocorticoid

stimulation via dexamethasone upregulates SPARC while

concomitantly suppressing fibronectin and collagen IV, pointing

toward a protective, homeostatic role in restraining fibrosis

(49, 258).

Another critical component is lumican, a proteoglycan identified

in post-mortem PCO specimens, which regulates TGFb
bioavailability (252). Lumican-null mice demonstrate delayed

aSMA expression post-injury due to defective LTBP-1

sequestration in the ECM (252). Finally, vitronectin synergizes with

fibronectin to promote fibroblastic phenotypes in vitro in cornea

(259) and lens (253). LECs cultured on vitronectin substrates exhibit

elongated morphologies, elevated aSMA, and nuclear Smad2/3

localization, phenotypes absent when cultured on laminin, where

LECs maintain a more typical epithelial phenotype, suggesting that

vitronectin not only supports cellular adhesion and migration but
frontiersin.org

https://doi.org/10.3389/fopht.2025.1680042
https://www.frontiersin.org/journals/ophthalmology
https://www.frontiersin.org


Rakib-Uz-Zaman et al. 10.3389/fopht.2025.1680042
also provides biochemical cues that promote EMT and fibrotic

transformation (253). The ED-A domain of fibronectin and

vitronectin-integrin interactions collectively enhance TGFb
responsiveness and reinforce a pro-fibrotic microenvironment (260).
The role of other pathways in the onset of
fibrotic response in PCO

In addition to canonical TGFb signaling and fibrotic matrix-

mediated events, several other signaling cascades play critical roles

in orchestrating the fibrotic response in residual LECs following

cataract surgery (261). In other systems, canonical Wnt signaling

synergizes with TGFb signaling to enhance fibrotic responses (262,

263), and this pathway is first activated in LECs at 12 hours PLI and

is found in most if not all fibrotic capsule associated cells (CACs) at

5 and 9 days PLI (261). Recently, several reports suggest that this

Wnt signaling plays a crucial role in the LEC injury response (198,

261, 264, 265), which expands the gamut of pathways that could be

manipulated to block the production of myofibroblasts needed for

PCO pathogenesis.

Moreover, platelet-derived growth factor (PDGF) signaling is

also upregulated in injured LECs likely due to the significant

upregulation of the expression of the PDGF ligands, PDGF-A and

PDGF-B, and their receptors (PDGFRa and PDGFRb) (266, 267).
PDGF signaling primarily promotes cell proliferation andmigration

via downstream PI3K/AKT and MAPK/ERK pathways (268).

Although not traditionally considered a central fibrotic driver,

emerging evidence indicates that PDGF signaling contributes to

the production of fibrotic proteins and enhances TGFb–mediated

EMT in a supportive role (269–271).

Furthermore, LECs require BMP signaling for their initial

development and long-term cellular phenotype (272, 273). In

other cell types, BMPs can act as antifibrotic agents by opposing

TGFb–driven EMT and fibrosis (274–276). In injured LECs, BMP

signaling is frequently suppressed as these cells convert to a

myofibroblast phenotype, perhaps through the upregulation of

Gremlin 1, an endogenous BMP antagonist (277, 278). In adults,

Gremlin1 mRNA levels transiently upregulate over 300-fold in

CACs at 48 hours PLI, while Gremlin1 protein is detected in

CACs from 24 hours through 5 days PLI (185). Gremlin1 protein

upregulation is attenuated in fibronectin conditional knockout

lenses, which fail to either deposit fibrotic ECM or sustain

canonical TGFb signaling PLI, while the injury-induced fibrotic

response (including TGFb signaling) is restored in fibronectin null

lenses treated with exogeneous Gremlin 1 (185). Another study

found that Gremlin1 knockdown ameliorated PCO in rats, likely via

effects on ERK, AKT, BMP and TGFb signaling (279). While these

data can suggest Gremlin1 functions in parallel with TGFb in LEC

EMT responses, studies also found that exogeneous Gremlin1 did

not rescue the PLI fibrotic response of lenses lacking aVb8-integrin
(209). Further, while itga5cKO lenses have a muted fibrotic

response associated with reduced TGFb signaling, Gremlin1

mRNA levels are modestly elevated in injured itga5cKO LECs at

48 hours PLI, suggesting compensation (280). As aVb8 integrin’s
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primary role in the LEC fibrotic response appears to be TGFb
activation (209), this suggests that the burst of Gremlin1 expression

in LECs PLI is needed to prime the TGFb pathway PLI. However,

further investigations are needed to place Gremlin1 into the gene

regulatory network that establishes the fibrotic response of LECs

PLI and answer whether Gremlin1 is directly involved in

myofibroblast production PLI.
Likely molecular mechanisms that produce
the aberrant lens fiber cells associated with
Soemmering’s ring and “pearl-like” PCO
following cataract surgery

In the intact adult lens, central LECs are quiescent, while

equatorial LECs remain in the cell cycle, slowly producing new

fiber cells throughout life (281). While the early responses of LECs

to lens injury appear dominated by the initial injury response and

production of myofibroblasts (31), it is clear that not all LECs convert

to myofibroblasts following injury, and in cases where the geometry

of the lens capsule and lens cells is optimized following extracapsular

lens extraction, regeneration of a transparent fiber cell mass post-

surgery is possible (282). This approach was even used in a clinical

trial of children undergoing surgery for congenital cataract (283),

although most of these patients later underwent a second surgery as

the regenerated lenses did not retain transparency long term (284).

