
BRIEF RESEARCH REPORT
published: 14 July 2021

doi: 10.3389/froh.2021.676028

Frontiers in Oral Health | www.frontiersin.org 1 July 2021 | Volume 2 | Article 676028

Edited by:

Sherry Shiqian Gao,

The University of Hong Kong,

Hong Kong

Reviewed by:

Denis Bourgeois,

Université Claude Bernard Lyon

1, France

Santosh Pandit,

Chalmers University of

Technology, Sweden

*Correspondence:

Monika Astasov-Frauenhoffer

m.astasov-frauenhoffer@unibas.ch

Specialty section:

This article was submitted to

Preventive Dentistry,

a section of the journal

Frontiers in Oral Health

Received: 04 March 2021

Accepted: 04 June 2021

Published: 14 July 2021

Citation:

Steiger J, Braissant O, Waltimo T and

Astasov-Frauenhoffer M (2021)

Efficacy of Experimental Mouth Rinses

on Caries-Related Biofilms in vitro.

Front. Oral. Health 2:676028.

doi: 10.3389/froh.2021.676028

Efficacy of Experimental Mouth
Rinses on Caries-Related Biofilms in
vitro

Josiana Steiger 1, Olivier Braissant 2, Tuomas Waltimo 1 and Monika Astasov-Frauenhoffer 3*

1Clinic for Oral Health & Medicine, University Center for Dental Medicine Basel UZB University of Basel, Basel, Switzerland,
2Department of Biomedical Engineering (DBE), Center of Biomechanics and Biocalorimetry, University of Basel, Allschwil,

Switzerland, 3Department Research, University Center for Dental Medicine Basel UZB University of Basel, Basel, Switzerland

This study assessed the efficacy of tin and Polyethylenglycol (PEG-3) tallow

aminopropylamine in different concentrations on Streptococcus mutans (S. mutans)

biofilms to establish a new screening process for different antimicrobial agents and

to gain more information on the antibacterial effects of these agents on cariogenic

biofilms. Isothermal microcalorimetry (IMC) was used to determine differences in two

growth parameters: lag time and growth rate; additionally, reduction in active biofilms was

calculated. Experimental mouth rinses with 400 and 800 ppm tin derived from stannous

fluoride (SnF2) revealed results (43.4 and 49.9% active biofilm reduction, respectively)

similar to meridol mouth rinse (400 ppm tin combined with 1,567 ppm PEG-3 tallow

aminopropylamine; 55.3% active biofilm reduction) (p > 0.05), while no growth of S.

mutans biofilms was detected during 72 h for samples treated with an experimental rinse

containing 1,600 ppm tin (100% active biofilm reduction). Only the highest concentration

(12,536 ppm) of rinses containing PEG-3 tallow aminopropylamine derived from amine

fluoride (AmF) revealed comparable results to meridol (57.5% reduction in active biofilm).

Lower concentrations of PEG-3 tallow aminopropylamine showed reductions of 16.9%

for 3,134 ppm and 33.5% for 6,268 ppm. Maximum growth rate was significantly lower

for all the samples containing SnF2 than for the samples containing control biofilms

(p < 0.05); no differences were found between the control and all the PEG-3 tallow

aminopropylamine (p > 0.05). The growth parameters showed high reproducibility rates

within the treated groups of biofilms and for the controls; thus, the screening method

provided reliable results.

Keywords: caries, biofilm, antimicrobial, isothermal microcalorimetry, amine fluoride, stannous fluoride, PEG-3

tallow aminopropylamine

INTRODUCTION

The oral microflora represents the complex community and cohabits of up to 1,000
different bacterial species [1–4]. Most of the microorganisms favor colonization and
adherence on surfaces forming biofilms whenever possible [5–7]. Caries is still a
frequently occurring oral health issue in the Global Burden of Disease 2015 study
[8, 9]. It has been known for a long time that the group of mutans streptococci and
especially, Streptococcus mutans is the specific pathogen that causes caries. However, more
important than one key pathogen is the environment that influences the homeostasis of
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the biofilm. In healthy conditions, demineralization and
remineralization of the tooth surface are in balance and
no irreversible defect occurs. Through the consumption
of a carbohydrate-rich diet and/or too little neutralizing
saliva, the environment can become more acidic due to the
metabolic products of the bacteria. Thus, the balance is not
maintained and aciduric and acidogenic bacteria, such as S.
mutans and Lactobacilli, gain predominance and accelerate
the demineralization, leading to dysbiosis of the microbiota
[7, 10–12].

