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Head and neck squamous cell carcinoma (HNSCC) is currently one of the 10 most

common malignancies worldwide, characterized by a biologically highly diverse group of

tumors with non-specific biomarkers and poor prognosis. The incidence rate of HNSCC

varies widely throughout the world, with an evident prevalence in developing countries

such as those in Southeast Asia and Southern Africa. Tumor relapse and metastasis

following traditional treatment remain major clinical problems in oral cancer management.

Current evidence suggests that therapeutic resistance and metastasis of cancer are

mainly driven by a unique subpopulation of tumor cells, termed cancer stem cells (CSCs),

or cancer-initiating cells (CICs), which are characterized by their capacity for self-renewal,

maintenance of stemness and increased tumorigenicity. Thus, more understanding of

the molecular mechanisms of CSCs and their behavior may help in developing effective

therapeutic interventions that inhibit tumor growth and progression. This review provides

an overview of the main signaling cascades in CSCs that drive tumor repropagation

and metastasis in oral cancer, with a focus on squamous cell carcinoma. Other oral

non-SCC tumors, including melanoma and malignant salivary gland tumors, will also be

considered. In addition, this review discusses some of the CSC-targeted therapeutic

strategies that have been employed to combat disease progression, and the challenges

of targeting CSCs, with the aim of improving the clinical outcomes for patients with oral

malignancies. Targeting of CSCs in head and neck cancer (HNC) represents a promising

approach to improve disease outcome. Some CSC-targeted therapies have already

been proven to be successful in pre-clinical studies and they are now being tested

in clinical trials, mainly in combination with conventional treatment regimens. However,

some studies revealed that CSCsmay not be the only players that control disease relapse

and progression of HNC. Further, clinical research studying a combination of therapies

targeted against head and neck CSCs may provide significant advances.

Keywords: cancer stem cells, head and neck, squamous cell carcinoma, self-renewal, tumor relapse, targeted

therapy

INTRODUCTION

Head and neck cancer is a heterogenous group of tumors which mainly arise in the oral cavity,
oropharynx, hypopharynx, salivary glands, paranasal sinuses and larynx [1]. HNC is among the
most common cancers worldwide, with a high prevalence in Southeast Asia, Brazil, and Southern
Africa [2]. Squamous cell carcinomas make up the majority of HNC which have an incidence of
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around 630,000 new cases per year worldwide, with almost
10,000 deaths in the United States annually [3, 4]. Lifestyle
behaviors such as drinking alcohol, use of tobacco, and chewing
betel quid are the most common risk factors associated with
HNSCC [5]. Despite recent considerable advances in the
therapeutic repertoire for oral cancer, the median overall survival
for patients with metastatic or recurrent HNC remains <1
year [6]. Resistance to chemotherapeutic and biologic agents
is responsible for the failure of many current therapeutic
approaches. Accumulating evidence suggests that the molecular
complexity, intratumoral heterogeneity, and presence of CSCs
are responsible for local recurrence, metastatic spread, and
treatment resistance in various types of cancer [7]. Intratumoral
heterogeneity may be the consequence of genetic alterations,
epigenetic modification, and changes in cell properties and
behavior [8]. CSCs are a pluripotent subpopulation of cells
in the tumor that have attributes of self-renewal, tumor
initiation, differentiation, migration, and metastasis [9–11]. This
subpopulation has been identified in several solid tumors,
including HNC, and it shows certain characteristics that give
it the ability to re-create entire heterogeneous populations of a
tumor posttreatment, causing tumor recurrence and metastasis
[12]. This review will discuss the characterization and molecular
regulation of CSCs that drive tumor progression and metastasis
in oral cancer, with a focus on HNSCC, highlighting the role of
CSCs in treatment failure. Furthermore, this review will outline
CSC-targeted strategies, as well as challenges of targeting CSCs,
with the aim of making a potential tangible difference in clinical
outcome for HNC patients.

CHARACTERIZATION OF HNSCC CANCER
STEM CELLS

CSCs interact with transformed cells and other stromal
cells within the tumor microenvironment through adhesion
molecules and paracrine factors. These microenvironmental
interactions promote the differentiation of CSCs, enhance
angiogenesis, recruit immune and stromal cells, and promote
tumor invasion and metastasis [13] (Figure 1). CSCs were
first identified in leukemia [14], and subsequently in various
types of cancer, including tumors in brain [15], lung [16],
colon [17], breast [18], and HNSCC [19]. CSCs are believed
to have multiple unique features including the potential for
differentiation and self-renewal that make them crucial for
tumorigenesis [20], and potentially offer a novel area of
study for developing more effective treatments for HNSCC.
It was previously reported that CSCs in HNSCC play a
vital role in initiation, invasion, and progression as well as
resistance to chemo/radiotherapy, and they are responsible
for recurrence and metastasis [21]. The literature reveals that
several different markers have been used to identify CSCs in
HNSCC. These markers are not only employed for selective CSC
isolation but are also involved in regulating multiple biological
functions of CSCs, including cell proliferation, invasion, self-
renewal and survival, effectively promoting tumor progression,
and recurrence.

CSC Metabolic and Cell-Surface Markers
in HNSCC
CSCs in HNSCC were initially identified and isolated by
their high levels of expression of the hyaluronan receptor
CD44 [19, 22]. CD44 is a type I transmembrane glycoprotein
involved in intercellular interactions, cell migration, adhesion,
and angiogenesis [23–25]. The extracellular domain of CD44
can interact with hyaluronic acid and other ligands, including
cytokines, and matrix metalloproteinases [26, 27]. CD44
plays a role in cell proliferation, survival and tumorigenesis
through activation of multiple tyrosine kinase-induced pathways
including epidermal growth factor receptor (EGFR), Src/focal
adhesion kinase (FAK), and hepatocyte growth factor receptor
(MET) [28–30]. Importantly, clinical reports indicated that CD44
expression is associated with local recurrence, regional lymph
node metastasis, perineural invasion, and poorer survival rate
in oral squamous cell carcinoma (OSCC) [31–34], indicating
its vital role in tumor recurrence and metastasis of HNSCC. In
addition, Biddle et al. [35] examined the therapeutic resistance
of heterogeneous CSC subpopulations that express high levels of
CD44 and found that these subpopulations exhibit high plasticity
and increased therapeutic resistance. CD10, a type II integral
membrane protein also known as neutral endopeptidase 24.11,
is another potential marker for HNSCC stem cells. Previous
studies reported a role for CD10 in the differentiation and growth
of neoplastic cells and that its expression was associated with
tumor size, histological grade of malignancy, local recurrence,
and therapeutic resistance in HNSCC [36, 37]. Moreover,
HNSCC patients with high CD10 expression had significantly
poorer overall survival (OS) [38]. Another well-known cell
surface marker for isolation of human malignant tissue stem
cells is CD133. CD133 is a transmembrane glycoprotein which
has been used as a marker to identify CSCs derived from
primary solid tumors [16, 39, 40]. Previously, CD133+ cell
populations were found to have higher cell viability, migratory
and invasive capability, colony forming ability as well as
drug resistance compared with CD133− populations [41–43].
Moreover, CD133 expression has been used as a prognostic
marker of survival in HNSCC and is negatively correlated
with clinical outcome in these patients [44]. However, other
studies reported no CD133 expression in freshly prepared
HNSCC patient samples and no correlation was detected
between CD133 expression and differentiation of carcinoma
cells, or prognosis [45–47]. Therefore, the value of CD133
as a marker for HNSCC CSCs remains unclear and may
need to be re-evaluated.