However, in aggregate, this suggests that residual LECs are the likely

source of Pearl-like PCO and Soemmering’s ring cells that express

numerous lens fiber cell markers, and their lack of transparency

derives from their cellular disorganization driven by a lack of spatial

cues needed for precise fiber cell organization (85, 186, 285). While

relatively little direct work has been done on the mechanisms driving

LEC differentiation to a lens fiber cell phenotype following lens

injury, extensive research on the embryonic lens has revealed that

this process is controlled by numerous growth factor cascades, with

FGF signaling playing a dominant role in the phenotypic conversion

of LECs to lens fiber cells (192, 285–288). As the FGF gradient

responsible for fiber cell differentiation is likely retained in the eye

PLI, and the posterior lens capsule is a known FGF depot (289–291),

the pathways responsible for Elschnig’s Pearl and/or Soemmering’s

ring formation after cataract surgery are likely to be similar to those

driving lens fiber cell differentiation in normal lenses.
Why does PCO still develop at
appreciable rates years after surgery

PCO development during the first year post-surgery likely

results from the LEC response to the numerous cell signaling

pathways acutely induced by surgery leading to changes in cell

behavior that induce them to enter the optical axis (30, 31, 199).

However, PCO rates within the first year of surgery have greatly

diminished over the past 10 years due to the widespread

introduction of “square edge” hydrophobic IOLs that sequester

remnant LECs and their derivatives in Soemmering’s ring which
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resides outside of the optical axis (73, 74, 107, 292). In spite of this,

significant numbers of adult patients still develop clinically

significant PCO in the first 5–10 years PCS (107).

As this late onset PCO is occurring many months or years after

the pathways acutely activated by surgery have receded, this implies

that even at extended times PCS, the cell populations initially

produced during the LEC’s acute response to cataract surgery but

sequestered within Soemmering’s ring are capable of escaping onto

the posterior capsule at extended post-surgical times as other

cellular sources are unlikely. This idea is supported by images

that show PCO material emanating from breaches in the barrier

set up by interactions between the optic and lens capsule either at

the point where the haptic is attached to the optic (Figure 3B) or

other locations around the optic (Figure 3C) (84).

Grossly, Soemmering’s ring is typically viewed as an opaque

ring of cells sequestered outside of the visual axis (Figure 3A) by the

IOL, where it does not interfere with vision (84). Morphological

investigations suggest that it is largely comprised of disorganized

lens fiber cells formed from residual LECs that are not removed by

cataract surgery, with a smaller set of LECs that likely are driving

the slow expansion of Soemmering’s ring at extended times PCS

(37, 198, 293). Further, myofibroblasts are detected using cellular

markers within Soemmering’s ring and at focal areas of the lens

capsule anterior to the IOL consistent with fibrotic matrix

deposition commonly associated with Soemmering’s ring material

and regions near the capsulorhexis (198, 209, 293, 294).

Recently, our understanding of the molecular composition of

Soemmering’s ring was enhanced by bulk RNA-Seq profiling of this

structure from cadaver eyes obtained from 17 donors and the results

compared to age-matched lens epithelial cells obtained from normal

donors (198). This revealed that Soemmering’s ring cells still exhibit

enhanced expression of numerous markers of immune responses

including several proinflammatory cytokines, as well as genes

consistent with elevated TGFb and canonical Wnt signaling years

following cataract surgery consistent with the sustained presence of

myofibroblasts (and potentially immune cells) at extended times

PCS (295). The differentially expressed genes are also enriched in

markers of cell migration and cellular senescence, while this analysis

also found sustained expression of lens epithelial markers consistent

with the observation of cells within Soemmering’s ring, which

exhibit LEC morphology at extended periods PCS (37, 198, 293).

Overall, the pathogenesis of late-onset PCO needs additional

investigation as the physical reasons that cause the seal between the

IOL and lens capsule to be compromised, allowing Soemmering’s

ring cells to reach the posterior capsule, are largely unexplored.

However, knowledge of the cell types found in Soemmering’s ring

lead to potential cellular mechanisms that could drive the

development of PCO years after cataract surgery (Figure 2).
Role of LEC-derived Elschnig pearls on the
posterior capsule

While it is recognized that Soemmering’s ring largely consists of

aberrant lens fiber cells (37), these cells are unlikely sources of PCO
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as they are unable to proliferate and lose their organelles (including

cell nuclei) as part of their terminal differentiation (296–298). Their

migratory ability is also likely limited as fiber cells formed in the

intact lens are only able to move their basal and apical tips slowly

along the capsule/apical side of the lens epithelium respectively

until they reach their counterpart from another lens quadrant to

form the lens suture (299–301). However, it is common to detect a

lens epithelial cell population adjacent to the lens capsule in

Soemmering’s rings at extended times PCS, and these cells

apparently retain their ability to divide and produce additional

fiber-like cells as Soemmering’s ring is recognized to enlarge at later

times PCS (37, 186, 198). Similar to what is described above for

“early onset PCO”, these cells are expected to be subject to the same

growth factor gradients within the eye as the intact lens, so LECs

closer to the anterior capsule would be more likely to retain their

LEC phenotype, while those more exposed to the high

concentrations of FGF ligands found in the posterior chamber

would be induced to form fiber-like cells (192, 285, 288). If these

cells remain sequestered at the capsular bag periphery, this could

contribute to Soemmering’s ring expansion, but that would be

expected to occur only slowly due to a “contact inhibition”

directed brake on cell proliferation (83). However, if the LECs

escape their confinement and migrate onto the posterior capsule,

they would first migrate and proliferate as they are relieved from

contact inhibition (83, 302), then would be expected to induce lens

fiber cell differentiation which would result in Elschnig’s pearls as

the anatomical signals (and space) for normal fiber cell

morphogenesis are absent (96, 303). This is likely to be a

common cause of late-onset PCO as Elschnig’s pearls are highly

light scattering (96, 304), and histological investigations of PCO

often find morphological evidence that PCO material is “lens fiber-

like” (90, 293, 303, 305). However, additional investigations using

molecular markers and gene expression profiling are needed to

establish the cellular identity of these cells definitively.
Role of myofibroblasts that escape the
Soemmering’s ring or capsulorhexis rim

