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Pregnancy is a tightly regulated immunological state. Mild environmental perturbations

can affect the developing fetus significantly. Infections can elicit severe immunological

cascades in the mother’s body as well as the developing fetus. Maternal infections and

resulting inflammatory responses can mediate epigenetic changes in the fetal genome,

depending on the developmental stage. The craniofacial development begins at the early

stages of embryogenesis. In this review, we will discuss the immunology of pregnancy

and its responsive mechanisms on maternal infections. Further, we will also discuss the

epigenetic effects of pathogens, their metabolites and resulting inflammatory responses

on the fetus with a special focus on craniofacial development. Understanding the

pathophysiological mechanisms of infections and dysregulated inflammatory responses

during prenatal development could provide better insights into the origins of craniofacial

birth defects.
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INTRODUCTION: INFECTIONS IN PREGNANCY AND THE
DEVELOPING FETUS

Pregnancy: An Immunological Balancing Act
Pregnancy has been described quite aptly as an immunological balancing act consisting of both
activation and regulation. Sir PeterMedawar described the fetus as a semi-allograft that is somehow
not rejected by the maternal immune system [1, 2]. Medawar proposed three possible mechanisms
for the tolerance of the fetal semi-allograft: an energy or tolerance by the maternal immune system,
a physical barrier such as the placenta, and, suppression of the fetal allo-antigens. Studies that
followed also showed that while the embryo indeed exhibits paternal major histocompatibility
complex (MHC) antigens [3, 4]. These could incite a response if recognized by the maternal
immune system, a cooperative mechanism has somehow evolved which results in a successful
pregnancy. It is in fact a combination of signals and responses to and from the placenta that
modulates the maternal immune system.

The paternal seminal fluid contains several antigens and immunomodulatory molecules such as
class Ia, Ib, and class II MHCs [5]. Murine uterine dendritic cells have been shown to cross-present
the paternal antigens to activate the maternal T-cells and facilitate immune tolerance toward them
[6]. Post-fertilization, the blastocyst “hatches” from the zona pellucida that surrounds it just prior
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to implantation. Studies on mouse embryos have shown that the
embryos express MHC class I proteins [3, 4]. If the zona pellucida
is removed prematurely, the maternal cytotoxic T-cells can
recognize and kill these embryos [7]. This suggests a protective
role for the zona pellucida toward the embryo. It has now been
shown that a response by the uterine innate immune system is in
fact important for a successful implantation of the embryo [8, 9].
Studies on implantation failures have found that pre-existing
microbial invasion or colonization of the endometrium (as seen
in sexually transmitted diseases or vaginitis) can result in failed
implantations after in vitro-fertilization as well as spontaneous
abortions [10].

Post-implantation, the primary site for materno-fetal contact
is at the interface between the maternal decidua and the
extravillous trophoblasts of the blastocyst. Despite being
genetically distinct, somehow there is a lack of maternal antigenic
stimulation toward the invading blastocyst [11, 12]. The major
component of the maternal decidua is the decidual stromal
cells which influence several immunologic activities. Tolerance
is mediated by cytokines and the MHCs from the circulating
leucocytes. This helps the mother “understand” the fetal signals
and not perceive them as a threat. The interface between
these two entities (the maternal decidua and the extravillous
trophoblasts), shapes the immunologic relations through the
course of the pregnancy.

In the first trimester, the fetal extravillous trophoblasts and
the maternal decidual cells exhibit unique human leukocyte
antigen (HLA) and chemokine receptor profiles [13–15]. The
HLAs expressed by the fetal membranes have been found to be
tolerogenic rather than immunogenic [16, 17]. Fetal trophoblasts
express one class Ia MHC and three class Ib molecules. However,
they do not express the class Ia antigens, HLA-A and HLA-
B which are responsible for allograft rejection in humans [18,
19]. Thus, most immunomodulation is proposed to occur via
regulation of innate immune responses and natural killer (NK)
cells. The maternal decidua was believed to contains regulatory
T-cells, macrophages and the NK cells but no B lymphocytes
[20]. Benner et al. recently reported that decidual B-cells not
only exist but also secrete anti-inflammatory cytokines such
as IL-10 [21]. The fetal extravillous trophoblasts also express
chemokine receptors such as CX3CL1, CCL14, and CCL4 [22].
The expression of chemokine receptors is suggested to facilitate
the migration of the maternal leucocytes and encourages further
invasion of the trophoblast [22].

