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Background: Recent advances in immunotherapy for head and neck squamous cell

carcinoma (HNSCC) have led to implementation of anti-programmed death receptor 1

(PD-1) immunotherapy to standard of care for recurrent/metastatic HNSCC. However,

the majority of tumors do not respond to these therapies, indicating that these tumors

are not immunogenic or other immunosuppressive mechanisms might be at play.

Aim: Given their role in carcinogenesis as well as in immune modulation, we discuss the

relation between the STAT3, PI3K/AKT/mTOR and Wnt signaling pathways to identify

potential targets to empower the immune response against HNSCC.

Results: We focused on three pathways. First, STAT3 is often overactivated in

HNSCC and induces the secretion of immunosuppressive cytokines, thereby promoting

recruitment of immune suppressive regulatory T cells and myeloid-derived suppressor

cells to the tumor microenvironment (TME) while hampering the development of

dendritic cells. Second, PI3K/AKT/mTOR mutational activation results in increased

tumor proliferation but could also be important in HNSCC immune evasion due to the

downregulation of components in the antigen-processing machinery. Third, canonical

Wnt signaling is overactivated in >20% of HNSCC and could be an interesting pleotropic

target since it is related to increased tumor cell proliferation and the development of an

immunosuppressive HNSCC TME.

Conclusion: The molecular pathology of HNSCC is complex and heterogeneous,

varying between sites and disease etiology (i.e., HPV). The in HNSCC widely affected

signaling pathways STAT3, PI3K/AKT/mTOR and Wnt are implicated in some of the

very mechanisms underlying immune evasion of HNSCC, thereby representing promising

targets to possibly facilitate immunotherapy response.

Keywords: head and neck cancer, molecular targets, immune microenvironment, immunotherapy, signaling
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INTRODUCTION

In 2018, 700,000 patients were diagnosed with head and neck
squamous cell carcinoma (HNSCC) worldwide, and 350,000
patients died of the disease [1]. HNSCC develops from squamous
epithelial cells in the upper-aerodigestive tract, most frequently
in the oral cavity, oropharynx, hypopharynx and larynx. The
development of HNSCC is caused by alcohol and tobacco use
[2]. Besides this, infection with human papillomavirus (HPV) is
related to formation of a specific type of HNSCC tumors (HPV+)
which are predominantly localized in the oropharynx and have
distinct clinical, molecular and immunological characteristics
when compared to HPV-unrelated (HPV−) tumors [3].

From a molecular point of view HNSCCs are very
heterogeneous. Besides mutational changes in oncogenes
and most particularly tumor suppressor genes, also epigenetic
changes and chromosomal instability add to the overall
molecular heterogeneity [3, 4]. This variable genetic background
translates into a variety of tumor characteristics, challenges
treatment efficacy and demands personalized approaches.
Likewise, heterogeneity is observed in the immune composition
of the tumor microenvironment (TME) of HNSCC, depending
on etiology and/or localization of the tumor as recently reviewed
by us and others [5–7]. In general, HPV+ HNSCC often display
a more immune inflamed TME compared to HPV− HNSCC,
which are frequently immunologically cold or immune excluded.
In addition, tumors with these separate etiologies seem to use
different immune escape mechanisms [6, 7].

Despite advances in treatment, the survival rates for HNSCC
have improved very moderately over the past five decades, with
the average 5-year overall survival (OS) stabilizing at 40–60%
for advanced stage disease [8]. Immunotherapy has been at the
forefront of translational cancer research for the last decade
and has provided great therapeutic benefits in the treatment of
various cancer types [9], and also emerged as novel modality
for HNSCC.

The currently available immunotherapies for treatment of
HNSCC are nivolumab and pembrolizumab, which are both
immune checkpoint inhibitors (ICIs) targeting the programmed
death receptor 1 (PD-1). Nivolumab was approved in platinum
refractory, recurrent/metastatic (R/M) HNSCC on basis of the
results of the Checkmate-141 trial showing superior overall
survival (OS) of the nivolumab treated arm when compared
to investigator’s choice of therapy (7.5 vs. 5.1 months; HR
0.70; 97.73% CI 0.51–0.96; p = 0.01) [10]. Pembrolizumab was
first approved for platinum refractory R/M HNSCC based on
the Keynote-012 trial that showed objective responses in 16%
(95% CI 11–22) of patients, of which 5% were complete and
82% were durable (≥6 months) [11, 12]. The Keynote-048 trial
has led to the approval of pembrolizumab as monotherapy or
in combination with chemotherapy as first-line treatment for
programmed death-ligand 1 (PD-L1) positive R/M HNSCC [13].