Myofibroblasts, likely derived from LEC EMT, are rapidly

produced in response to cataract surgery (7, 31, 153). There is

significant evidence that at least a portion of these myofibroblasts

persist in Soemmering’s ring and at the anterior capsule rim for

years PCS using morphological and cell marker analyses

(Figure 3A) (36, 142, 209, 293, 306). Notably, myofibroblasts have

also been successfully isolated from Soemmering’s rings obtained

from human cadaver eyes which underwent cataract surgery two

decades prior and were confirmed to be capable of cell proliferation

following dissociation from the IOL-capsule complex (36). In

primary culture, these myofibroblasts were also capable of

migration, matrix contraction and ECM remodeling (49, 307),

showing their potential to contribute to fibrotic PCO if released

from their sequestration at the capsular bag periphery. We have

found that lens derived myofibroblasts are capable of producing

their own TGFb ligands as well as the proteins needed to activate
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newly synthesized latent TGFb during their initial production in the

mouse model of cataract surgery, and the production of fibrotic

ECM by these cells would further reinforce the cell signaling needed

for them to retain their myofibroblast phenotype (183, 209). In the

human capsular bag model, lens cells can survive in serum-free

medium for over 1 year and can effectively colonize the entire

surface of the once cell-free posterior capsule (178). In addition,

human capsular bag cultures maintained in serum-free medium

after cataract surgery secrete various cytokines and growth factors

such as interleukins, FGF, and VEGF (191, 308). Many of these

molecules are involved in promoting cell proliferation, migration,

and transdifferentiation of LECs to myofibroblasts (49, 308).

Overall, this evidence suggests that any breach of the seal

between the square edge of the IOL and the lens capsule could

release long sequestered myofibroblasts from their contact

inhibition, where they could migrate onto the posterior capsule,

increase in number, and produce fibrotic ECM while triggering

capsular wrinkling which would result in the light scatter that would

clinically manifest as late onset fibrotic type PCO (Figure 2).
Role of remnant LECs trapped in
Soemmering’s ring

While it is established that Soemmering’s ring often includes a

layer of cells with morphological and molecular features consistent

with a LEC phenotype, evidence is emerging that these cells often

chronically express molecular markers consistent with cellular

stress, including those known to be induced acutely in LECs upon

injury (198). These include the upregulation of heat shock proteins

(309), other oxidative stress response genes such as heme oxygenase

1 (310, 311), and depletion of intracellular antioxidants such as

glutathione (312). Notably, oxidative stress is a potent inducer of

EMT in LECs, acting through activation of ERK1/2 and Wnt/b-
catenin signaling pathways, which drives loss of epithelial identity

(e.g., Pax6 downregulation) and upregulation of fibrotic genes such

as aSMA, collagen I, and fibronectin (313). Additionally,

antioxidant supplementation such as with glutathione or catalase

has been shown to suppress TGFb-induced aSMA expression and

fibrotic remodeling in lens explants (312). In addition to oxidative

stress, advanced glycation end products (AGEs) accumulate with

age in the lens capsule and are significantly more abundant in

diabetic individuals (314, 315). AGEs exacerbate LEC stress and

fibrosis by enhancing TGFb2–driven EMT and activating receptor

for AGE (RAGE)–dependent signaling, leading to increased aSMA

and fibronectin expression (314, 316). Furthermore, AGE-modified

lens capsules promote senescence and secretion of pro-fibrotic

senescence-associated secretory phenotype (SASP) factors in

cultured LECs, amplifying myofibroblast conversion in

neighboring cells (317). These findings suggest that LECs within

Soemmerring’s ring exist in a sensitized, pro-stress state due to

chronic oxidative imbalance and injury signals, which may lower

the barriers to migration and prime them toward matrix

remodeling and myofibroblast transdifferentiation over extended

postoperative periods. While the cellular constituents of
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Soemmering’s ring provide potential sources of late-onset PCO,

their ability to persist and eventually migrate onto the posterior

capsule may also be shaped by the surrounding ocular environment.
Influence of the lens capsule on late onset
PCO

The no space/no cells concept of PCO prevention postulates

that close contact between the lens capsule and IOL is essential to

sequester cells from the visual axis following cataract surgery (88).

In the intact lens, the lens capsule continually thickens throughout

life due to the secretion of its component proteins by the lens cells it

encompasses (318, 319). Cataract surgery disrupts this homeostatic

mechanism, with either no cells found in association with this

basement membrane ECM (within the visual axis) or the attached

cells are not fully normal (ie the components of Soemmering’s Ring)

at the IOL/capsule interface (320, 321). As prolonged expression of

matrix metalloproteases and other degrading enzymes are present

in the eye following cataract surgery (322), while new basement

membrane protein synthesis is disrupted, it would be expected that

the lens capsule would change properties at extended times PCS,

which could compromise IOL-lens capsule interactions, allowing

the escape of cells onto the posterior capsule where they have the

potential to contribute to light scatter and late onset PCO

(134, 322).