The first trimester, specifically the weeks 3 through 10,
is the most crucial period in craniofacial development. The
term craniofacial structure is collectively used to describe the
structures in the head and neck region. While craniofacial
development is initiated in the first trimester of pregnancy,
it continues well unto puberty. Any perturbations in the
first trimester can have a deterministic effect on the normal
development of these structures.

Craniofacial structures are derived from branchial arches and
most of the mesenchymal structures in the head and neck are
derived from the neural crest cells (NCCs). Neural crest cells
after induction, undergo an epithelium-mesenchymal transition
before migrating to specific locations and differentiating

into several cell types. These transient NCCs are highly
sensitive to environmental signals and their migration is
guided by molecular signals from their non-neural crest tissue
environments. Syndromic disorders arising because of defective
NCC development and regulation are termed neurocristopathies.
NCCs are characterized by environmentally responsive surface
markers including integrin-α4, CD-49d, LPAM-1, Notch 1 and
2 and intracellular markers such as Sonic hedgehog (Shh), Sox,
Snail, Slug, Vimentin etc. A discussion on specific signaling
pathways and craniofacial development is outside the scope
of this review as we have chosen to focus on environmental
influences. NCCs are very sensitive to extrinsic factors such
as ethanol exposure [23], excessive environmental glucose
[24], temperature fluctuations [25], nutritional deficiencies
[26] and infections [27]. Immunological investigations into
NCCs identified that NCCs exhibit lower expression of HLA
class I but no expression of HLA class II suggesting poor
immunogenicity [28]. iPSC derived NCCs are shown to exhibit
immunosuppressive properties by inhibiting T-cell proliferation
and decrease in inflammatory cytokines [28].

Using live cell imaging in zebrafish, Zhu et al., demonstrated
that NCCs are capable of phagocytic functions in early embryonic
development [29] suggesting diverse functional roles.

The first trimester (Figure 1) is characterized by regulated
immune activation within the uterine environment, an idea that
was established in a mouse model in 1992 [30]. The second
trimester, however, is marked by immune quiescence while
parturition is again an event marked by activated inflammation.
Over the course of a human pregnancy, the concentration
of hormones such as estrogen (estradiol and estriol) and
progesterone increase with the highest levels observed during
the third trimester. Hormonal changes during pregnancy can
alter immune responses to increase susceptibility to infections
[31, 32]. The endometrium also gets enriched with macrophages
and regulatory T cells (Treg cells). Tregs comprise of both CD+

4

and the CD+

8 cells. Studies have shown that the concentration
of Tregs increases in the first trimester, peaks in the second,
and decreases in the third [33–35]. Reduced number of Tregs

are associated with recurrent pregnancy loss as well as pre-
eclampsia [34, 36, 37]. In a healthy pregnancy, while the levels
of circulating helper T-cells type 1 and 2 (Th1 and Th2) cells
remains unchanged until the third trimester, the levels of NK
cells and natural killer T-cells (NKT cells) increases [38–40].
The NK and the NKT cells respond to cytokines secreted by
the dendritic cells upon activation by external stressors such as
pathogens or their molecules. The cytotoxic effects of the NK
cells are associated with recurrent pregnancy loss. This effect is
postulated to be associated with an alteration in subset of NK cells
rather than overall change in abundance [41, 42].

Elevated progesterone has a direct effect on the levels of
the progesterone induced binding factor (PIBF) by lymphocytes
[43]. PIBF levels increase through pregnancy and drops post
parturition. High PIBF levels promotes the differentiation of
CD4+ T cells into Th2 [44, 45]. The Th2 cells secrete high levels
of anti-inflammatory cytokines including IL-4, IL-5, and IL-10
which are crucial for maintaining a homeostatic environment
in pregnancy [46, 47]. Aberrations in PIBF can result in altered
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FIGURE 1 | The first trimester in pregnancy is marked by activated inflammation beginning with the adherence of the blastocyst to the uterine wall. The invading

trophoblasts from the blastocyst secrete chemokines to recruit maternal innate (monocytes, macrophages, and natural killer cells) and adaptive immune cells