Many studies are underway investigating the use of these ICIs,
and evaluating other immunotherapy regimens [14]. Recently
promising results have been reported for pembrolizumab and
nivolumab with or without ipilimumab [anti-cytotoxic T-
lymphocyte–associated antigen 4 (CTLA-4)] neoadjuvant to

surgery with curative intent in oral cavity squamous cell
carcinoma [15, 16].

Currently, anti-PD-1 immunotherapy is effective in only a
minority of HNSCC patients [17], and evidence accumulates
that HNSCC can indeed be highly immune-evasive [18]. One
approach is to study expression of immune-related genes in
HNSCC that might relate to immune cell infiltration, predict
patient outcome and could be applied to guide treatment choice
[19]. Another approach to overcome immune-evasion might
be to apply targeted therapies directed at molecular pathways
known to be affected in HNSCC and that specifically relate
to its immunological characteristics. To develop such targeted
therapies, it is crucial to understand the specific pathways
involved. In this review we relate the molecular landscape of
HNSCC to its immunological characteristics, focusing on three
of the most frequently affected pathways in HNSCC STAT3,
PI3K/AKT/mTOR and Wnt, besides the EGFR pathway as a
known target.

IMMUNOLOGICAL IMPLICATIONS OF THE
HNSCC MOLECULAR LANDSCAPE

EGFR
One of the major hallmarks of cancer is sustained proliferative
signaling [20]. Growth factor signaling is commonly mediated
by the family of receptor tyrosine kinase (RTK) cell-surface
receptors, of which epidermal growth factor receptor (EGFR) is
the most prominent in HNSCC [21]. It signals through the RAS-
MAPK-, PI3K/AKT/mTOR-, phospholipase C-gamma-, signal
transducers and activators of transcription (STAT)- and Src
family kinase pathways [22]. Activation of EGFR promotes cell
proliferation, angiogenesis, invasiveness and metastatic potential
and has a prominent role in tumor initiation and maintenance.
Activation of EGFR is seen in up to 80–90% of HNSCC cases as
a result of EGFR amplifications or autocrine loops [23]. It should
be noted, however, that EGFR does not show the typical activating
mutations in HNSCC that are found in lung cancer, and whether
HNSCC cells are really oncogene addicted remains elusive.

Cetuximab, a monoclonal antibody targeting EGFR, was
the first new drug in decades, and the first targeted therapy,
to be FDA approved for treatment of HNSCC [24]. Initially,
cetuximab seemed quite promising with a favorable toxicity
profile compared to chemotherapeutics, but recent phase III trials
have demonstrated its inferiority to cisplatin in terms of primary
disease control [25]. Cetuximab remains one of the cornerstones
in the treatment of patients unfit to receive cisplatin and in the
R/M setting [26].

While framed as a targeted drug and not introduced
as an immunotherapy agent, cetuximab appeared to have
an additional immune-related mode-of-action through the
mediation of antibody-dependent cellular cytotoxicity (ADCC)
[25]. Cetuximab stimulates the CD16/Fc receptor of natural
killer (NK) cells resulting in their activation and the release of
granzymes and perforins leading to tumor kill [25]. Increased
interferon gamma (IFNγ) production by NK cells can induce
PD-L1 expression on tumor cells and immune cells within
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the TME, providing a rationale for the possible synergistic
potential of combining cetuximab with anti-PD-1 therapy [27–
29]. Response to cetuximab treatment in HNSCC was shown to
be hampered by treatment-induced recruitment of PD-1+ and
TIM-3+ dysfunctional tumor-infiltrating T cells [30]. Also, PD-
L1 expression on tumor cells hampered the cytolytic abilities
of PD-1+ activated NK cells, reducing cetuximab efficacy in
patients [31]. Preliminary data of a phase II trial evaluating
the combination of PD-1 and EGFR inhibitory therapy showed
promising results in 33 R/M HNSCC patients unfit for or
refractory to cisplatin, with an overall response rate of 41% and
few adverse events [32]. Results on other trials investigating
the potential of this combinational regimen are to be awaited
(Supplementary Table 1) [33].