Additional evidence from human capsular-bag experimental

systems indicates that the lens capsule is not simply a passive

substrate for cell adhesion but can act as a long-acting reservoir and

modulator of growth-factor signaling, with important implications

for late-onset PCO (323). In human capsular bag model, brief

exposure to TGFb (for only a few days) produced persistent fibrotic

changes that continued for weeks after ligand removal, reflecting

both de novo TGFb production by LECs and the ability of the

capsule to adsorb and re-present TGFb, thereby prolonging

profibrotic signaling (323). Likewise, FGF-2 is also bound to the

capsule matrix as perlecan and other heparan sulfate proteoglycans

(HSPGs) concentrate matrix-bound FGF-2 at the epithelial–capsule

interface, establishing spatial gradients, and MMP-2–dependent

release of FGF-2 from the capsule sustains LEC viability and

signaling activity (324). Collectively, these data support the

concept that transient postoperative growth-factor surges can be

converted into long-term, capsule-mediated signaling that

maintains or re-activates LEC proliferation/differentiation long

after acute wound healing has subsided, contributing to the

pathogenesis of late-onset PCO.
Persistent inflammation as a driver of late-
onset PCO

Cataract surgery both induces remnant LECs to acutely express

pro-inflammatory cytokines (199, 325) and opens the blood-

aqueous barrier to allow the influx of serum proteins and

immune cells from the circulation (326). In most cases, this acute
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inflammation subsides days or weeks PCS as the wound healing

responses recede (199, 325). However, numerous reports suggest

that eyes subjected to cataract surgery still exhibit signs of low-level

inflammation (325, 327) and a recent extensive study detected

elevated inflammatory cytokine levels in aqueous humor collected

from cadaver eyes that had undergone cataract surgery years earlier

(295). Further, cells isolated from Soemmering’s ring years

following cataract surgery overexpress numerous pro-

inflammatory cytokines compared to naïve LECs consistent with

pseudophakic eyes experiencing chronic low-level inflammation

(198). In other fibrotic conditions, it is established that

inflammation can trigger tissue fibrosis via a number of

mechanisms including chronic production of active TGFb by

inflamed tissues (328, 329). Thus, low level chronic inflammation

may synergize with other changes in the ocular environment

including other ocular surgeries, transient uveitis, onset of age-

related macular degeneration, or vitreous degeneration leading to

release of stored TGFb or other growth factors, diabetes etc. to

“activate” quiescent LECs or myofibroblasts to seek weaknesses in

the IOL-capsular barrier, leading to late onset PCO.
Other long-term complications of
cataract surgery are likely influenced
by Soemmering’s ring

Lens decentration and late capsular bag
dislocation

Beyond long-term PCO, other complications following cataract

surgery may also compromise visual outcomes. One such delayed,

but serious, issue is the late dislocation of the IOL within the

capsular bag, which occurs at an incidence between 0.1% to 9.1%

depending on the patient population and time that the patient

survives after their initial cataract surgery (330–332). This

complication can present as decentration or tilting of the IOL

within the capsular bag or subluxation of the capsular bag/IOL

complex leading to displacement of the optic’s position within the

visual axis resulting in vision compromising optical distortions

(333–336). In more severe cases, the zonules holding the IOL-

capsular bag complex in position within the eye completely rupture,

leaving this structure to float freely within the eye which leads to a

major disruption of the eye’s optical power and compromises the

health and function of other ocular structures including the cornea,

retina, ciliary body/trabecular meshwork, and iris if not surgically

corrected (330, 333).

Late IOL dislocation appears to be caused by a variety of

mechanisms. First, the zonules, acellular elastic fibrils that attach

the lens to the ciliary muscles, stabilize the position of both the

natural lens and the pseudophakic IOL/capsular bag complex within

the eye (337, 338). These first form in late eye development likely via

the assembly of matrix produced by the ciliary complex (and perhaps

the lens) and its incorporation into the capsule via a largely unknown

process (337). In adult eyes, both the ciliary margin and LECs

continue to express the genes needed for elastic fiber synthesis but
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how this influences zonular integrity across the lifespan is unknown

(339, 340). Aging is often associated with the gradual deterioration of

zonular fibers, and this process may accelerate in eyes where the

natural lens is disrupted by cataract surgery (338, 340). Progressive

age-associated zonular weakness may be exacerbated by underlying

conditions such as diabetes mellitus, retinitis pigmentosa, or

pseudoexfoliation syndrome and other connective tissue disorders

(341). Additionally, previous ocular trauma or surgeries, such as

vitreoretinal procedures, also increase the risk of zonular instability

(334, 342), possibly due to elevations in matrix-degrading enzymes

such as MMPs (343) and surgically induced biomechanical stress

(344). While the role of lens cells in sustaining zonular integrity into

old age is currently unknown, it is tempting to speculate that the

cellular composition of Soemmering’s ring and its ability to

participate in any processes needed for zonular health would

influence whether zonules fail at prolonged times following

cataract surgery.

Another factor that likely contributes to the pathogenesis of late

IOL dislocation is the number, position, and organization of

myofibroblasts within Soemmering’s ring and associated with the

anterior capsule (36). The smooth muscle-like phenotype of

myofibroblasts allows them to contract the fibrotic matrix and

basement membranes to which they attached leading to centripetal

tractional forces which would put strain on the zonules leading to

their rupture (36). Notably, the presence and cellular activity of

myofibroblasts isolated from IOL-capsular bag complexes surgically

removed from eyes which developed IOL dislocation over 20 years

following cataract surgery supports this pathogenic mechanism (36).
Dead bag syndrome

The lens capsule (“the bag”) is an acellular basement membrane

whose component proteins are produced by both lens epithelial and

fiber cells, although capsule production by LECs is more robust

leading the anterior lens capsule to be thicker than the posterior lens

capsule (87, 289). As lens capsule components turn over slowly (if at

all) (345, 346), and capsule material is continuously secreted by lens

cells across the lifespan, the lens capsule continues to thicken with

age (318, 319, 347), potentially influencing the pathophysiology of

presbyopia (348–350). Extracapsular lens extraction with IOL

implantation relies on the exceptional stability of the lens capsule

compared to other basement membranes (which typically fully turn

over every few days or weeks) as the removal of the lens fiber mass

and molecular changes in the LECs presumably disrupt the normal

processes ensuring lens capsule health (320, 321).