[including a restricted subset of CD4+ and CD8+ T cells and regulatory T cells (Treg)]. Simultaneously, there is the proliferation of resident tissue leukocytes, particularly

decidual natural killer (dNK) cells and decidual dendritic cells (dDCs). Trophoblasts impart an immature phenotype to local dDCs that encourages differentiation of Tregs
and a tolerogenic Th2-polarized environment with high levels of classically anti-inflammatory cytokines, such as IL-10. The second trimester or mid pregnancy is

marked with immune senescence with increased progesterone and Treg dominant response. As the pregnancy approaches term, the local indicators of fetal maturity

trigger the maternal immune system to undergo a shift toward a pro-inflammatory state again with its peak at term. Further, the stretch of amniotic membranes as well

as the fetal lung surfactant have been shown to activate inflammatory responses to facilitate parturition. Figure created using the BioRender software.

immune-regulatory functions. The increase in pro-inflammatory
cytokines such as IFN-γ and TNF-α can damage the placenta as
well as the developing embryo [48].

While most craniofacial developmental anomalies (syndromic
or non-syndromic) originate during the first trimester, they
become diagnostically apparent only during the second trimester
as tissues undergomaturation e.g., craniosynostosis. Endogenous
estrogen is important for maintaining bone and cartilage.
Mesenchymal stem cells exhibit estrogen receptors during
chondrogenesis and facilitate their proliferation [49]. Exogenous
estrogen and estrogen-like chemicals can disrupt normal
craniofacial development [50]. Exogenous estrogen (Estradiol)
has been shown to enhance the cytotoxicity of NK cells and
increase the production of IFN-γ [51]. Similarly, estradiol has
also been shown to enhance expression of pattern recognition
receptors and toll like receptor-4 as well as stimulate low
grade production proinflammatory cytokines such as TNF-α
in peritoneal macrophages [52]. Zebrafish larvae exposed to
exogenous estrogen showed craniofacial malformations [53].
Estradiol E2 has been shown to impair NCC migration [54], and
affect several signaling pathways such as Bmp2a and Wnt [55].

During the second trimester, the corticotropin releasing
hormone (CRH) also rises as the syncytiotrophoblasts increase
in the placenta. At the same time, the hypothalamic pituitary
axis (HPA) is upregulated. The rise in CRH levels results in an
increase in the maternal cortisol levels [56]. Cortisol inhibits the

progesterone’s control of the prostaglandin-inactivating enzymes
[57]. In a healthy pregnancy, a balance between these two
hormones is important to control the inflammatory responses
until the complete term. The rise in CRH through pregnancy is
described as paradoxical; It exerts a protective anti-inflammatory
effect on the HPA but also leads to an activation of the
pro-inflammatory cytokines and keeps the maternal immune
system primed by releasing debris from apoptosed extravillous
trophoblasts into the maternal system [58].

The process of parturition, is an event marked by activated
inflammation. Sacks (1998) compared the inflammatory changes
during human parturition akin to sepsis [59]. The uterine
membranes and the amniotic fluid become enriched with
proinflammatory cytokines and prostaglandins, mediated by the
innate immune system in preparation for labor [60, 61]. Signals
of fetal maturity, such as fetal surfactant lung protein (SP) and
stretch of the amniotic membranes, triggers parturition and birth
[62]. It is hypothesized that preterm births due to infections and
inflammation could be mediated via macrophages and the SP,
however, the exact mechanism is yet unclear. Readers are referred
to excellent reviews by Abu-Raya et al. [63] and Peterson et al.
[64], which discuss the physiologically relevant inflammatory
changes in each of the trimesters in greater details.

While several innate and adaptive responses tightly regulate
the inflammatory states in pregnancy, such a state is also very
delicate and sensitive to intrinsic and extrinsic environmental
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factors. Infections can affect all stages of pregnancy but with
regards to craniofacial development, the first trimester is most
critical. It is important to note that a physiologically regulated
inflammation in pregnancy can prove a bane in presence
of infections. In a non-pregnant state, minor infections are
easily cleared by the body’s response mechanism; In pregnancy
however, due to the physiological “immunosuppression” the
severity of responses to infections is increased and can become
detrimental to both the mother and the developing fetus. In the
following sections we will review such processes in greater details.