Associations between oral and general health make oral
hygiene indispensable. Although tooth brushing is very
important to mechanically remove the biofilm, antimicrobial
agents used in oral care products like mouth rinses are also
very important to protect against the progression of dental
caries. Fluorides, in addition to chlorhexidine, cetylpyridinium
chloride (CPC), peroxide/perborates, essential oils (EOs),
triclosan, delmopinol, and sanguinarine, are occurring agents in
mouthwashes [13, 14].

This study focused on the inorganic compound tin derived
from stannous fluoride (SnF2), with its antimicrobial and
cariostatic characteristics, and the organic compound of amine
fluoride (AmF) PEG-3 tallow aminopropylamine, which can
reduce the adherence of bacteria leading to plaque formation
and may also influence the diffusion through the caries-
affected enamel [15]. Different studies have shown that a S.
mutans biofilm treated with AmF leads to a reduction in
growth [16], while the antibacterial properties of PEG-3 tallow
aminopropylamine, known to act as a surfactant in different
kinds of toothpaste, have been assessed to reveal a reduction in
vitality for periopathogenic and cariogenic species [17].

Isothermal microcalorimetry (IMC) is a highly sensitive
culture-based method that allows the measurement of heat
generated by all the microbial activities within the biofilm
without disturbing its structure. It allows bacteria to replicate on
a suitable culture medium, resulting in an exponential increase
in the heat production rate that can be recorded in real time by
IMC (i.e., heat flow curve). The main advantage of this method
in biofilm research is the opportunity to study them as entities
as shown previously [18]. Over the last decade, the method has
become more widely used in antimicrobial testing in various
fields of medicine [19–22].

This study aimed to use IMC to assess the efficacy of tin
and PEG-3 tallow aminopropylamine in different concentrations
on S. mutans biofilms to establish a new screening process for

TABLE 1 | One marketed mouth rinse and six experimental mouth rinses used in this study based on their major antimicrobial agent and their concentrations.

Mouth rinse type Marketed rinse Experimental rinses

Meridol 1 2 3 4 5 6

Main antibacterial agent Tin/

PEG-3 tallow

aminopropylamine

Tin Tin Tin PEG-3 tallow

aminopropylamine

PEG-3 tallow

aminopropylamine

PEG-3 tallow

aminopropylamine

Calculated

Concentration (ppm)

400/1,567 400 800 1,600 3,134 6,268 12,536

different antimicrobial agents and to gain more information
on the antibacterial effects of these agents on cariogenic
biofilms; the antibacterial effect of fluoride was not considered.
The null hypothesis was that both antimicrobial agents reveal
similar efficacy.

MATERIALS AND METHODS

Biofilm Formation and Treatment
Ten µl of S. mutans (ATCC R© 25175) stock solution was spread
on a Columbia blood agar plate (BBL Columbia Agar Base;
BD, Allschwil, Switzerland) and incubated for 48 h at 37◦C.
Thereafter, one colony was picked and added to 25ml of Todd
Hewitt (TH) media (Bacto Todd Hewitt broth; BD, Allschwil,
Switzerland) supplemented with 0.5% sucrose [D(+) sucrose;
Fluka, Buchs, Switzerland]. The culture was incubated for 22 h at
37◦C. Then, the bacteria were harvested by centrifugation (8,500
rpm, 5min, RT; Sigma 4-16KS, Kuhner, Basel, Switzerland) and
resuspended in simulated body fluid (SBF; [23]) supplemented
with 10% TH medium and 1% sucrose. Meanwhile, 5mm glass
disks (Biosystems Switzerland AG, Muttenz, Switzerland) were
coated with sterile pooled saliva mixture for 15min (described
in detail in Astasov-Frauenhoffer et al. [24]) and placed in 24-
well plates (Sarstedt AG, Sevelen, Switzerland), 1ml of bacterial
suspension and 0.5ml of TH medium were added to each well,
and the disks were incubated for 24 h at 37◦C.