However, there is evidence that the cells found in Soemmering’s

ring are essential to maintain the lens capsule and IOL position at

extended times PCS (37). “Dead bag syndrome” is an emerging

clinical entity characterized by the presence of a diaphanous

capsular bag with a clear periphery (ie, lacking Soemmering’s

ring) even many years after surgery (87, 351, 352). Coincident

with this, the capsular bag itself loses its normal tautness even when

the zonules are intact, allowing the position of the IOL to shift

within, or even fall out of, the bag (352), via a peripheral bag defect.

Unlike early IOL dislocations, which typically result from
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inadequate IOL fixation/position at the time of surgery, dead bag

syndrome is believed to result from late-onset degenerative changes

in the capsular bag (352). Notably, these changes are not associated

with significant capsular fibrosis or contraction but rather with a

gradual deterioration in the biomechanical properties of the bag, as

well as evidence of capsular delaminat ion shown in

histopathological assessment in suspected cases (87). Currently,

the natural history of Dead bag syndrome is understudied due to its

relative rarity, so it is not definitively known if it occurs from a

failure to initially form a Soemmering’s ring, or its later

degeneration. It is noteworthy that polishing of the inner surface

of the capsule during cataract surgery, just before IOL implantation,

in an attempt to prevent capsular bag fibrosis and opacification is

not uncommon. However, removal of all LECs during this

procedure is unlikely, as polishing of the anterior capsular rim

and equator is usually not possible, as this region is not readily

visible or accessible to the surgeon. However, the phenotype of

Dead bag syndrome does suggest that Soemmering’s ring cells

retain their ability to support the long-term properties of the

equatorial lens capsule. Notably, RNAseq profi l ing of

Soemmering’s ring cells years after cataract surgery did find

enhanced expression of the protease inhibitors Timp1 and

SerpinE1 compared to naïve LECs, which may prevent the action

of capsule destroying proteases (198). Further, Soemmering’s ring

cells continue to express key components of the lens capsule,

including collagen IV subunits, for years PCS (198). Overall, the

pathogenesis of Dead bag syndrome suggests that Soemmering’s

ring contributes to the long-term success of cataract surgery and

that PCO prevention methods that focus on the ablation of all

residual LECs from the capsular bag at the time of surgery could

have unintended negative consequences at extended times PCS.
In conclusion

The cells responsible for early-onset PCO form in direct response

to phenotypic/molecular changes that LECs (and perhaps immune

cells) undergo in response to cataract surgery (31, 32). These cells

then create clinically significant PCO when they migrate onto the

posterior capsule due to both their intrinsic ability to scatter light and

in fibrotic PCO, their ability to compromise lens capsule transparency

via fibrotic ECM deposition and capsular wrinkling (49). In contrast,

late-onset PCO likely forms when LEC-derived cells and/or immune

cells, sequestered within Soemmering’s ring (or residing on the

remnant anterior capsule) for months or years after acute wound

healing recedes, escape onto the posterior capsule due to a

combination of physical disruption of capsule/IOL optic adhesion

and reactivation of cell migration/proliferation pathways. Further,

other long term (10–20 years PCS), but currently rare, side effects of

cataract surgery are now emerging including late capsular bag

dislocations, IOL decentration, and Dead bag syndrome, are also

likely influenced by the cellular composition of the Soemmering’s

ring or its failure to form (36). In aggregate, future investigations into

the cellular composition of Soemmering’s ring, factors that contribute

to its formation and persistence, as well as the mechanisms that
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induce (or allow) its components to enter the optical axis at extended

times PCS will reveal information valuable to ensure the long-term

efficacy of cataract surgery.
Future directions

Despite major advances in surgical techniques and IOL design

that have significantly reduced the incidence of early-onset PCO,

late-onset PCO continues to present a substantial clinical challenge.

A critical unanswered question is what destabilizes the capsule–IOL

barrier years after cataract surgery, allowing Soemmering’s ring cells

to escape onto the posterior capsule. Even in cases where

hydrophobic square-edge IOLs and ideal capsulorhexis geometry

create robust early barriers, clinically significant PCO still arises

after 5–10 years. This suggests that long-term biomechanical or

biochemical remodeling may compromise capsule–IOL adhesion,

whether through gradual weakening of the capsular bag, chronic

low-level inflammation altering ECM composition, or remodeling

of contact points at the haptic–optic junction. Understanding the

processes that erode this barrier is pivotal, as it represents the

gateway event that permits late PCO initiation.

In addition, our lab has generated extensive datasets capturing

the temporal sequence of cellular and molecular changes following

lens injury, as well as the consequences of removing key genes on

these dynamic responses. Building on these resources, future work

should focus on constructing gene regulatory networks that

integrate both acute injury-induced pathways and long-term

survival or remodeling programs. Such models will enable a more

comprehensive understanding of how early wound-healing signals

set the stage for chronic changes, and how gene-specific

perturbations alter the trajectory of PCO pathogenesis. This

systems-level approach will be crucial for bridging acute

responses with late-onset complications, and for identifying

intervention points to prevent long-term PCO.
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281. Shi Y, De Maria A, Lubura S, Šikić H, Bassnett S. The penny pusher: a cellular
model of lens growth. Invest Ophthalmol Vis Sci. (2014) 56:799–809. doi: 10.1167/
iovs.14-16028

282. Gwon A. Lens regeneration in mammals: a review. Surv Ophthalmol. (2006)
51:51–62. doi: 10.1016/j.survophthal.2005.11.005

283. Lin H, Ouyang H, Zhu J, Huang S, Liu Z, Chen S, et al. Lens regeneration using
endogenous stem cells with gain of visual function. Nature. (2016) 531:323–8.
doi: 10.1038/nature17181