Effect of Activated Maternal Immune
Responses on Fetal Development
David Barker et al. hypothesized that low birth weight infants
presented a higher risk of developing Schizophrenia and
attention deficit hyperactivity disorder (ADHD) later in life [65].
This was one of earliest studies linking maternal inflammation to
prenatal development as well as an exploration of developmental
origins of psychiatric disorders. The hypothesis has evolved over
the years and a role of the maternal inflammatory state in
several other diseases has been recognized [66, 67]. Maternal
immune regulation can be perturbed by several factors including
nutritional deficiencies, infections, and risk factors such as
smoking and substance abuse. However, the degree of effects
observed, depends on whether the inflammatory trigger is acute
or chronic. In this section, we will discuss both states, and focus
mainly on the effect of dysregulated inflammation induced as a
result of infections or dysbiosis in the maternal microbiome.

There are two main regulators of inflammatory responses in a
pregnant state: hormones and immune cells. Acute inflammation
as observed in infections, is typically short but marked by the
infiltration of neutrophils, increase in monocytes, macrophages
and pro-inflammatory cytokines [68]. Acute inflammatory
reactions mediated by infections present with exaggerated
responses and often, result in serious consequences [69]. Studies
in pregnant Rhesus monkeys showed that transient chorio-
decidual infection with Group B Streptococci induced a cytokine
surge in the amniotic fluid resulting in a lung inflammation in
the fetus at birth [70]. Cadarlet et al. showed that pregnant ewes
injected with LPS, resulted in offspring with lung inflammation,
reduced β-cell function, and impaired glucose metabolism
[71]. While epigenetic changes will be discussed in greater
details later, it is interesting to note that maternal infection
has been shown to result in histone modification in fetal
immune cells [72] thus priming them for future responses.
Monocytes from purified cord blood cells of pre-term infants
with exposure to chorioamnionitis were found to exhibit a
hypo-responsive transcriptional phenotype to Staphylococcus
epidermidis in a subset of genes involved in antigen presentation
and activation [73].

Cellular receptors such as TLRs, Nod 1 and 2, and acute
phase proteins such as C-reactive proteins (CRPs) are key
to eliminating infections with the help of the complement
system and the phagocytes. The binding of a pathogen activates
the pathogen recognition receptor (PRR). PRRs activate an
inflammatory cascade resulting in the release of cytokines, matrix

metalloproteinases and other growth factors. Proinflammatory
cytokines such as interleukin-1β, 6 and 8 as well as TNF-α
stimulate both the release of matrix metalloproteinases as well as
prostaglandins, activating the damaging inflammatory response
[74, 75].

A balance in the levels of estrogen and progesterone is very
important to the maintenance of pregnancy. Progesterone plays
a key role in the inhibition of proinflammatory cytokines and
prostaglandins. Unfortunately, this “immunosuppressive” effect
is disadvantageous to the mother as the severity of response to
infections is often exaggerated. While the exact mechanism is
unclear it is hypothesized that this effect might be due to two
reasons: one, increase in the levels of progesterone increases
susceptibility to infections in pregnancy [76]; and second, while
inflammatory responses are necessary to clear pathogens, due
to the immunological landscape of pregnancy, the severity of
infections are increased. Pregnant mice infected with influenza
were found to have greater viral replication in their lungs
compared to the non-pregnant females with higher levels of TNF-
α, CCL2, and 3 as well as CXCL1 [77]. Pregnant mice infected
with Toxoplasma gondii showed improved outcomes for those
treated with recombinant IFN-γ [78].

Chatterjee et al. used inbred guinea pigs infected with guinea
pig CMV (GPCMV), to study the effect of immunization with
anti–glycoprotein B (gB) antibodies during pregnancy. The
study showed that immunization with hyperimmune anti-gB
antibody in early pregnancy reduced both the incidence and the
severity of newborn GPCMV infection and prevented growth
retardation [79].

Chronic inflammation in pregnancy is often a result of
long-persisting, low-grade infections or long-term reaction to
an inflammatory stimulus. In pregnancy, chronic inflammation
is most observed with systemic diseases in the mother such
as obesity, diabetes, hypertension, chronic stress, or low-grade
viral infections. Such an inflammatory reaction is marked by
the recruitment of monocytes and lymphocytes with tissue
damage and may have long-term effects in the developing fetus.
Studies have shown that chronic inflammation in the mother is
associated with long-term neurodevelopmental disorders in the
offsprings [80, 81].