HNSCC CSCs also have elevated activity of aldehyde
dehydrogenase (ALDH), an intracellular enzyme that
metabolizes reactive aldehydes producedfrom alcohol and
chemotherapeutic compounds into non-reactive acids [48].
Mutations and altered expression of various ALDH genes are
implicated in multiple cancers including HNSCC [49–51].
ALDH1 was found to colocalize with other CSC-related
markers, including Snail and MMP-9, and induce epithelial to
mesenchymal transition (EMT)-related genes [49, 52]. ALDH1+

cells from HNSCC patients display a more tumorigenic
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FIGURE 1 | The cancer stem cell microenvironment. The niche or tumor microenvironment is essential for maintenance of stemness, and this also applies to CSCs

where cell–cell interactions within the niche are required to support the role of CSCs in cancer initiation and progression. The CSC microenvironment also contributes

to CSCs’ resistance to drugs and other cancer therapies, thereby, promoting cancer recurrence. The tumor tissue microenvironment is composed of a variety of cells,

including tumor cells, cancer stem cells, inflammatory cells, and cancer-associated fibroblasts, along with blood vessels and extracellular matrix. In response to

hypoxic stress and matrix, CSCs induce growth factors and cytokines including IL-6, CXCL8, and VEGF to regulate their growth via EGFR, NOTCH, WNT, and other

signaling cascades. JAK, Janus kinases; STAT, signal transducer, and activator of transcription; VEGF, vascular endothelial growth factor; HGF, hepatocyte growth

factor; mTOR, mammalian target of rapamycin; IL, Interleukin; CXCL, CXC-motif chemokine ligand.

phenotype, self-renewal and stemness properties, and also
resistance to radiotherapy and chemotherapy [49]. Furthermore,
High levels of ALDH1 in patient samples have been correlated
with poor prognosis in HNSCC [53, 54]. In contrast, another
clinical report investigated CSC populations in 74 locally
advanced HNSCCs from an equal number of patients, treated
with accelerated platinum-based radiotherapy, and revealed
that high expression of ALDH1 and lack of CD44 expression
in CSCs was associated with better radiotherapy outcome
and favorable prognosis [55]. These contradictory results
suggested that, in some tumors, terminally differentiated
cancer cells may retain expression of stem cell markers.
Although, tremendous efforts have been made to understand
CSC-associated molecules and to find an optimal marker
for CSCs in HNSCC, challenges still remain because of the
heterogeneity of CSCs and the absence of one marker does
not necessary mean that cells do not possess characteristics
of stemness.

Transcriptional Factors of HNSCC CSCs
HNSCC CSCs express same proteins involved in the core
network that regulates embryonic stem cells (ESCs). In particular,
Octamer-binding transcription factor 4 (OCT4; POU5F1), Sex
determining region Y-box 2 (SOX2) and Nanog Homeobox
(NANOG) are highly enriched in both CSCs and ESCs [56, 57].
These transcription factors are considered master transcriptional
regulators that orchestrate stemness properties including self-
renewal, angiogenesis, migration, and resistance to apoptosis
[58, 59]. OCT4 has three domains, including the POU domain
(DNA binding domain) which is essential in early embryogenesis
and for maintenance of pluripotent cells during embryonic
development [60]. OCT4 has been reported to be overexpressed
in various malignancies, including HNSCC, lung, breast, liver,
and ovarian cancer [58, 61–64]. It has been suggested that
OCT4 plays a crucial role in regulating EMT by increasing
the expression of the mesenchymal marker N-cadherin and the
transcription factor SNAI2 (Slug) to promote tumor progression
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and metastasis [10]. Moreover, OCT4 overexpression was
observed in tumor cells metastatic to lymph nodes and also in
recurrent tumors from oral squamous cell carcinoma (OSCC)
patients, indicating that OCT4 may be a potential marker
of recurrence and metastasis in HNSCC [10]. Furthermore,
accumulating evidence indicates that OCT4 is correlated with
poor survival and it has been suggested as an independent
prognostic marker of HNSCC progression [58, 65]. SOX2 is a
high-mobility group (HMG) domain-containing transcription
factor pivotal for pluripotent cell development [66]. Indeed,
SOX2 is known to complex with OCT4 which binds to important
regulatory elements of POU5F1, the gene encoding OCT4, to
maintain the expression of essential transcription factors in
ESCs through autoregulatory and multicomponent loop network
motifs [67]. In addition, SOX2 is involved in many processes
important in oncogenesis including cell proliferation, stemness,
migration, invasion, tumorigenesis, and chemoresistance [68].
A genomic copy number gain at the SOX2 locus results in an
increase in SOX2 transcriptional activity, and this is reported to
be critical for HNSCC initiation and progression [69]. Moreover,
SOX2 collaborates with other oncoproteins such as signal
transducer and activator of transcription 3 (STAT3) to initiate
and induce SCC [70]. Overexpression of SOX2 promotes cell
proliferation via cyclin B1 upregulation and enhances stem cell
properties [71]. Importantly, SOX2 expression levels correlate
positively with radio-chemoresistance and poor prognosis in
HNSCC patients [68, 71]. On the other hand, it has been
suggested that both OCT4 and SOX2 expression are associated
with early tumor stage and better disease-free survival, raising
the possibility that both SOX2 and OCT4 might not be the
best targets to eradicate tumor relapse and progression [57].
Of interest, the reduction of SOX2 and OCT4 expression in
advanced-stage HNSCC, as reported in a study by Fu et al. [57],
suggests that overexpression of SOX2 seen in early lesions might
decrease gradually during tumor progression. However, whether
the molecular mechanisms regulating SOX2 and OCT4 are
associated with a favorable prognosis in HNSCC is still unknown
and was not investigated in this study. A key downstream
target of OCT4 and SOX2 is NANOG, which is a variant
homeobox transcription factor widely recognized as a marker for
stemness [72, 73]. Functionally, NANOG is involved in blocking
differentiation to maintain ESC pluripotency and has been
shown to be overexpressed in various cancers including HNSCC
[58, 74]. In HNSCC, NANOG can promote cell proliferation,
invasion, and colony formation of the CSC population via its
phosphorylation at T200 and T280 by protein kinase C epsilon
(PKCε) [75]. Recently, evidence has been provided to suggest that
high expression of NANOG promotes EMT, the acquisition of
CSC properties, and enhances radiotherapy resistance in HNSCC
[76]. Moreover, elevated NANOG expression was reported as
a prognostic biomarker for OS in HNSCC and shown to
correlate with poor differentiation and chemoresistance [77].
These findings indicate that NANOG may be a novel target for
elimination of CSCs in HNSCC. B lymphomaMo-MLV insertion
region 1 homolog (BMI1) is a core component of the polycomb
repressive complex 1 (PRC1) that mediates gene silencing via
monoubiquitination of histone H2A. BMI1 is strongly linked to