284. Lin H, Zhang L, Lin D, Chen W, Zhu Y, Chen C, et al. Visual restoration after
cataract surgery promotes functional and structural brain recovery. EBioMedicine.
(2018) 30:52–61. doi: 10.1016/j.ebiom.2018.03.002

285. de Iongh RU, Duncan MK. Growth factor signaling in lens fiber differentiation.
In: Saika S, Werner L, Lovicu FJ, editors. Lens epithelium and Posterior Capsular
Opacification. Springer, Japan: Springer Japan (2014). p. 81–104. doi: 10.1007/978-4-
431-54300-8_5

286. Audette DS, Anand D, So T, Rubenstein TB, Lachke SA, Lovicu FJ, et al. Prox1
and fibroblast growth factor receptors form a novel regulatory loop controlling lens
fiber differentiation and gene expression. Development. (2016) 143:318–28.
doi: 10.1242/dev.127860

287. Chamberlain CG, McAvoy JW. Induction of lens fibre differentiation by acidic
and basic fibroblast growth factor (FGF). Growth Factors. (1989) 1:125–34.
doi: 10.3109/08977198909029122

288. Robinson ML, Overbeek PA, Verran DJ, Grizzle WE, Stockard CR, Friesel R,
et al. Extracellular FGF-1 acts as a lens differentiation factor in transgenic mice.
Development. (1995) 121:505–14. doi: 10.1242/dev.121.2.505

289. Danysh BP, Duncan MK. The lens capsule. Exp Eye Res. (2009) 88:151–64.
doi: 10.1016/j.exer.2008.08.002

290. Lovicu FJ, McAvoy JW. Localization of acidic fibroblast growth factor, basic
fibroblast growth factor, and heparan sulphate proteoglycan in rat lens: implications for
lens polarity and growth patterns. Invest Ophthalmol Vis Sci. (1993) 34:3355–65.

291. Wu W, Tholozan FM, Goldberg MW, Bowen L, Wu J, Quinlan RA. A gradient
of matrix-bound FGF-2 and perlecan is available to lens epithelial cells. Exp Eye Res.
(2014) 120:10–4. doi: 10.1016/j.exer.2013.12.004

292. Duman R, Karel F, Özyol P, Ates ̧ C. Effect of four different intraocular lenses on
posterior capsule opacification. Int J Ophthalmol. (2015) 8:118–21. doi: 10.3980/
j.issn.2222-3959.2015.01.22

293. Koch CR, D’Antin JC, Tresserra F, Barraquer RI, Michael R. Histological
comparison of in vitro and in vivo development of peripheral posterior capsule
opacification in human donor tissue. Exp Eye Res. (2019) 188:107807. doi: 10.1016/
j.exer.2019.107807

294. MastroMonaco C, Balazsi M, Coblentz J, Dias ABT, Zoroquiain P, Burnier MN.
Histopathological analysis of residual lens cells in capsular opacities after cataract
surgery using objective software. Indian J Ophthalmol. (2022) 70:1617–25. doi: 10.4103/
ijo.IJO_291_21

295. Hao C, Fan E, Wei Z, Radeen KR, Purohit N, Li K, et al. Elevated inflammatory
cytokines persist in the aqueous humor years after cataract surgery. Invest Ophthalmol
Vis Sci. (2025) 66:12. doi: 10.1167/iovs.66.4.12

296. Andley UP. The lens epithelium: focus on the expression and function of the
alpha-crystallin chaperones. Int J Biochem Cell Biol. (2008) 40:317–23. doi: 10.1016/
j.biocel.2007.10.034

297. Bassnett S. Fiber cell denucleation in the primate lens. Invest Ophthalmol Vis
Sci. (1997) 38:1678–87.

298. Wride MA. Lens fibre cell differentiation and organelle loss: many paths lead to
clarity. Philos Trans R Soc Lond B Biol Sci. (2011) 366:1219–33. doi: 10.1098/
rstb.2010.0324

299. Bassnett S, Missey H, Vucemilo I. Molecular architecture of the lens fiber cell
basal membrane complex. J Cell Sci. (1999) 112:2155–65. doi: 10.1242/jcs.112.13.2155

300. Logan CM, Rajakaruna S, Bowen C, Radice GL, Robinson ML, Menko AS. N-
cadherin regulates signaling mechanisms required for lens fiber cell elongation and lens
morphogenesis. Dev Biol. (2017) 428:118–34. doi: 10.1016/j.ydbio.2017.05.022

301. Sugiyama Y, Reed DA, Herrmann D, Lovicu FJ, RobinsonML, Timpson P, et al.
Fibroblast growth factor-induced lens fiber cell elongation is driven by the stepwise
activity of Rho and Rac. Development. (2024) 151. doi: 10.1242/dev.202123

302. Nishi O, Nishi K, Wickstrom K. Preventing lens epithelial cell migration using
intraocular lenses with sharp rectangular edges. J Cataract Refract Surg. (2000)
26:1543–9. doi: 10.1016/S0886-3350(00)00426-0

303. Kurosaka D, Imaizumi T, Kizawa J. Time course of lens epithelial cell behavior
in rabbit eyes following lens extraction and implantation of intraocular lens. J
Ophthalmol. (2021) 2021:6659838. doi: 10.1155/2021/6659838
304. Cheng CY, Yen MY, Chen SJ, Kao SC, Hsu WM, Liu JH. Visual acuity and

contrast sensitivity in different types of posterior capsule opacification. J Cataract
Refract Surg. (2001) 27:1055–60. doi: 10.1016/s0886-3350(00)00867-1