After 24 h, the disks with biofilms were dipped x3 in 0.9%
NaCl (Merck, Zug, Switzerland) and then placed for 30 s in
50% v/v mouth rinse solutions (Table 1) and placed in 0.9%
NaCl. Biofilms exposed to 0.9% NaCl for 30 s served as untreated
growth controls. Each set consisted of five replicates, and
experiments were repeated three times altogether.

Isothermal Microcalorimetry
Columbia blood agar was prepared, and treated biofilms and
untreated controls were placed on the agar with the biofilm facing
the agar to monitor the microbial metabolic activity left in the
samples. The IMC ampoules were closed in aerobic conditions
and placed in TAM 48 instrument (TA Instruments; New Castle,
Delaware, USA) where the metabolic activity of the biofilms was
recorded at 37◦C for up to 72 h. Samples that now reveal any
growth during that time period were also assessed over 7 days.

The heat flow data obtained over time were analyzed for
growth rate (1/h) and lag time (h) by fitting the heat over
time curve (i.e., resulting from the integration of the heat flow
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curve) with the Gompertz equation with the “grofit” package in
R statistical software (R Foundation for Statistical Computing,
Vienna, Austria) as described earlier [18].

Taking into consideration the average growth rate of biofilm
and the correspondence of increase in lag time [roughly a biofilm
doubling time] to a x2 reduction in the bacterial population [25],
the reduction in the biofilm population was estimated by using
the following approach (1):

Biofilm reduction(%) = 100− (100/2∧((lag timetreated sample

−lag timecontrol)/(ln(2)/growth ratecontrol))).
(1)

Statistical Analysis
The Shapiro–Wilk test for normality was applied to the samples,
differences between mouth rinses and untreated controls were
assessed by using Student’s t-test with significance set to
p < 0.05, and differences between the different concentrations
were assessed by a one-way ANOVA using GraphPad Prism
(version 7.00 for Mac, GraphPad Software, La Jolla, California,
USA, www.graphpad.com).

RESULTS

Three different parameters (lag time and maximum growth rate,
and reduction in active biofilm) were assessed from the IMC data,
and they are presented in Table 2.

Dose-dependent reduction in active biofilms was detected
for samples treated with increasing concentrations of PEG-3
tallow aminopropylamine; however, no differences (p > 0.05)
were measured for maximum growth rate at the same time,
while statistical differences in LT (p < 0.05) were detected.
Using concentrations of 400 and 800 ppm tin revealed results
similar to meridol mouth rinse (although statistically seen as
there were differences found, p < 0.05), while growth was
inhibited during the whole detection period of 72 h when samples
were treated with an experimental rinse containing 1,600 ppm

tin. Interestingly, when assessing the reduction percentage in
active biofilm, only the highest concentration (12,536 ppm) of
PEG-3 tallow aminopropylamine revealed comparable results to
meridol (55.3% reduction in active biofilm) and rinses based
on SnF2 (43.4% for 400 ppm tin, 49.9% 800 ppm tin, and
>99% of active biofilm reduction for 1,600 ppm tin) reaching
to the average reduction of about 57.5%. Lower concentrations
of PEG-3 tallow aminopropylamine showed reductions of 16.9%
for 3,134 ppm and 33.5% for 6,268 ppm. Maximum growth
rate was significantly lower for all the samples containing SnF2
than for the samples containing control biofilms (p < 0.05);
no differences were found between the control and all the
PEG-3 tallow aminopropylamine (p > 0.05). Samples treated
with experimental rinse 3 also revealed no growth after 7
days, allowing the assumption that >99% of the active biofilms
was eradicated.

The parameters lag time and growth rate both showed high
reproducibility rates within the treated groups of biofilms and for
the controls; thus, the screeningmethod provided reliable results.