self-renewal and has been implicated in maintaining the stem
cell pool of several tissues [78]. The N- terminal ring-finger
domain of BMI1 is required for the activation of telomerase
reverse transcriptase (TERT) transcription and immortalization
of epithelial cells [79]. BMI1 is among the most studied CSC
markers in HNSCC [80]. High expression of BMI1 in cancer was
related to EMT and involved in the invasion and progression
of tongue squamous cell carcinoma [81]. Several studies have
reported that BMI1 is abnormally expressed in HNSCC and
correlated with advanced tumor stages, drug resistance, and
poor prognosis [19, 34, 82]. However, other studies could not
predict survival from BMI1 expression [83, 84]. The reason
of these contradictory results could be the limited scope to
consider heterogeneity in CSCs as different types or states of
CSCs promoting disease progression and others slowing it down.

Signaling Pathways Utilized by CSCs in
HNSCC
Multiple pathways are involved in the regulation of normal
stem cell differentiation and self-renewal. The NOTCH and
Sonic hedgehog (SHH) pathways have been implicated in the
regulation of differentiation and patterning of numerous organ
systems [85]. SHH, a secreted glycoprotein, activates signaling in
target cells by binding to the transmembrane receptor Patched
1 (PTCH1) which unleashes Smoothened (SMO) to trigger a
series of intracellular pathways that induce the translocation of
the transcription factor glioma-associated oncogene homolog 1
(GLI1) into the nucleus [86] where it induces the transcription of
proliferation-associated genes including GLI1, PTCH1, WNT1,
forkhead box protein M1 (FOXM1), and CCND1 [86–88].
Moreover, SHH-induced signals are positively correlated with the
expression of Snail and MMP9 and negatively with E-cadherin,
suggesting that SHH signaling may be an important contributor
to invasion and metastasis of HNSCC [89], by driving EMT.
In tumor cells, SHH signaling cascades are aberrantly activated
by genetic alterations, such as loss-of-function alterations in
PTCH1, gain-of-function mutations in SMO (T241M, L412F,
S533N, W535L, and R562Q), and amplification of the GLI1 or
GLI2 genes [90, 91]. It has been shown that SHH signaling
is activated in various CSCs, including breast cancer, liver
cancer, gastric cancer, and HNSCC [92–95]. Interestingly,
elevated levels of GLI1 are correlated with recurrence, lymph
node metastasis and the worst prognosis in HNSCC patients
[89, 95]. Detection of SHH pathway components, especially
GLI1 and SHH, in HNSCC might represent promising targets
for future anticancer therapeutic development in HNSCC.
Another important player that is linked to CSCs in HNSCC
is NOTCH1. NOTCH proteins are a family of heterodimeric
transmembrane receptors composed of an extracellular domain,
a transmembrane domain, and an intracellular domain. The
intracellular domain translocates into the nucleus, where it
modulates transcription via CBF1, Suppressor of Hairless, Lag-
1 (CSL) transcription factor family [96, 97]. This complex
activates the transcription of target genes including HES, HERP,
and HEY which are involved in cellular differentiation [97].
Other NOTCH targets include the key cell cycle regulators
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FIGURE 2 | Mechanisms involved in CSC-induced drug resistance in HNSCC. EGF binds to the EGFR receptor tyrosine kinase resulting in activation and

autophosphorylation of the receptor. This activates RAS and PI3K, triggering major signaling cascades that include MEK/ERK and PI3K/AKT. NOTCH-activated

NICD1, upregulates the SIRT2/ALDH1A pathway. Hedgehog ligands (Hh) bind to Patched receptors and derepress the G-protein-coupled receptor (GPCR) SMO. Hh

targets ALDH+ CSCs through GLI1 expression, which is regulated by ALDH1A1. WNT proteins bind to the Fz transmembrane receptor and the LRP 5/6 to form a

functional complex. β-catenin then becomes uncoupled from the degradation complex and translocates to the nucleus to promote transcription of downstream

targets. TGF-β is recognized by TβR1/2 resulting in the phosphorylation of SMAD 2/3 and formation of a SMAD 2/3/4 complex. These pathways are involved in

regulating multiple biological functions of CSCs, including cell proliferation, migration, invasion, self-renewal and survival. EGF, epidermal growth factor; EGFR,

epidermal growth factor receptor; Fz, frizzled; JAG, Jagged ligand; DLL, Delta-like ligand; DSB, double-strand break; NICD, intracellular domain of NOTCH protein;

SMO, smoothened; MAPK, mitogen-activated protein kinase; PI3K, phosphoinositide 3-kinases; PATCH1, Protein patched homolog 1; TGF-β, transforming growth

factor; TβR, transforming growth factor β receptor; ALDH1, Aldehyde dehydrogenase 1 family; BMI1, B lymphoma Mo-MLV insertion region 1 homolog; OCT4,

Octamer-binding transcription factor 4; SOX2, Sex determining region Y-box 2; NANOG, Nanog homeobox.