Though a direct role has not been established, it may be
hypothesized based on the current scientific evidence that,
maternal inflammation (induced by infections) can prime the
fetal immune system as well as adversely affect the hypothalamic-
pituitary-stress axis (HPA) resulting in long-term effects on fetal
development (Figure 2). In Rhesus monkeys, blood cells from
juvenile offspring of stress induced mothers exhibited reduced
levels of TNF-α and IL-6 when treated with LPS in vitro [82]. Rats
exposed to prenatal stress exhibited an altered thymic function
coupled with a decrease in total lymphocytes as well as in CD+

4
and CD+

8 lymphocytes [83, 84]. Glucocorticoids are released
when the mother is exposed to stressors. Glucocorticoids are
lipophilic and thus theoretically, can cross the placenta. While
the levels of glucocorticoids reaching the fetus may be small, it
may have significant effects on overall development of the fetus.
Fetuses and preterm newborns exposed to chronic intrauterine
infections have been shown to exhibit elevated amniotic fluid
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FIGURE 2 | Inflammatory triggers in pregnancy such as maternal infection, stress and malnutrition can cause a release of pro-inflammatory mediators at the

maternal-fetal interface (placenta). The placenta produces corticotropin releasing hormone (CRH) in response to stress. Excessive inflammation can result in fetal

exposure to the glucocorticoids which in turn can reprogram the fetal hypothalamic-pituitary-adrenal (HPA) axis and alter the fetal developmental processes as well the

immune system development. Figure created using the BioRender software.

cortisol levels [85] and increased cord blood cortisol levels [86].
Such an increase can persist through the first 3 weeks of neonatal
life [87].

Exposure of the fetus to glucocorticoids has also been shown
to impair muscle growth and skeletal muscle mass [88]. Skeletal
growth and development are significantly affected by both
infection and chronic inflammation [89, 90]. Pregnant Sprague-
Dawley rats injected with bacterial endotoxins resulted in
impaired fetal myoblast function, increased protein catabolism,
and reduced skeletal muscle growth near term [71]. Embryoid
bodies exposed to bacterial LPS resulted in the inhibition of germ
layer differentiation [91]. Similarly, Rubella virus infected human
induced pluripotent stem cells demonstrated several epigenetic
modifications as well as impaired germ layer differentiation
[92]. Maternal stress during gestation resulted in fetal growth
restriction likely through increased cortisol levels. This was found
to be linked to altered muscle growth and skeletal development
in both human and animal models [93, 94]. Exposure to
corticosteroids during pregnancy has been associated with the
risk of developing orofacial defects in animal models however,
their effects in humans remain unclear [95, 96].

Along with immunological factors, several other materno-
fetal communication “factors” have been identified. Circulating
material derived from the fetoplacental unit such as the
extracellular vesicles (EVs) [97, 98], microparticles [99], cell-
free fetal DNA (cffDNA) [100] as well as fetal microchimeric
cells [101] have been shown to play an important role in both
health and maternal inflammation state. Extracellular vesicles
have been shown to mediate communication between cells
by serving as vehicles for proteins, lipids, and microRNAs
(miRNAs) and are postulated to play a role in embryo
implantation [102], placentation [103], and maintenance of
pregnancy [104]. ECVs have also been implicated in the
pathogenesis of preecclampsia [105] and preterm births [106],
and are touted as prognostic biomarkers [107]. While important,
the role of ECVs in pregnancy is yet not fully understood
[103, 108, 109].

Microparticles are detected in context of oxidative stress and
are hypothesized to be mildly pro-inflammatory in function,
though their function remains yet unclear [110]. cffDNAs are
derived from apoptotic trophoblasts and their concentration
increases with pregnancy. They have been shown to be
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hypomethylated, thus making them amenable to agonism by TLR
9 [111]. It is hypothesized that cffDNA may serve to prime the
TLR-dependent maternal immune responses. However, further
studies are needed to establish this. Fetal microchimeric cells
(cells transmitted from fetus to mother) have been shown to
persist in the maternal system long after gestation [112]. They
have been identified at tumor sites including breast cancer
[113], thyroid cancers [114] as well as melanomas [115]. While
the role of fetal cells is not fully understood, these findings
show that while the maternal immune system programs the
fetal systems, a reverse mechanism is also simultaneously at
play i.e., the fetal molecules also reprogram the maternal
immune system.

Studies on maternal inflammation have provided significant
insights on the etiology of developmental defects in the fetus
but are limited in scope due to significant technical and ethical
concerns. Most of the available data has been obtained in
animal models with the introduction of systemic infections
or sepsis, which are rare occurrences in human pregnancies.
Other studies have examined the cause and effect using medical
records which includes the risk of exclusion of contributing
factors such as diet, gut microbiota, and metabolism. Further
research is needed in large population groups of mothers
experiencing activated inflammation in pregnancy and adverse
developmental outcomes in offspring to examine the association
more robustly.