STAT3
STAT3 is part of the STAT protein family that regulates the
transcription of various proliferative and cytokine-related genes
[34]. It is of particular interest in HNSCC because of its
near-universal signaling activation, already during early oral
carcinogenesis [35], and its ability to be directly activated by
EGFR [34]. As STAT3 mutations in HNSCC, leading to gain-
of-function, have not been described, activation of STAT3 is
presumably the result of enhanced signaling through its positive
regulators (cytokines, growth factors and non-receptor TKs),
or decreased signaling through its negative regulators (protein
tyrosine phosphatase receptors) [36]. There are differences
reported between HPV+ and HPV− HNSCC with regards to
STAT3 mutations and activation (Figure 1). Gaykalova et al.
reported significantly more activated STAT3, as well as activated
NF-κB, in HPV− HNSCC [37].

In addition to supporting tumor cell proliferation, STAT3
activity is related to a variety of immunosuppressive mechanisms
and is a key regulator of immune processes (Figure 2)
[43]. STAT3 inhibition could thus hit two birds with one
stone. It is implicated in inhibition of pro-inflammatory
mediators production such as IFNγ, antigen presentation, and
accumulation and anti-tumor potential of effector T cells [44].
In myeloid-derived suppressor cells (MDSCs), STAT3 activation
leads to expression of cyclin D and the S100A9 receptor,
resulting in the suppression of cellular maturation and increased
MDSC survival, respectively [45]. In the treatment of HNSCC,
radiotherapy was shown to cause immune modulation by
activating STAT3 in MDSCs [46]. Furthermore, STAT3 has the
ability to increase expression of the PD-1/PD-L1/L2 and CTLA-4
checkpoints [44, 47].

Altogether, these data provide a rationale for combining
STAT3 inhibitors with ICIs, which has already led to various
pre-clinical and clinical studies [36, 44, 48]. AZD9150, a small
DNA oligonucleotide which competitively blocks the binding
site of STAT3 on its promotor has been tested in a phase I
dose escalation study [49]. Results showed stable disease in
44% (n = 11/25) of all patients, and tumor shrinkage in 50%
(n = 3/6) of treatment refractory lymphoma patients. In a
follow-up study in treatment refractory lymphoma a clinical
benefit was observed in 13% of patients [50]. A large study

FIGURE 1 | Forest plot of mutation rates of most frequent affected genes in

EGFR, PI3K/AKT/mTOR and Wnt-signaling pathways in HNSCC, stratified by

HPV status (total n = 385, 334 HPV− and 51 HPV+). Mean mutation rates

were estimated from the mutation rates in three HNSCC datasets [38–40],

queried through cBioPortal [41, 42]. Minimum and maximum reported

mutation rates are represented by the error bars.

investigating AZD9150 combined with durvalumab anti-PD-
L1 immunotherapy in patients with solid tumors including
HNSCC is underway [51]. In a recent in vitro study in breast
cancer sentinel lymph nodes (SLN), van Pul et al. showed that
STAT3 inhibition in immune cells, combined with immune
stimulation through TLR9 using CpG-B, could activate dendritic
cell (DC) subsets in SLN cultures and increased tumor-specific
T cell responses [52]. Using in vivo HNSCC mouse models,
Moreira et al. showed that a STAT3-inhibiting oligonucleotide
linked to CpG specifically targeted to myeloid cells, increased
tumor sensitivity to radiotherapy and increased the anti-tumor
immune response, suggesting that this could be a valid pathway
to target in HNSCC [53]. In a syngeneic carcinogen-induced
immune competent HNSCC mouse model, a small molecule
inhibitor HNC0014, targeting cMET/STAT3/CD44 and PD-L1,
was shown to reduce tumor growth, pSTAT3 and PD-L1 levels
in tumors and increase T cell frequencies in the circulation
most efficiently when combined with anti-PD-L1 treatment
[48]. Of note, STAT3 inhibition was shown to reduce PD-
L1 expression in HNSCC cell lines [47]. Potentially, STAT3
inhibition by itself might already reduce the inhibitory effect of
the PD-1/PD-L1 axis, especially when tumor PD-L1 expression
is regulated through oncogenic pathway activation often seen
in HPV− HNSCC. Combination therapy with ICIs targeting
other immune checkpoints like TIM-3, LAG-3 or TIGIT might
prove even more effective [54]. However, little is known at the
moment about the effect of STAT3 on the expression of those
immune checkpoints.
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FIGURE 2 | Schematic overview of immunological implications of the STAT3, PI3K/AKT/mTOR, and Wnt-signaling pathways in HNSCC cells. Arrows and bar-headed

lines indicate stimulating and inhibiting effects, respectively, where red depicts pro-tumorigenic and green depicts anti-tumorigenic effects.