cyclin D1, cyclin A, p21, and p27 [97]. Abnormal expression
of NOTCH receptors has been observed in different types of
malignant lesions. NOTCH signaling plays an essential role
in a variety of stem cell processes in HNSCC, such as cell
proliferation, differentiation, survival, and self-renewal [98]. In
terms of anti-cancer therapeutics, NOTCH1 Inhibition by γ-
secretase inhibitors reduces tumor growth and blocks CSC
function inmultiple tumors including breast cancer, brain tumor,
and glioma [99]. Conversely, high levels of NOTCH1 correlate
with increased resistance to cisplatin in HNSCC patients [100],
while high expression of both NOTCH1 and JAG1 (a NOTCH
1 ligand) is associated with poor prognosis in HNSCC [101]. In
addition, inhibition of NOTCH1 delays tumorigenesis, reduces
CSC self-renewal and maintenance, and improves the efficacy

of cisplatin and 5-fluorouracil by targeting CSCs in HNSCC
[102]. In contrast, Grilli et al. [103] have revealed that NOTCH1
expression is positively correlated with non-recurrent disease,
prolonged OS rates, and better prognosis in HNSCC patients.
However, these authors did not determine or further investigate
the mechanisms by which NOTCH signaling functions in an
anti-tumorigenic manner.

The epidermal growth factor receptor pathway is one of
the signaling cascades that control CSC differentiation and
maintenance in HNSCC. EGFR is a transmembrane receptor
tyrosine kinase that is activated by various ligands, including
epidermal growth factor (EGF) and transforming growth factor-α
(TGF-α), triggering activation of downstream signaling cascades
such as PI3K/AKT, MEK-ERK, and phospholipase C signaling
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to control cell growth, survival, differentiation, angiogenesis,
and invasion [104]. Overexpression of EGFR is associated
with resistance to treatment and poor clinical outcomes with
HNSCC patients [105]. Accumulating evidence indicates that
EGFR plays a vital role in development of HNSCC stemness.
It has been shown that CD44 interacts with EGFR to promote
cell proliferation, migration and induces cisplatin resistance
and apoptosis inhibition in HNSCC cells [106], however,
these findings should be confirmed in tissues derived from
HNSCC patients. Moreover, EGFR drives HNSCC metastasis
by inducing glycolysis/EMT/CSC properties through a PI3K-
dependent mechanism [107]. A recent study reported that EGFR
activation induces SOX2 phosphorylation at Y277, inhibiting
ubiquitination, and subsequent autophagic degradation of SOX2
in a human tongue SCC cell line [108]. In addition, EGFR
overexpression is positively correlated with a higher functional
proportion of ALDHhigh CSCs in a human papillomavirus-
16 (HPV-16)-positive cell line [109], however, the mechanism
responsible for this is still unknown. WNT signaling is also
critical for stem cell self-renewal and differentiation. Based on
the involvement of β-catenin, WNT signaling can be divided into
two pathways, namely canonical and non-canonical. WNT/β-
catenin signaling pathway is activated by the binding of WNT
protein to Frizzled (Fz) seven transmembrane receptor and the
coreceptor lipoprotein receptor-related protein 5 or 6 (LRP 5/6)
to form a functional complex [110]. Consequently, the β-catenin
is uncoupled from the degradation complex and translocated
into the nucleus to promote transcription of downstream targets
such as cyclin D1 (CCND1), cyclooxygenase 2 (COX2), bone
morphogenetic protein 4 (BMP4), matrix metalloproteinases 7
(MMP7), and C-MYC [111] (Figure 2). It has been established
that WNT/β-catenin signaling plays a crucial role in maintaining
the CSC phenotype in various types of cancer. A possible
mechanistic explanation is that β-catenin interacts with CD44,
and β-catenin inhibition by WNT decreases the expression of
CD44 and OCT4 in HNSCC cells [112]. It is also reported that
WNT pathway activation enhances the CSC proliferation rate
and promotes stemness and sphere formation in HNSCC cell
cultures, through upregulating the expression of SOX2 [113].
In addition, β-catenin plays a fundamental role in mediating
cisplatin resistance by regulating DNA damage repair in HNSCC
[114] (Table 1). These findingsmay form a basis for future studies
aimed at developing novel strategies to combat drug resistance
and disease recurrence in HNSCC.

CHARACTERIZATION OF ORAL NON-SCC
CANCER STEM CELLS

Salivary Gland Cancers
Salivary gland cancers are rare, accounting for only 2–6% of
head and neck cancers. In spite of this, however, they constitute
a significant public health issue [135]. The most two common
salivary gland malignancies are mucoepidermoid carcinoma
(MEC) and adenoid cystic carcinoma (ACC). MEC occurs
in both the major and minor salivary glands and represents
∼30% of malignant salivary gland tumors [136]. The existence

TABLE 1 | CSC markers in HNCs. Different markers for the identification and

characterization of CSCs in HNCs, including HNSCC, ACC, MEC, and oral

melanoma are listed.

Types of CSC

markers

Name of

marker

Associated properties and functions

Cell surface

markers

CD44 Tumor initiation [9]. Enhancement of proliferation

and migration, and apoptosis inhibition in HNC

[106, 115].

• Overexpression is associated with regional

lymph node metastasis, perineural invasion,

increased loco-regional recurrence,

increased resistance to radiotherapy, and

decreased overall survival [31, 32, 35, 116].

CD133 • Tumor sphere formation, tumorigenicity, and

chemoresistance in HNSCC [42].

• Acceleration of angiogenesis, clonogenic and

tumorigenic abilities in melanoma [117–119].

• Positive correlation with poor overall survival

in HNSCC patients [44, 120].

CD10 Associated with tumor size, histological grade

of malignancy, local recurrence, and

therapeutic resistance in HNSCC [36, 37].

ABCB5 • Promotes melanoma metastasis by activating

the NF-κB cascade [121].

• Self-renewal and tumor initiation [122].

Metabolic

marker

ALDH1 • Tumorigenic phenotype, self-renewal and

stemness properties, and resistance to

radiotherapy and chemotherapy in HNSCC

[49].

• Sphere-forming, tumorigenic, and metastatic

abilities in ACC [123].

• Colocalization with Snail and MMP-9 and

induction of EMT-related genes in HNSCC

[49, 52].

• Strong correlation with nodal metastasis and

cisplatin resistance [124, 125].

Pluripotency

markers

BMI1 • Self-renewal, colony formation, migration,

and invasion in HNSCC [126].

• Associated with overexpression of the EMT-

related transcription factors Snail and Slug in

ACC [127].