305. Marcantonio JM, Vrensen GF. Cell biology of posterior capsular opacification.
Eye (Lond). (1999) 13:484–8. doi: 10.1038/eye.1999.126
Frontiers in Ophthalmology 22
306. Colvis CM, Duglas-Tabor Y, Werth KB, Vieira NE, Kowalak JA, Janjani A, et al.
Tracking pathology with proteomics: identification of in vivo degradation products of
alphaB-crystallin. Electrophoresis. (2000) 21:2219–27. doi: 10.1002/1522-2683
(20000601)21:11<2219::AID-ELPS2219>3.0.CO;2-R

307. Shu DY, Lovicu FJ. Myofibroblast transdifferentiation: The dark force in ocular
wound healing and fibrosis. Prog Retin Eye Res. (2017) 60:44–65. doi: 10.1016/
j.preteyeres.2017.08.001

308. Eldred JA, McDonald M, Wilkes HS, Spalton DJ, Wormstone IM. Growth
factor restriction impedes progression of wound healing following cataract surgery:
identification of VEGF as a putative therapeutic target. Sci Rep. (2016) 6:24453.
doi: 10.1038/srep24453

309. Yao K, Rao H, Wu R, Tang X, Xu W. Expression of Hsp70 and Hsp27 in lens
epithelial cells in contused eye of rat modulated by thermotolerance or quercetin. Mol
Vis. (2006) 12:445–50.

310. Hartung R, Parapuram SK, Ganti R, Hunt DM, Chalam KV, Hunt RC. Vitreous
induces heme oxygenase-1 expression mediated by transforming growth factor-beta
and reactive oxygen species generation in human retinal pigment epithelial cells. Mol
Vis. (2007) 13:66–78.

311. Thompson B, Davidson EA, Chen Y, Orlicky DJ, Thompson DC, Vasiliou V.
Oxidative stress induces inflammation of lens cells and triggers immune surveillance of
ocular tissues. Chem Biol Interact. (2022) 355:109804. doi: 10.1016/j.cbi.2022.109804

312. Chamberlain CG, Mansfield KJ, Cerra A. Glutathione and catalase suppress
TGFbeta-induced cataract-related changes in cultured rat lenses and lens epithelial
explants. Mol Vis. (2009) 15:895–905.

313. Chen X, Yan H, Chen Y, Li G, Bin Y, Zhou X. Moderate oxidative stress
promotes epithelial-mesenchymal transition in the lens epithelial cells via the TGF-b/
Smad and Wnt/b-catenin pathways. Mol Cell Biochem. (2021) 476:1631–42.
doi: 10.1007/s11010-020-04034-9

314. Raghavan CT, Smuda M, Smith AJ, Howell S, Smith DG, Singh A, et al. AGEs
in human lens capsule promote the TGFb2-mediated EMT of lens epithelial cells:
implications for age-associated fibrosis. Aging Cell. (2016) 15:465–76. doi: 10.1111/
acel.12450

315. Rankenberg J, Rakete S, Wagner BD, Patnaik JL, Henning C, Lynch A, et al.
Advanced glycation end products in human diabetic lens capsules. Exp Eye Res. (2021)
210:108704. doi: 10.1016/j.exer.2021.108704

316. Nam MH, Pantcheva MB, Rankenberg J, Nagaraj RH. Transforming growth
factor-b2-mediated mesenchymal transition in lens epithelial cells is repressed in the
absence of RAGE. Biochem J. (2021) 478:2285–96. doi: 10.1042/BCJ20210069

317. Cooksley G, Nam MH, Nahomi RB, Rankenberg J, Smith AJO, Wormstone
YM, et al. Lens capsule advanced glycation end products induce senescence in epithelial
cells: Implications for secondary cataracts. Aging Cell. (2024) 23:e14249. doi: 10.1111/
acel.14249

318. Barraquer RI, Michael R, Abreu R, Lamarca J, Tresserra F. Human lens capsule
thickness as a function of age and location along the sagittal lens perimeter. Invest
Ophthalmol Vis Sci. (2006) 47:2053–60. doi: 10.1167/iovs.05-1002

319. Danysh BP, Czymmek KJ, Olurin PT, Sivak JG, Duncan MK. Contributions of
mouse genetic background and age on anterior lens capsule thickness. Anat Rec
(Hoboken). (2008) 291:1619–27. doi: 10.1002/ar.20753

320. Guthoff R, Abramo F, Draeger J, Chumbley L. Measurement of elastic resisting
forces of intraocular haptic loops of varying geometrical designs and material
composition. J Cataract Refract Surg. (1990) 16:551–8. doi: 10.1016/s0886-3350(13)
80768-7

321. Thim K, Krag S, Corydon L. Stretching capacity of capsulorhexis and nucleus
delivery. J Cataract Refract Surg. (1991) 17:27–31. doi: 10.1016/s0886-3350(13)80980-7

322. West-Mays JA, Pino G. Matrix metalloproteinases as mediators of primary and
secondary cataracts. Expert Rev Ophthalmol. (2007) 2:931–8. doi: 10.1586/
17469899.2.6.931

323. Wormstone IM, Anderson IK, Eldred JA, Dawes LJ, Duncan G. Short-term
exposure to transforming growth factor beta induces long-term fibrotic responses. Exp
Eye Res. (2006) 83:1238–45. doi: 10.1016/j.exer.2006.06.013

324. Tholozan FM, Gribbon C, Li Z, Goldberg MW, Prescott AR, McKie N, et al.
FGF-2 release from the lens capsule by MMP-2 maintains lens epithelial cell viability.
Mol Biol Cell. (2007) 18:4222–31. doi: 10.1091/mbc.e06-05-0416

325. Findl O, Amon M, Petternel V, Kruger A. Early objective assessment of
intraocular inflammation after phacoemulsification cataract surgery. J Cataract
Refract Surg. (2003) 29:2143–7. doi: 10.1016/s0886-3350(03)00411-5