PI3K/AKT/mTOR Pathway
The PI3K/AKT/mTOR pathway is involved in many cellular
processes including cell cycle, survival, proliferation and motility
[55]. Phosphatidylinositol 3-kinases (PI3Ks) are heterodimeric
kinases formed by a regulatory and catalytic subunit and are
activated by RTKs. The p110α catalytic subunit is encoded
by a variety of genes of which PIK3CA is most important
and harbors alterations in 26 and 47% of HPV− and HPV+

HNSCC, respectively (Figure 1) [38–40]. Upon RTK activation,
the regulatory subunit binds the catalytic subunit resulting
in lipid phosphorylation and a cascade of events leading to
activation of AKT, one of the major effectors of PI3K.

AKT is a serine-threonine kinase comprising three isoforms
that are encoded by the AKT1, AKT2, and AKT3 genes.
Alterations in these genes are uncommon but overexpression
of AKT in HNSCC has been reported as the result of
a variety of factors such as microenvironmental stimuli,
mutations in PIK3CA and diminished expression of PTEN [56–
59]. PIK3CA and PTEN serve as central regulators of the
PI3K/AKT/mTOR pathway and are known as bona fide HNSCC
cancer genes.

The serine-threonine kinase mTOR comprises mTORC1 and
mTORC2 and is an important downstream effector of AKT. It
regulates critical biological functions including growth factor
signaling and metabolism [55]. Genetic alterations in EGFR,
PIK3CA, PTEN, and HRAS are known deregulators of mTOR
signaling and are amongst the most frequently affected genes
in HNSCC.

Various agents targeting PI3K, AKT, or mTOR have been
studied in pre-clinical and clinical studies [60]. Although
some studies in HNSCC have shown promising results, no
trials have made it to phase III thus far due to unsatisfying
efficacy and challenging tolerability. These early clinical trials
have, however, provided valuable insights into the various
physiological roles of the PI3K/AKT/mTOR pathway. It has
become increasingly clear that apart from its functions in
cancer cells, the PI3K/AKT/mTOR pathway also regulates many
processes within the TME [61]. In various cancer types the
PI3K/AKT/mTOR pathway has been implicated in the expression
of immunosuppressive chemokines and cytokines [62, 63],
expression of the immune suppressive vascular endothelial
growth factor (VEGF) [64], reduced tumor CD8+ T cell
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infiltration [65], expression of immune checkpoints [66–68],
and expression of MHC classes I and II (Figure 2) [69, 70].
In HNSCC the association of activated PI3K signaling with
suppression of MHC expression was demonstrated using IHC,
showing an inverse staining of MHC-I and phospho-AKT [71].
Moore et al. reported that co-inhibition of mTOR and PD-L1
enhanced anti-tumor efficacy in an oral cancermousemodel [72].
Since the PI3K/AKT/mTORpathway is overactivated in over 90%
of HNSCC, through variousmechanisms, it is a highly interesting
pathway to target in HNSCC, especially combined with ICIs [60].

Wnt-Signaling
The Wnt-signaling cascade is an evolutionary highly conserved
cascade important in (embryonic) cell growth, migration and
differentiation [73]. About half of breast cancer tumors involve
an activated Wnt-signaling pathway and hereditary colon cancer
is often induced by a mutation in the adenomatous polyposis
coli (APC) gene, part of the Wnt-signaling cascade [73].
Also in HNSCC, Wnt-signaling has been recognized as a
central player [74].

Canonical Wnt-signaling depends on the APC destruction
complex that regulates β-catenin levels, whereas non-canonical
Wnt-signaling does not involve the APC complex. Binding of
Wnt ligands to the Frizzled receptors leads to activation of
the signaling pathway. When the Frizzled receptors are not
stimulated by Wnt, cytoplasmic β-catenin levels are regulated
by a destruction complex that includes amongst others APC,
Axin and glycogen synthase kinase 3β (GSK3β) [73]. β-catenin
is phosphorylated by GSK3β and subsequently degraded by the
proteasome. Upon Frizzled receptor activation, however, Axin,
APC and GSK3β are recruited to the membrane leading to
inactivation of the destruction complex. Hence, β-catenin is able
to translocate to the nucleus where it drives expression of target
genes. These in turn regulate diverse cellular functions including
cell proliferation, -survival and -migration [2].