• Strong correlation with advanced stages,

aggressive clinicopathological behaviors,

stem cell-like properties, drug resistance,

and poor prognosis in HNSCC [82, 128].

SOX2 • Known to complex with OCT4 and control

downstream embryonic genes including

NANOG [73].

• Involved in cell proliferation, migration,

invasion, stemness, tumorigenesis and anti-

apoptosis, and chemoresistance in HNSCC

[68].

• Associated with surviving expression in ACC

patients [129].

• Correlate positively with

radiochemoresistance and poor prognosis in

HNSCC patients [68, 71].

OCT4 • Role in the regulation of epithelial–

mesenchymal transition through increasing

expression of N-cadherin and Slug [77].

• Observed in metastatic lymph nodes and

recurrent tumors from OSCC patients [10].

• Correlated with poor survival and considered

as an independent prognostic marker of

HNSCC progression [58, 65].

(Continued)
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TABLE 1 | Continued

NANOG • Overexpressed in HNSCC CSCs [130].

• Associated with tumor transformation,

tumorigenicity, and metastasis in HNSCC

[58].

• Correlated with histopathological features

of MEC including perineural invasion and

desmoplasia [131].

• Correlated with poor differentiation status,

chemoresistance, and poor prognosis

[77, 132].

Self-renewal

pathways

SHH • Promote tumor growth and angiogenesis in

HNSCC [89].

• Correlated with the expression of Snail and

MMP9 [89].

• Correlated with recurrence, lymph node

metastasis, and the worst prognosis in

HNSCC patients [89, 95].

NOTCH • Involved in cell proliferation, differentiation,

survival, self-renewal, and tumorigenesis [98,

99].

• Correlated with increased resistance to

cisplatin and poor prognosis in HNSCC

patients [100].

EGFR • Involved in cell proliferation, migration,

cisplatin resistance, and apoptosis inhibition

in HNSCC cells [106, 133].

• Promotes the stemness and progression of

oral cancer [107, 108].

• Stabilizes and induces Snail-dependent EMT

in ACC [134].

• Associated with resistance to treatment and

poor clinical outcomes with HNSCC

patients [105].

WNT Involved in CSC proliferation, sphere formation,

and cisplatin resistance in HNSCC [113, 114].

of CSCs has been identified functionally in salivary gland
MEC, and ALDH+ CD44+ MEC cells exhibit self-renewal and
multipotency, and are highly tumorigenic [137]. In addition
to these markers, BMI1, OCT4, and NANOG were highly
expressed in MEC cells [131]. Importantly, the expression
of OCT4 and NANOG was correlated with histopathological
features of MEC including perineural invasion and desmoplasia
[131]. Moreover, a combination of three cancer stem cell
markers - CD44, CD133 and SOX2 - was suggested to be a
powerful and practicable prognosticator for patients with MEC
of minor salivary glands [138]. Additionally, there was a positive
correlation between CD44 and vimentin (a marker of EMT)
expression level, and the levels of both CD44 and vimentin
are associated with MEC tumor grade [115]. A previous study
has reported that suberoylanilide hydroxamic acid (SAHA),
an inhibitor of histone deacetylases (HDACs), was capable of
disrupting CSCs in MEC cell lines and sensitizing tumor cells
to cisplatin treatment, emphasizing the role of MEC CSCs
in the well-recognized resistance of salivary gland tumors to
chemotherapy [139].

ACC is the second most common malignant salivary gland
tumor, accounting for 10–25% of the total, and it is the most

common histological subtype observed in patients with distant
metastatic disease [140]. Previously, it has been reported that
ALDH1 was expressed in stromal cells in the majority (63%)
of ACCs, although, the pattern of ALDH1 expression did not
affect survival of ACC patients [141]. Another study revealed
that ALDH+ ACC cells generate the phenotypic diversity of
the initial tumor, and have robust sphere-forming, tumorigenic,
and metastatic abilities [123]. In addition, high expression of
BMI1 was observed in ACC samples with distant metastases
as compared to those with negative status, and there was a
significant correlation with poor clinical outcome [142]. It has
also been shown that BMI1 upregulation is associated with
overexpression of the EMT-related transcription factors Snail
and Slug (SNAI2) in ACC [127]. SOX2 is also highly expressed
in ACC, being tightly associated with the clinical outcome of
ACC and, therefore, it has been suggested to have utility as a
prognostic marker in this tumor type [143]. Furthermore, there
was a significant correlation between SOX2 and Survivin (IAP5;
an anti-apoptotic protein) in ACC patients, and the levels of these
were significantly higher than in the control group [129]. EGFR is
another important player that is commonly upregulated in ACC
and has a role in CSC self-renewal. As mentioned above, EGFR
signaling holds a pivotal role in self-renewal and maintenance of
stem cells. Some previous studies have reported overexpression
of EGFR in a minority of ACC cases, which suggests that there
is minimal involvement of this pathway in ACC pathogenesis
[144, 145], although, overexpression is not necessarily indicative
of pathway activity. However, other investigators have reported
that 85% of ACC tumors express high levels of EGFR and that
10% of cases express mutated (active) EGFR [146, 147]. The
wide variation in results could be explained, at least in part,
by the difference in specificity and sensitivity of the techniques
used to detect EGFR. One of the proposed mechanisms of EGFR
maintenance of stemness is that it leads to stabilization of Snail,
with EMT induction [134]. Therefore, analysis of downstream
mediators such as Snail or other EMT regulators, or of pathway
activation, may provide a more definitive answer. Another study
has recently reported that blocking EGFR with erlotinib increases
the activation of NOTCH1 signaling, leading to induction of stem
cell-like properties [148]. Furthermore, multiple other ligands,
including transforming growth factor-α (TGF-α), can activate
EGFR; thus, overexpression of such ligands could be implicated
in ACC pathogenesis [145]. Taken together, these results suggest
that EGFR may utilize multiple mechanisms to promote CSC
self-renewal and stemness in ACC (Table 1).

