

OPEN ACCESS

EDITED AND REVIEWED BY
Winfried Amoaku,
University of Nottingham, United Kingdom

*CORRESPONDENCE

Deokho Lee

deokho.lee01@gmail.com;

Dong Ho Park

☑ Dongho_Park@knu.ac.kr

[†]These authors have contributed equally to this work and share first authorship

RECEIVED 17 September 2025 ACCEPTED 19 September 2025 PUBLISHED 24 September 2025

CITATION

Lee D and Park DH (2025) Editorial: Ischemic retinopathy: underlying pathologic mechanisms and identifying therapeutic molecular targets. Front. Ophthalmol. 5:1707494. doi: 10.3389/fopht.2025.1707494

COPYRIGHT

© 2025 Lee and Park. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Editorial: Ischemic retinopathy: underlying pathologic mechanisms and identifying therapeutic molecular targets

Deokho Lee^{1,2†*} and Dong Ho Park^{3,4,5,6†*}

¹The Korean Institute of Nutrition, Hallym University, Chuncheon, Republic of Korea, ²Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan, ³Department of Ophthalmology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea, ⁴Department of Ophthalmology, Kyungpook National University Hospital, Daegu, Republic of Korea, ⁵Cell & Matrix Research Institute, Kyungpook National University, Daegu, Republic of Korea, ⁶BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Daegu, Republic of Korea

KEYWORDS

myopia, night blindness, multiple evanescent white dot syndrome, central retinal artery occlusion, diabetic retinopathy, choroidal blood flow

Editorial on the Research Topic

Ischemic retinopathy: underlying pathologic mechanisms and identifying therapeutic molecular targets

The retina, one of the metabolically active tissues in our body, is mainly supplied from the central retinal artery as well as the choroidal vascular network. Each metabolic condition in the dual supply system can cause a distinct damage in the retinal layers, ultimately leading to the development and progression of the different eye diseases, such as age-related macular degeneration, glaucoma, or diabetic retinopathy.

In this Research Topic, we summarized various pathophysiologic alterations in the eye and/or find pathologic biological parameters from three original research and one case report articles with different disease conditions in the eye (e.g. myopia, central retinal artery occlusion/CRAO, diabetic retinopathy/DR, and multiple evanescent white dot syndrome/MEWDS).

First of all, Ye et al. aimed to examine the link between axial length to corneal curvature radius ratio (AL/CR, used for evaluating the ocular refractive state) and choroidal blood flow in 202 eyes from myopic children in China. They mainly found that AL/CR is negatively correlated with choroidal blood flow perfusion, implying a crucial link between refractive biological parameters and ocular blood circulation under myopic conditions. The choroidal blood flow changes could be a secondary outcome in myopia development and progression. This also shows that myopia can be considered as an ischemic eye condition that needs attention to ocular microcirculation changes. As the prevalence of myopia in Asia (including China and Republic of Korea) is high and expected to increase more, considering the potent microcirculation issues in myopia patients might be helpful to manage the disease development and further progression.

Sanie-Jahromi et al. tried to find the pathologic effects of hyperglycemia and therapeutic roles of different insulin formulations (including regular, glulisine, and aspart) against DR

Lee and Park 10.3389/fopht.2025.1707494

progression using two human retinal cell types. Eyeballs from an organ donor were used to obtain human retinal endothelial cells (HRECs) and retinal pigment epithelium (RPE) cells. They highlighted the distinct biological effects of insulin analogues (regular, glulisine, and aspart) depending on the cell types, and concluded that aspart insulin might be more useful to modulate diabetes-mediated pathologic molecules in the eye, such as vascular endothelial growth factors and/or angiotensinogen. This comparative insulin study could be used to develop promising therapeutic strategies to help managing the progression of DR along with traditional glycemic control.

Sano et al. attempted to unravel the therapeutic effects of prostaglandin E_1 (PGE₁) against vision-threatening CRAO cases. Based on the result from their retrospective study, the PGE₁-treated group had better best-corrected visual acuity in comparison with the control group, while no dramatic side effects were detected in either group. This intriguing study enables further consideration of PGE₁ use as a potent treatment for ischemic retinopathy including CRAO.

Miyake et al. reported two cases of MEWDS (a rare inflammatory ocular condition with a potent result of non-perfused choriocapillaris) with transient night blindness in Japan. They found a decrease in rod-dominant amplitude on full-field electroretinography in MEWDS from onset, with symptoms resolving within three months. This shows that outer retinal layer damage in MEWDS could be reversed, consistent with the general feature of MEWDS.

In conclusions, many people suffer from visual impairment and blindness induced by retinal ischemia. Although more studies are needed, from the current Research Topic, we could cover the advanced state of art in various ischemic conditions in the eye (such as, myopia, CRAO, DR, and MEWDS), and further present several promising therapeutic approaches including insulin therapy or PGE_1 treatment. We hope this Research Topic could improve the ongoing or help future research on developing therapeutics for ischemic retinopathy.

Author contributions

DL: Writing – original draft, Writing – review & editing. DP: Writing – original draft, Writing – review & editing.

Funding

The author(s) declare financial support was received for the research and/or publication of this article. This research was

supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education (RS-2021-NR060133). Furthermore, DHP is financially supported by the Basic Science Research Program of the National Research Foundation of Korea (NRF), funded by the Ministry of Science and ICT (MSIT) (RS-2024-00334982); the Information Technology Research Center (ITRC) support program funded by MSIT and supervised by the Institute of Information and Communications Technology Planning & Evaluation (IITP) (IITP-2025-RS-2020-II201808); the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the MOHW (HR22C1832, RS-2024-00437643); and the BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents.

Acknowledgments

The editors thank all the authors, reviewers, and editorial staff that made this Research Topic a great success.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of artificial intelligence and reasonable efforts have been made to ensure accuracy, including review by the authors wherever possible. If you identify any issues, please contact us.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.