DISCUSSION

The efficacy of different mouth rinses on plaque control has
been analyzed in many studies. Fluorides, which are mainly used
to reinforce demineralization, have also shown antimicrobial
properties [26] and can affect, for example, S. mutans through
various mechanisms [27–29]. This antibacterial effect of SnF2 in
cariogenic biofilms can be attributed to the ability of stannous
ion to reduce bacterial acidogenicity and glucan production
[30], while AmF is shown to inhibit the APTase of S. mutans
[31]. Additionally, there is not only the efficacy that makes
such fluoride formulations (e.g., SnF2/AmF) so attractive but
also there are fewer side effects like cytotoxicity and irritations
than in mouth rinses with essential oils or chlorhexidine [32].
Furthermore, regarding resistance development in S. mutans
strains, AmF/SnF2 can be used for long term in contrast
to chlorhexidine, which should be used only for a limited
time [33].

However, the major antimicrobial effect of mouth rinses is
achieved through various other agents added to the rinses. Thus,

TABLE 2 | Three different parameters were assessed from IMC data: lag time in h, maximum growth rate in 1/h, and reduction in active biofilm in % compared to

untreated control biofilm.

Parameter Untreated control Marketed rinse Experimental rinses

Meridol 1 2 3 4 5 6

Lag time (h) 8.55 ± 0.4 18.9 ± 2.1** 15.9 ± 1.0** 17.4 ± 1.5** >72** 10.9 ± 0.6** 13.8 ± 1.1** 19.5 ± 2.7**

Maximum growth rate (1/h) 0.078 ± 0.004 0.066 ± 0.003** 0.065 ± 0.003** 0.064 ± 0.003** 0** 0.074 ± 0.006 0.076 ± 0.006 0.072 ± 0.007

Reduction of active biofilm (%) N/A 55.3 ± 7.6 43.4 ± 4.4** 49.9 ± 5.6* > 99** 16.9 ± 4.2** 33.5 ± 5.5** 57.5 ± 8.1

Seven rinses were examined for their antimicrobial properties containing either tin derived from stannous fluoride (SnF2 ) and/or PEG-3 tallow aminopropylamine as noted in Table 1.

Statistical differences were marked with **p < 0.0001, *p < 0.05.
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this study examined the susceptibility of S. mutans biofilms to
different experimental mouth rinses with various concentrations
of either tin derived from SnF2 (400, 800, and 1,600 ppm) or
PEG-3 tallow aminopropylamine (3,134, 6,268, 12,536 ppm) and
meridol containing both (400 ppm tin + 1,567 ppm PEG-3
tallow aminopropylamine). The motivation to use these agents
lies within the fact that, although both are widely used in
new oral care products, the contribution to the antimicrobial
effect of single agents within these products is not always
clearly defined. Additionally, screening for the best possible
concentration allows designing of more efficient rinses based on
these data.

The combination of 400 ppm tin derived from SnF2 and
1,567 ppm PEG-3 tallow aminopropylamine derived from AmF
(meridol) is showing comparable results (average of 55.3% active
biofilm reduction) to the experimental mouth rinse containing
12,536 ppm PEG-3 tallow aminopropylamine, reaching a
reduction in active biofilm by 57.5%. Rinses containing
AmF/SnF2 have shown antiplaque and also antibacterial effects
[34–41]. Furthermore, this formulation is able to influence
the streptococcus abundance and lactate production [42]
by inhibiting the acid production to the same extent as
chlorhexidine [43]. The study by Meurman et al. demonstrated
the sensitivity of S. mutans to an AmF/SnF2 solution in vitro.
Regarding the topic of cariology, it is mentioned that there are,
maybe, some advantages in the usage of SnF2/AmF solution
compared to chlorhexidine [44].