Oral Melanoma
Oral melanoma is a rare (only 0.5% of oral malignancies)
and aggressive malignancy with a very poor prognosis [149].
It presents most frequently in the hard palate and alveolar
gingiva. The prognosis for patients with these tumors is poor,
with a 5-year survival rate estimated at between 20 and
38% [150]. As a result of the high degree of plasticity of
this cancer, and the existence of multiple mechanisms that
lead to melanoma progression, the existence of a unique
and specific biomarker signature for melanoma stem cells
is still controversial. Among the surface markers commonly
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FIGURE 3 | Cancer stem cell-directed therapies in HNSCC. Selected anti-CSC drugs currently under clinical investigation. Their mechanisms of actions include

targeting CSC-associated surface markers and CSC-associated signaling pathways, including developmental pathways, that regulate the maintenance, and survival

of CSCs.

used to identify melanoma stem cells are CD133, CD271,
ABCB5, and ALDH1A [151]. CD133 has been associated with
CSCs in different tumors including melanoma [151, 152]. A
previous study indicated that CD133+ CSCs isolated from
the metastatic melanoma cell line D10 significantly induced
and accelerated initial angiogenesis compared to CD133− cells
[117]. Expression of CD133 has also been reported to be
high in metastatic melanoma compared to primary melanoma,
and CD133+ melanoma cells have higher clonogenic and
tumorigenic abilities compared to CD133− cells [118, 119].
In contrast, a meta-analysis evaluated 299 melanoma cases
from five studies for expression levels of CD133 and reported
low power to detect a significant association between CD133
expression and melanoma progression [153], suggesting that
CD133 might not be an appropriate biomarker in identifying
melanoma CSCs. However, in spite of this low power, the
authors found 47.9% of cases had high CD133 expression,
indicating a positive correlation between CD133 expression
and disease progression. High variability was observed in the
expression of CD271 as a CSC marker and some controversy
still exists with regard to its function in melanoma stem cells.

Nevertheless, other studies have suggested that CD271 may
contribute to the aggressive nature of melanoma cells and
associated chemoresistance [154, 155]. Another functional driver
of melanoma aggressiveness and drug resistance is ATP-binding
cassette sub-family member 5 (ABCB5), which promotes drug
efflux in cancer cells [156]. One study found no correlation
between ABCB5 expression and tumor-initiating capacity [157].
However, in a more recent report, ABCB5 was found to
enhance tumorigenic ability and promote melanoma metastasis
by activating the NF-κB cascade [121]. In addition to these
markers, melanoma CSCs show high ALDH activity, especially
ALDH1A1 and ALDH1A3 isozymes. ALDH+ melanoma cells
were found to be more tumorigenic and more resistant to
chemotherapeutic agents than ALDH− cells [158]. Moreover,
xenografts from ALDH+ melanoma cells displayed superior
self-renewal compared to xenografts from ALDH− cells [159].
However, a recent study reported that both ALDH1A1 and
ALDH1A3 correlated with favorable prognosis in metastatic
BRAF wild-type and BRAF-mutant melanoma, respectively
[160]. Other intracellular proteins of likely importance in
melanoma stem cells are SOX2 and KLF4. As mentioned above,
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they are pluripotency markers and their high expression in
melanoma cells promotes reprogramming toward a stem cell
phenotype, inducing cell proliferation and drug resistance, and
inhibiting apoptosis, [161, 162]. Recently, it has been found
that the expression of OCT4, SOX2, and KLF4 was high in
CSC subpopulations within the tumor nests and peritumoral
stroma of head and neck metastatic malignant melanoma [163].
Another important player is c-MYC, another transcription
factor regulating pluripotency and self-renewal of ESCs. For
many years, c-MYC has been implicated in the development
of numerous cancer types, including melanoma. It has been
demonstrated that c-MYC overexpression is associated with
tumor progression and is preferentially expressed in metastatic
melanoma [164, 165]. Additionally, high c-MYC expression in
mucocutaneus melanoma correlates with immune evasion and
tumor invasiveness, hence, its association with poor prognosis
and survival [164, 166]. In addition, mutations in KIT (the
receptor for stem cell factor, SCF) have been found in ∼15%
of mucosal melanomas [167]. A previous study has indicated
that KIT signaling is critical for the proliferation and migration
of melanoma cells, raising the possibility that this might be
a promising therapeutic target in patients with aggressive oral
melanoma [168] (Table 1).

TARGETING AND CHALLENGES IN HNSCC
CANCER STEM CELL-DIRECTED
THERAPY

Despite the advances in targeted therapy for HNSCC, early
studies from clinical trials have reported limited efficacy with
monotherapy compared to conventional therapies. Thus, new
therapeutic strategies targeting CSCs are under development
to be used in combination with conventional non-targeted
therapies to prevent tumor relapse, metastasis, and to combat
chemoresistance (Figure 3).

Targeting Self-Renewal Pathways
To date, one of the most promising strategies for targeting
HNSCC CSCs is blocking the key self-renewal signaling cascades,
such as those regulated by EGFR, NOTCH, WNT, and SHH.
Inhibition of EGFR is being employed in advanced and recurrent
HNSCC treatment. It has been determined that gefitinib (a
tyrosine kinase inhibitor) preferentially targets CSCs, eliminating
tumor regrowth, and increasing sensitivity to cisplatin in
nasopharyngeal carcinoma [169]. Moreover, blocking EGFR
with gefitinib reduces the expression of c-MYC and NANOG,
essential factors for reprogramming of induced pluripotent
stem cells [169]. Interestingly, treatment with the anti-EGFR
antibody, cetuximab, induces CSC differentiation, and inhibits
radiochemoresistance of CSCs in HNSCC [170]. Another study
has indicated that afatinib (a second-generation tyrosine kinase
inhibitor) reduces the self-renewal and invasive properties of
HNSCC CSCs in culture by downregulating CD44 and OCT4,
inhibiting tumor sphere formation and growth, and inducing
radiosensitization [171]. In contrast, in a phase III study,
monotherapy with gefitinib did not improve the OS in patients