β-catenin levels can be regulated by other processes as well,
forming a source of non-canonical pathways. In HNSCC, several
genes involved in Wnt-signaling are mutated or inactivated.
The Cancer Genome Atlas (TCGA) data showed inactivating
FAT1 mutations in 23% of HNSCCs [38]. FAT1 is a cadherin-
related adhesion receptor which can form cellular adhesion
structures and therefore plays a role in cell-cell contact. Cadherin
receptors can sequester β-catenin to the plasma membrane, thus
preventing its translocation to the nucleus [75]. FAT1 knockdown
in glioblastoma cell lines resulted in promotion of cell cycle
progression and cellular growth and in a breast cancer xenograft
model FAT1 knockdown resulted in the progression of ductal
carcinoma in situ to invasive breast cancer [75, 76]. In HNSCC
cell lines the effect of FAT1 knockdown was inconsistent between
studies, being associated with both increased [77] and decreased
[78] migration and tumorigenesis. In HNSCC patients, FAT1
mutations and downregulation are independent predictors of
shorter disease-free survival [77]. Further studies are required to
clarify the role of FAT1 in HNSCC carcinogenesis, including its
effect on Wnt signaling.

AJUBA is a scaffold protein which stimulates the
phosphorylation and degradation of β-catenin by activating

GSK3β. Inactivating AJUBA mutations could result in a lower
rate of β-catenin phosphorylation which in turn increases
β-catenin-mediated gene transcription. Inactivating mutations
in AJUBA are relatively infrequent in HNSCC with a prevalence
of 6% and seem more common in HPV− disease [38].

Also implicated in the Wnt-signaling pathway is Notch
signaling. The Notch family comprises the Notch 1, Notch
2, Notch 3, and Notch 4 receptors, which are cleaved upon
binding to their ligand through cell-cell contact, leading to
the transfer of their intracellular domain into the nucleus to
regulate the expression of target genes. The overall role of
Notch signaling in cancer development is still highly debated.
Mutational inactivation of Notch has been associated with tumor
development, but overexpression has been associated with tumor
progression and immune evasion [79]. Notch 1 mutations are
reported in 19% of HNSCC, most common in HPV− tumors
(Figure 1), and are correlated to worse outcome [80].

Loganathan et al. performed a CRISPR-Cas study in a HNSCC
mouse model, in which they induced mutations in a wide-
array of the so-called “long tail” genes [81], genes that are
significantly mutated in tumors, but at very low frequency.
Strikingly, mutational inactivation of p53 itself did not induce
HNSCC, but introduction of mutations in these long tail genes
did induce HNSCC tumor growth [81]. When evaluating the
specific long tail genes it was found that knockout of AJUBA
resulted in tumor growth but more importantly, it resulted in a
significant decrease in Notch signaling [81]. Induction of Notch
expression reversed the increased tumor growth of AJUBA-
deficient mice, implicating Notch as the tumor-suppressive
factor. Upon investigating the entire long tail gene panel, the
authors ultimately concluded that in 67% of HNSCC cases,
oncogenic mutations often impact Notch signaling, proposing
decreased Notch signaling as a new hallmark of HNSCC [81].

The immunomodulatory role of the Wnt-signaling pathway
in cancer has been reviewed extensively [82–85]. In line with
its ubiquitous expression and involvement in many diverse cell
functions, the Wnt pathway impacts many of the immunological
players in the TME (Figure 2). Through activation of the
Wnt-signaling pathway, DCs are pushed into a regulatory,
tumor tolerant state. A recent study by Lopez-Gonzalez et al.
showed that inhibition of Wnt-signaling through introduction
of a constitutively active form of GSK3β restored human DC
activation in the presence of immune suppressive cytokines and
in an in vivomelanomamouse model resulted in DC recruitment
and activation and promoted tumor control [86]. Wnt-pathway
activation in tumor cells negatively regulates the production
of the chemokine CCL4, inhibiting the recruitment of cross-
presenting DCs into the TME [87]. Consequently, infiltration
of effector T cells into the TME is impaired, as no nodal T
cell priming occurs. In melanoma cells, increased β-catenin
expression was shown to even further hamper T cell priming
through upregulation of IL-10 [88]. Indeed, analysis of TCGA
data indicated that activation of theWnt-pathway correlated with
an immune-excluded TME in 90% of 31 included tumor types
[89]. Additionally, upregulated β-catenin expression has been
associated with impaired development and function of Th cells,
impaired maturation of NK cells, and increased Treg survival
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[90]. Colombo et al. reviewed how cancer cells can use Notch
signaling to change to cytokine milieu by secreting immune
suppressive factors such as TGF-β, IL-10, CXCL12, thereby
shaping a pro-tumorigenic microenvironment via cross-talk with
stromal cells [91].