Pregnancy and Infections
Developmental pathways are complex and depend on both
internal and the external signals. Microbial colonization begins
in the early stages of life and plays a role in several of these
developmental pathways [116]. Most evidence for a direct role
of infection in pregnancy comes from bacteria that have been
shown to traverse the intact materno-fetal membranes and are
hypothesized to have originated from the lower genital tract
[117]. However, a study on the ecological succession of the
vaginal microbiota through the course of gestation by Rasmussen
et al., observed that the vaginal microbiota represents only a small
portion of the microbiota in the newborn [118]. Thus, suggesting
that the neonate must receive microbes from other sources [118].
Pathogens and their molecules have now been shown to traverse
the placenta. Despite these, the sterility of the environment
surrounding the fetus has been highly debated [119]. Studies have
shown that pregnant women exhibit microbiome profiles distinct
from the non-pregnant control groups [120–124]. In this section,
we will discuss the existing evidence regarding the possible role of
microorganisms from three key sources: the placenta, the vagina,
and the oral cavity.

The Placenta
In 1964, Billingham proposed a bi-directional transfer of cellular
elements from the placenta which was a paradigm shift for
understandingmaternal-fetal interactions [1].While the placenta
indeed allows for a bi-directional transfer of molecules, it
also serves as a robust barrier against fetal infection by most
pathogens [125]. A study by Aagard et al. reported that a
normal placenta may harbor its own microbiome [126]. This

study also reported the similarity of the isolated phyla to those
found on other locations in the body such as the oral cavity,
vagina, and the gut [126]. However, the studies that followed,
argued both for and against this finding [127–130]. Largely,
in the absence of inflammation, the placental microbiome has
been described as having a low-abundance and low-biomass. The
argument against a placental microbiome centers around possible
contamination, systemic infections, and the detection of dead
bacteria as whole genome sequencing does not differentiate live
from dead [131]. The most recent and compelling evidence in
favor of the placental microbiome was a study by Younge et al.
[132], where the authors used a mouse model to demonstrate
cultivable bacteria from the fetal gut. These bacteria were only
isolated in the second trimester and could not be isolated in
the third, suggesting that the bacteria could have somehow
traversed the placenta to colonize the fetal gut. Further, several
studies have reported the association of placental dysbiosis with
adverse pregnancy outcomes such as preterm births or premature
rupture of membranes [128, 133]. Villitis, an inflammation of
the chorionic villi of the placenta caused by infections, can
result in miscarriages [134] or adverse fetal outcomes [135,
136]. While the exact mechanism for placenta mediated adverse
effects is unclear, several theories have been proposed. One
proposed mechanism is that trophoblasts in the first trimester
express TLRs (such as TLR-2), which can bind to bacterial
endotoxins and peptidoglycans. This can shift the Th-1 balance
to a pro-inflammatory state [137]. In dizygotic twins with
dichorionic placentas and chronic villitis, the twins exhibited
growth differences corelating to the severity of villitis for each
placenta [138]. The placenta with higher villitis also showed
extensive T-cell infiltration as compared to the non-affected
placenta [138].

Viral infection in pregnant women is associated with
adverse pregnancy outcomes, including stillbirths and congenital
anomalies in the fetus [139–141]. Interestingly, the viral
entry mediators such as heparan sulfate, herpesvirus entry
mediator A (HveA), HveB, and HveC are not expressed
on the syncytiotrophoblasts but only on the extravillous
trophoblasts [125, 142]. Despite this, CMV and HSV have been
detected in the maternal decidua in both symptomatic and
asymptomatic mothers [143–146]. Using mouse models of viral
infections, it was shown that the Zika virus in pregnant mice
resulted in damage to the placenta, microcephaly, and fetal
demise. The authors also showed that the Zika virus exhibited
placental tropism [147]. Recently, studies on SARS-CoV-2
infection in pregnant women has shown that the virus causes
placental infection, inflammation, and eventually, neurological
complications in newborns [148]. This study was one of the
many other studies supporting the role of SARS-COV-2 infection
in mediating maternal inflammation in pregnancy [149, 150].
While the data on the presence and effect of SARS-CoV-2 in
vaginal secretions, amniotic fluid, and breastmilk in infected
women is still accruing, studies have reported a concerning role
for the virus in pregnancy [151–155]. Further studies are needed
to confirm vertical transmission as well as examine its long-
term effects in neonates. Thus, while the exact mechanism is
yet unclear, it is likely that the viral-mediated maternal immune
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activation and epigenetic modifications may cause the adverse
effects observed in the embryo.