326. Sawa M. Laser flare-cell photometer: principle and significance in clinical and
basic ophthalmology. Jpn J Ophthalmol. (2017) 61:21–42. doi: 10.1007/s10384-016-
0488-3

327. Dong N, Xu B, Wang B, Chu L, Tang X. Aqueous cytokines as predictors of
macular edema in patients with diabetes following uncomplicated phacoemulsification
cataract surgery. BioMed Res Int. (2015) 2015:126984. doi: 10.1155/2015/126984

328. Mack M. Inflammation and fibrosis. Matrix Biol. (2018) 68-69:106–21.
doi: 10.1016/j.matbio.2017.11.010

329. Moretti L, Stalfort J, Barker TH, Abebayehu D. The interplay of fibroblasts, the
extracellular matrix, and inflammation in scar formation. J Biol Chem. (2022)
298:101530. doi: 10.1016/j.jbc.2021.101530
frontiersin.org

https://doi.org/10.1167/iovs.14-16028
https://doi.org/10.1167/iovs.14-16028
https://doi.org/10.1016/j.survophthal.2005.11.005
https://doi.org/10.1038/nature17181
https://doi.org/10.1016/j.ebiom.2018.03.002
https://doi.org/10.1007/978-4-431-54300-8_5
https://doi.org/10.1007/978-4-431-54300-8_5
https://doi.org/10.1242/dev.127860
https://doi.org/10.3109/08977198909029122
https://doi.org/10.1242/dev.121.2.505
https://doi.org/10.1016/j.exer.2008.08.002
https://doi.org/10.1016/j.exer.2013.12.004
https://doi.org/10.3980/j.issn.2222-3959.2015.01.22
https://doi.org/10.3980/j.issn.2222-3959.2015.01.22
https://doi.org/10.1016/j.exer.2019.107807
https://doi.org/10.1016/j.exer.2019.107807
https://doi.org/10.4103/ijo.IJO_291_21
https://doi.org/10.4103/ijo.IJO_291_21
https://doi.org/10.1167/iovs.66.4.12
https://doi.org/10.1016/j.biocel.2007.10.034
https://doi.org/10.1016/j.biocel.2007.10.034
https://doi.org/10.1098/rstb.2010.0324
https://doi.org/10.1098/rstb.2010.0324
https://doi.org/10.1242/jcs.112.13.2155
https://doi.org/10.1016/j.ydbio.2017.05.022
https://doi.org/10.1242/dev.202123
https://doi.org/10.1016/S0886-3350(00)00426-0
https://doi.org/10.1155/2021/6659838
https://doi.org/10.1016/s0886-3350(00)00867-1
https://doi.org/10.1038/eye.1999.126
https://doi.org/10.1002/1522-2683(20000601)21:11%3C2219::AID-ELPS2219%3E3.0.CO;2-R
https://doi.org/10.1002/1522-2683(20000601)21:11%3C2219::AID-ELPS2219%3E3.0.CO;2-R
https://doi.org/10.1016/j.preteyeres.2017.08.001
https://doi.org/10.1016/j.preteyeres.2017.08.001
https://doi.org/10.1038/srep24453
https://doi.org/10.1016/j.cbi.2022.109804
https://doi.org/10.1007/s11010-020-04034-9
https://doi.org/10.1111/acel.12450
https://doi.org/10.1111/acel.12450
https://doi.org/10.1016/j.exer.2021.108704
https://doi.org/10.1042/BCJ20210069
https://doi.org/10.1111/acel.14249
https://doi.org/10.1111/acel.14249
https://doi.org/10.1167/iovs.05-1002
https://doi.org/10.1002/ar.20753
https://doi.org/10.1016/s0886-3350(13)80768-7
https://doi.org/10.1016/s0886-3350(13)80768-7
https://doi.org/10.1016/s0886-3350(13)80980-7
https://doi.org/10.1586/17469899.2.6.931
https://doi.org/10.1586/17469899.2.6.931
https://doi.org/10.1016/j.exer.2006.06.013
https://doi.org/10.1091/mbc.e06-05-0416
https://doi.org/10.1016/s0886-3350(03)00411-5
https://doi.org/10.1007/s10384-016-0488-3
https://doi.org/10.1007/s10384-016-0488-3
https://doi.org/10.1155/2015/126984
https://doi.org/10.1016/j.matbio.2017.11.010
https://doi.org/10.1016/j.jbc.2021.101530
https://doi.org/10.3389/fopht.2025.1680042
https://www.frontiersin.org/journals/ophthalmology
https://www.frontiersin.org


Rakib-Uz-Zaman et al. 10.3389/fopht.2025.1680042
330. Ascaso FJ, Huerva V, Grzybowski A. Epidemiology, etiology, and prevention of
late IOL-capsular bag complex dislocation: review of the literature. J Ophthalmol.
(2015) 2015:805706. doi: 10.1155/2015/805706

331. Pueringer SL, Hodge DO, Erie JC. Risk of late intraocular lens dislocation after
cataract surgery 1980-2009: a population-based study. Am J Ophthalmol. (2011)
152:618–23. doi: 10.1016/j.ajo.2011.03.009

332. Østern AE, Sandvik GF, Drolsum L. Late in-the-bag intraocular lens dislocation
in eyes with pseudoexfoliation syndrome. Acta Ophthalmol. (2014) 92:184–91.
doi: 10.1111/aos.12024

333. Gimbel HV, Condon GP, Kohnen T, Olson RJ, Halkiadakis I. Late in-the-bag
intraocular lens dislocation: incidence, prevention, and management. J Cataract Refract
Surg. (2005) 31:2193–204. doi: 10.1016/j.jcrs.2005.06.053
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