with recurrent and/or metastatic HNSCC [172]. However, the
combination of EGFR inhibitors with cisplatin or radiotherapy
shows improved response compared to monotherapy with
erlotinib or cetuximab, raising the possibility that resistance
of tumors to EGFR inhibitor monotherapy could be related
to the functional heterogeneity of CSCs in advanced HNSCC
[170, 173]. As NOTCH, WNT, and SHH signaling play
essential roles in CSC maintenance in HNSCC [174], these
pathways are considered as attractive targets for treatment
of recurrent/metastatic HNSCC. A preclinical study found
that blocking NOTCH1 with the γ-secretase inhibitor, DAPT,
modifies the HNSCC CSC phenotype, reducing chemoresistance
in tissues post chemotherapy, and also lymph node metastasis
[102]. In a non-randomized phase I trial, the combination
of a NOTCH inhibitor, MK-0752, with an mTOR inhibitor,
ridaforolimus, showed clinical activity in metastatic HNSCC;
however, a high number of adverse effects were reported
[175]. For WNT signaling, the inhibitor of β-catenin responsive
transcription (ICRT-3) arrests the cell cycle and decreases
the motility of HNSCC cells [176]. Other preclinical studies
have focused on inhibition of Porcupine, a membrane-bound
acyltransferase, and found that Porcupine inhibitors such as
LGK974 and IWP-2, induce apoptosis, inhibit cell migration and
reduce the expression of CSC markers in HNSCC [177, 178]. A
similar pattern is also seen with SHH inhibitors, as one study
has shown that treating EGFR inhibitor-resistant HNSCC cells
with the SHH inhibitor IPI-926 reduces tumor growth and
blocks tumor recurrence in patient-derived HNSCC xenografts
[179].Moreover, vismodegib, a SHHpathway inhibitor, decreases
expression of GLI1 and Survivin, and promotes radiation-
induced DNA damage in HNSCC cells [180]. Another study
investigated the dual targeting of EGFR and SHH pathways
and found a reduction of cell proliferation and colony forming
ability of HNSCC cells [181]. Furthermore, a pilot study
testing cetuximab and IPI-926 in patients with recurrent and/or
metastatic HNSCC has revealed good tolerability and anti-
tumor efficacy [182], indicating that combinational therapy
blocking EGFR and SHH might improve the clinical outcomes
for HNSCC patients.

Targeting Metabolic and Cell Surface
Markers
The markers used to identify and enrich CSCs may have
potential as targets for HNSCC therapy. Among the first reports
involving therapeutic targeting of CD44, one study investigated
the effect of 186Re-conjugated U36 antibody against the splice
variant CD44v6, which was well-tolerated and showed initial
promise. However, long-term disease stabilization was only
observed in one of 13 patients [183]. Another clinical study
indicated that the anti-CD44v6 monoclonal antibody BIWA 4
(bivatuzumab) has antitumor effects and disease stabilization
was observed in patients with recurrent locoregional and/or
metastatic HNSCC [184]. Labeling BIWA 4 with both a near-
infrared fluorescent dye (IRDye800CW) and a radioactive label
(Indium-111) was used recently to detect xenografted HNSCC
cells, raising the possibility that targeting CD44v6might be useful
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for fluorescence-guided surgery [185]. Anti-CD133 agents have
also been investigated as targeted anti-CSC therapy in HNSCC. A
preclinical study revealed that CD133 knockdown decreases the
percentage of side-population CSCs, diminishes tumor growth
in vivo, and overcomes chemoresistance [43]. Another study
in which a bacterial toxin (cytolethal distending toxin) was
conjugated to an anti-human CD133 monoclonal antibody
demonstrated inhibition of CD133+-induced cell proliferation
in cultures of established HNSCC cell lines [186]. Another
approach has favored targeting the drug-detoxification enzyme
ALDH1A1, and a strong correlation was found between high
levels of ALDH1A1 expression and cisplatin resistance that were
reversible by an ALDH1A1 inhibitor which blocks CSC-related
activity [124]. In addition, treatment with a novel small molecule
inhibitor of ALDH3A1 (Aldi-6) decreased cell viability, and the
combination of Aldi-6 and cisplatin caused a profound reduction
of cell viability and a greater reduction in tumor size in vivo
[187]. Taken together, it seems that combinational therapy using
CSC inhibitors together with standard chemotherapy agents
could hold significant promise as a future therapeutic strategy
for HNSCC.

Targeting Stem Cell Factors
Another potential therapeutic target to eradicate CSCs is the
transcription factor NANOG. Targeting NANOG in combination
with cisplatin suppressed stem cell properties of HNSCC cells
and enhanced apoptosis and chemosensitivity [188]. Another
recent preclinical study found that the combination of NANOG
inhibition and radiotherapy produced an additive effect with a
decrease in cell viability, stemness properties, and radiotherapy
resistance of CD44+ HNSCC cells [76]. In the same study,
the authors investigated the involvement of ERK1/2-NANOG
signaling on tumor growth and metastasis and found that
ERK1/2-NANOG inhibition may reverse CSC phenotypes and
have potential to reduce tumor progression and metastasis
in HNSCC patients. Additionally, combined treatment with
4SC-202, a novel selective class I histone deacetylase (HDAC)
inhibitor, and INK128, a selective mTORC1/C2 inhibitor,
synergistically inhibits SOX2 expression and cell growth, and
reduces ALDH1+ CSCs and sphere-forming ability of HNSCC
cells [189], suggesting that combined HDAC and mTORC1/C2
inhibition selectively targets the self-renewing capacity of
CSCs and is more effective and promising than conventional
chemotherapy. Furthermore, knockdown of BMI1 was shown to
increase the sensitivity of HNSCC cells to radio/chemotherapy
in HNSCC-ALDH1+ cells [190]. Other preclinical studies
have revealed that the BMI1 inhibitor, PTC-209, inhibits cell
proliferation and migration, eliminates lymph node metastases,
and reduces colony formation as well as the percentage of
ALDH+ cells [82, 191]. Recently, it has been demonstrated that
combination therapy with PTC-209 augmented PD1 immune
checkpoint blockade and eliminated BMI1+ CSCs by inducing
tumor cell-intrinsic immunity, resulting in the inhibition of
metastasis and relapse of HNSCC in vivo [192]. Although,
monotherapy with the BMI1 inhibitor suppressed HNSCC
growth and metastasis, it was not as effective as combination
therapy with anti-PD1.