Hence, targeting Wnt-signaling seems a promising
treatment strategy to augment ICI in HNSCC given its role in
carcinogenesis as well as in shaping the TME [92]. Multiple small
molecule inhibitors have been developed and some have already
entered clinical trials also for HNSCC (Supplementary Table 1).
LGK974 was shown to effectively inhibit in vitro HNSCC
tumor growth and metastasis [93] and ICG001 was shown to
downregulate HNSCC cancer stem cells and tumor growth
in vitro [74]. Several other inhibitors of the Wnt-pathway are
currently under clinical investigation [94].

Clinical trials targeting the Notch pathway have been
performed and are currently ongoing [95]. However, inhibition
of Notch is often associated with high toxicity possibly related
to the notion that Notch signaling influences a wide array of
processes [79, 81]. Clearly these issues need to be addressed,
potentially by local rather than systemic inhibition of Notch,
before Notch inhibitors could safely make their way to the clinic.
To our knowledge, there are currently no targeted therapies
available for FAT1 or AJUBA mutated tumors. Obviously the
notion that all these genes display inactivating mutations in
HNSCC, hampers the exploitation as druggable target, and
detailed functional characterization of the signaling pathways
is crucial.

CONCLUSION AND FUTURE
PERSPECTIVES

We aimed to outline potential targets to aid HNSCC
immunotherapy response by linking selected molecular
pathways, widely-affected in HNSCC, to their immunological
implications. STAT3 and the PI3K/AKT/mTOR- and Wnt-
pathways are of particular interest, because they are implicated
in some of the very mechanisms believed to be responsible
for primary or acquired resistance to ICI therapy. Interfering
with the immunomodulatory functions of these pathways could
provide a means to boost the response to ICI therapies. Especially
for HPV− HNSCC, which is considered a immunologically
“cold” tumor, such strategies may have promise. Cold tumors,
characterized by an immune-excluded or -desert phenotype,

are known to respond poorly to ICI [96], and could be pushed
toward a more inflamed or “hot” phenotype by enabling CD8+

T cell infiltration through inhibition of the PI3K/AKT/mTOR
or Wnt-pathways. Inhibiting these pathways would on the one
hand inhibit the tumor cells, and on the other hand stimulate
the immune cells. Moreover, the milieu of cytokines and other
mediators including IFNγ and VEGF seems tailorable through
the proposed pathways, as well as the expression of MHCI/II
and immune checkpoints like PD-1/L1 and CTLA-4. The TME
could additionally be organized into a more pro-inflammatory
state through regulating the migration of immunosuppressive
players, such as Tregs or MDSCs into the TME as well as directly
mitigating their modulatory functions by targeting STAT3 both
in the tumor cells and the immune cells. An overview of recent
trials investigating agents targeting the discussed pathways
is given in Supplementary Table 1. Given the difference in
prevalence of alterations in particular molecular pathways
between HPV+ and HPV− HNSCC (Figure 1), certain targets
might be more relevant for one of the etiologies. Interference
with the STAT3 pathway could hold more clinical relevance for
HPV− disease, while in HPV+ disease the PI3K/AKT/mTOR
pathway might be a more suitable target. Future clinical studies
should consider building in a comparison between HPV+ and
HPV− HNSCC when evaluating the efficacy of drugs interfering
with these molecular pathways. Moreover, it remains crucial to
consider the fact that the functional consequences of targeting
the discussed pathways could be unpredictable due to the
complex composition of the HNSCC TME [97]. Dissecting the
impact of targeted and combination therapies on the various cell
populations involved in HNSCC may help explain the success or
failure to potentiate an anti-tumor immune response.
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