Additionally, we also found that an increasing concentration
of tin (400, 800, and 1,600 ppm) leads to a decrease in
active biofilm and a prolonged lag time. Thus, tin has also an
antibacterial effect that is dose dependent. However, the relation
between the concentration and the reduction in active biofilm is
not proportional. Regarding the active biofilm reduction, more
than 800 ppm tin is needed to achieve approximately comparable
effects to the SnF2/AmF solution. However, the efficacy of rinse
3 containing tin at a concentration of 1,600 ppm was inhibiting
the growth of biofilms throughout the detection period; thus, we
cannot say whether the whole biofilm was killed, or it would have
shown delayed growth after the 72 h. Therefore, for obtaining
results for higher antimicrobial concentrations, the metabolic
patterns of IMC should be followed for prolonged periods of
time. The reduction is achieved through both bactericidal effects
as the lag time is prolonged for these samples in comparison with
untreated control; thus, a larger proportion of cells was killed
in the beginning, as well as bacteriostatic effect as the growth
rate is decreased, which means that the bacterial growth was
impaired throughout the measurement. This was only to be seen
in the treated samples that contained SnF2; the effect of PEG-3
tallow aminopropylamine seems to be only bactericidal as the
growth rate is not affected and stays similar to the untreated
control biofilm.

Svanberg and Rölla have shown that S. mutans counts in
plaque and in saliva can be reduced through rinsing with
SnF2 and have suspected that this is a possible reason for a
decrease in the occurrence of caries. Additionally, one of the
tested concentrations of SnF2 (0.2 and 0.4%) was comparable

to our tested concentration in rinse 3, 1,600 ppm (0.22%)
[45]. The formulation of SnF2 in water-based solutions is
challenging because of the diminished stability [13, 46]. In the
formulation SnF2 together with AmF (meridol), the positive
properties of the SnF2 are stabilized. Synergistic effects led to
a positive effect in caries prevention and periodontal health
through plaque reduction [13, 47]. The increasing concentration
of PEG-3 aminopropylamine shows a proportional ratio to the
reduction in active bacteria biofilm. At concentrations of 12,536
ppm, the antibacterial effect is even somewhat higher than in
the meridol.

An advantage of using IMC is fast and reliable screening that
generates a real-time signal with high sensitivity of the produced
heat by microorganisms, and unlike spectrophotometric
analyses, it is not affected by the possible turbidity of the solution
caused by antimicrobial agents. In addition, the non-destructive
property enables the efficient use of this method for biofilms,
without disturbing their structure and function [18, 25, 48],
and measuring the extent of antimicrobial effect of solutions
on biofilms. However, the biggest limitation of the study is the
unknown efficacy of rinses while planning the experiments and
being unable to predict how long the detection time should
be. Nevertheless, it can be easily overcome by running a test
experiment to see how long the samples need for their heat flow
curve to return to baseline. Additionally, the study uses water for
the dilution of rinses; thus, no precipitation should happen while
doing so. Also, here, it can be easily adapted to another solution
as long as the rinsing step is carried out with saline before placing
the biofilms in the IMC ampoule.

In conclusion, the study revealed that the effect of SnF2, in
combination with AmF, is enhanced and mouth rinse also is
effective in caries-related biofilm reduction when concentrations
of these two agents are low. To achieve a similar effect with SnF2
or PEG-3 aminopropylamine alone, higher concentrations are
needed, which, however, might lead to resistance development
over time. Thus, the choice of mouth rinse has to be carefully
considered based on whether short- or long-term use is
planned. Additionally, the study also shows that IMC is a
reliable tool to use for future screenings on the efficacy of
antimicrobial agents on biofilms as shown earlier [18, 49],
providing highly reproducible results throughout the experiment
despite possible biofilm variability. However, it is important
to adjust the screening period to the efficacy of the rinses
in order to obtain a reliable metabolic pattern to assess the
growth parameters.

Furthermore, this study introduces a model biofilm combined
with a reliable screening method for all future investigations
in which the antimicrobial effect of solutions on cariogenic
biofilms could be easily assessed; with the big advantage in
comparison with many other studies, the biofilm stays intact
throughout the whole process and the effect of planktonic
cells can be neglected. Thus, various antimicrobial agents or
optimization of concentrations and/or combinations of such
agents and proportions of concentrations of tin and PEG-3
aminopropylamine can be studied further for their resistance
development using this model.
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