TARGETING AND CHALLENGES IN ORAL
NON-SCC CANCER STEM
CELL-DIRECTED THERAPY

Targeting Salivary Gland CSCs
Malignant salivary gland tumors are characterized by frequent
local recurrence and distant metastasis, and no satisfactory
method has been determined to treat these lesions. Surgery
and radiotherapy are reserved to treat localized disease,
while chemotherapy is necessary to manage recurrent and/or
metastatic tumors, although, no chemotherapy regimen has yet
been proven to improve OS [193–197]. Due to these unfavorable
outcomes, various targeted agents have been investigated as
potential new treatments for salivary gland carcinomas. As
mentioned above, EGFR overexpression occurs in a high
proportion of ACC cases, and varies markedly among different
histotypes, making it a potentially attractive therapeutic target.
A phase II study revealed no correlation between EGFR
expression/status and response to cetuximab, although, the
majority of ACC patients obtained disease stabilization [198].
Consistent with this study, another clinical trial observed
a response with lapatinib treatment with prolonged tumor
stabilization of more than 6 months in recurrent or metastatic
salivary gland carcinoma patients, suggesting that targeted
therapy with anti-EGFR therapeutics may improve the clinical
outcomes of patients suffering from malignant salivary gland
tumors [199]. However, another phase II study demonstrated
no objective responses with gefitinib as a monotherapy in
patients with advanced salivary gland cancer [200]. Continued
work toward the development of predictive biomarkers to
inform better treatment options for patients is needed to
improve clinical outcome in ACC. A case report indicated
that the combination of radiotherapy and cetuximab was
well-tolerated and showed a complete remission in a patient
with recurrent high grade MEC [201], suggesting that, as
for SCC, the combination of anti-EGFR and conventional
therapies could be more effective than anti-EGFR monotherapy
to manage salivary gland carcinomas. However, further clinical
investigation is needed to determine the impact of combinational
therapy of anti-EGFR and conventional therapies on patient
with MEC. NOTCH1 has also been tested as a therapeutic
target for salivary gland CSCs. Genetic reduction of NOTCH1
using RNA interference suppresses proliferation, migration, and
clonogenic growth of ACC cells in culture, and reduces the
number of metastatic nodules in the lungs of immunodeficient
mice bearing ACC xenografts [202]. In an open-label phase
I trial, LY3039478, a selective oral NOTCH inhibitor, was
well-tolerated; however, no partial or complete responses were
observed, although, the majority of the patients (58%) with ACC
achieved stable disease [203]. Additionally, Brontictuzumab, a
humanized monoclonal antibody that binds to the NOTCH1
juxtamembrane negative regulatory region, was found to have
antitumor efficacy in a subcohort of patients with NOTCH-
activated ACC [204]. Notably, cisplatin treatment increased the
proportion of ALDHhigh/CD44high cells, the number and size of
spheroids and BMI1 expression in MEC cell lines. However, the
combination of cisplatin and the mTOR inhibitor, temsirolimus,
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decreased the expression of BMI1, inhibited mTOR signaling,
reduced spheroid formation, and decreased the CSC fraction
in MEC patient-derived xenograft tumors [205]. Moreover,
the combination of cisplatin and the histone acetyltransferase
inhibitor, vorinostat, reduced ALDH expression, and CSC
numbers, as well as increasing chemosensitivity of MEC cells to
cisplatin [139]. Overall, it is likely that combination treatment of
targeted therapy with conventional agents might hold promise
as a path to improve clinical outcomes. Currently, several
clinical trials of targeted therapy for salivary gland malignancies
are ongoing.

Targeting CSCs of Mucosal Melanoma
Previous studies have demonstrated that melanoma cells that
have attained a chemoresistant phenotype express multiple stem
cell markers, as mentioned above, suggesting that melanoma
CSCs may drive the phenotype of these tumor and, thus,
represent a very attractive target for novel treatment. One
potential therapeutic target is the receptor tyrosine kinase
KIT. In phase II clinical trials, the KIT inhibitor imatinib has
been evaluated in patients with mucosal melanoma harboring
KIT mutations, with an overall disease control rate of ∼50%.
Importantly, around half of patients with KIT mutations
responded to imatinib treatment while none harboring KIT
amplification showed a similar response [206]. Another study
tested the impact of blocking the ABCB5 transporter on recurrent
melanoma, but found that knockdown of ABCB5 did not re-
sensitize BRAF inhibitor-resistant melanoma cell lines, in spite of
the fact that ABCB5 is highly expressed in malignant melanoma-
initiating cells [207]. This suggests that ABCB5 may not be
a useful therapeutic target for patients with BRAF inhibitor-
resistant melanoma. Another important player that mediates
stemness properties in mucosal melanoma, and therefore, might
be a promising target, is ALDH. In a recent preclinical study,
activated nifuroxazide, which belongs to the family of 5-
nitrofuranes, specifically targets ALDH1high melanoma cells by
reducing the survival of melanoma CSCs [208]. In the same
study, it was shown that combination of a BRAF inhibitor
and a MEK inhibitor led to an adaptive increase in ALDHhigh

subpopulations in a subset of melanoma cell lines. However, in
phase III trials, combination of the BRAF inhibitor, dabrafenib,
and the MEK inhibitor, trametinib, resulted in improved
progression-free survival, and overall response and survival rates
compared to dabrafenib monotherapy in untreated patients
who had metastatic melanoma with BRAF V600E or V600K
mutations [209]. Furthermore, the combination of the BRAF
inhibitor, vemurafenib, and the MEK inhibitor, cobimetinib, also
provided a significant benefit compared to vemurafenib alone
[210], suggesting that dual targeting may provide better clinical
outcomes for metastatic melanoma. Moreover, it also indicates
that caution is advised when translating preclinical study results,
carried out with cell lines, to patient populations. Additionally,

dual targeting with the Bcl-2 inhibitor, ABT-737, and the γ-
secretase Inhibitor, GSI, revealed a high efficiency in reducing
the cell viability, disrupting colony formation, decreasing
ALDH+ cells, and inhibiting the self-renewal of melanoma
CSCs [211], indicating that this combinational therapy might
be another promising strategy to address treatment relapse of
malignant melanoma.

CONCLUSIONS

Even though, substantial progress has been made recently in
the development of different therapeutic strategies to treat
HNC, including targeted therapy, unfavorable clinical response
is still a common problem due to therapeutic resistance.
Conventional therapies have limited therapeutic effects against
the CSC subpopulation. CSC-targeted therapy has been found
to be a promising strategy to sensitize resistant tumor cells,
eliminate residual tumor-initiating cells, and prevent disease
relapse, resulting in improved OS.Multiple CSC biomarkers have
been identified that are correlated with poor prognosis, and are
attractive targets for therapy. CSC-targeted monotherapies are
frequently associated with development of resistant phenotypes
or lack of clinical response. Combinatorial therapies address
different facets of the CSC phenotype, and hold promise to
improve HNC patient outcomes. However, there is a pressing
need to discover more specific CSC properties and their
druggable targets, as well as distinguishing patient-specific CSC
subsets, in order to increase specificity of treatments and
reduce serious side-effects experienced by cancer patients. As
another point of note, the utility of CSC-targeted therapy
could be complicated as a result of serious adverse effects
due to targeting pathways that are critical for normal tissue
stem cells. Thus, further clinical research to determine the
therapeutic value of targeting CSC markers, as well as a
more comprehensive understanding of the nuances of cancer
stem cells, would help to improve the clinical outcomes of
HNC patients.
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