The Vagina
While there are geographical and inter-individual variations
in the vaginal microbiota of pregnant women, the consensus
remains that, healthy pregnancies are associated with a greater
load of Lactobacilli [121, 156, 157]. Lactobacilli were described
as colonizers of the vaginal microbiota in 1892 by Albert
Döderlein and were hypothesized to play a role in maintaining
pH and preventing colonization of other pathologic species
[158]. A study in pregnant women in rural Malawi showed
that a Lactobacillus deficient vaginal microbiota was associated
with shorter term pregnancies. A subset of the cohort in the
same study also exhibited an abundance of Peptostreptococcus
anaerobius and associated shorter term pregnancies and
newborns with lower length for age Z-score [159]. A study
using pregnant rats showed that the weights of placenta and
the offspring from rats infected with Escherichia coli (observed
as a co-colonizer with Lactobacilli) were significantly lower as
compared to the non-infected controls [160]. Bacterial dysbiosis
in the lower genital tract of pregnant females commonly results
in bacterial vaginosis. The pathogens causing vaginosis may vary
depending on the cause from Gardnerella vaginalis, Bacteroides,
Peptostreptococcus, and Prevotella [161]. Bacterial vaginosis is
associated with an increased concentration of endotoxins in
cervical mucus or the vaginal fluids [162]. Endotoxins are
components of the Gram-negative bacterial cell wall. A study by
Kamiyama et al. [163] reported that among women undergoing
in vitro fertilization (IVF), a successful pregnancy did not
occur if the levels of endotoxin concentration in the menstrual
fluids was >200 pg/ml [163]. Bacterial vaginosis has also been
shown to result in preterm births, low birth weight of newborn
and/or restricted growth of the fetus and sometimes, miscarriages
[164–167].

Sexually transmitted diseases (STDs) can result in
complications during pregnancy. Maternal gonorrhea is
associated with low preterm birth weight, premature rupture
of membranes and chorioamnionitis [168–170]. Pregnant rats
infected intraperitoneally with Neisseria gonorrhoeae showed
a materno-fetal transmission resulting in fetal mortality [171].
Furthermore, studies investigating birth defects and maternal
genitourinary infections through the first trimester observed
that STDs in pregnancy were associated with significant
developmental defects in the newborns [172, 173]. These studies
support the theory of vertical transmission via the maternal
genitourinary tract for eliciting adverse effects on the fetus.

Studies on the vaginal mycobiome have identified Candida
and Saccharomyces as the predominant genera in pregnancy
[174]. Fungal infections can result in chorioamnionitis, an
inflammation of fetal membranes, an important risk factor
for low birth weight, preterm births, and neurodevelopmental
defects in the newborn [175–177]. The vaginal virome has
been poorly identified due to the difficulties in isolation
owing to small viral genomic material and ongoing mutations.
However, Herpesviridae, Papillomaviridae, Polomaviridae, and
Parvoviridae have been isolated routinely [30]. Though studies of

the vaginal virome have not been able to identify specific viruses
associated with adverse pregnancy outcomes such as preterm
birth, quantitatively, the vaginal viral loads are higher in those
who experienced such adverse outcomes [178–180].

The Oral Cavity
A healthy pregnant oral microbiota has been identified
to primarily belong to Actinobacteria, Bacteroidetes,
Chlamydiae,Chloroflexi, Firmicutes, Fusobacteria,Gracilibacteria
(GN02), Proteobacteria, Spirochaetes, SR1, Synergistetes and
Saccharibacteria (TM7) [181]. Systemic changes in the human
body has been shown to exert significant influence on the
diversity and the richness of the oral microbiota [182]. Studies
have reported a difference in oral microbiome between pregnant
and non-pregnant states. Balan et al. reported a difference in
bacterial abundance in pregnant patients between the second and
the third trimester. There were also significant differences in taxa
between the individual patients [183]. Prevotella negrescens was
observed to increase in abundance in periodontal plaque samples
during the second trimester [184]. Recently, a study in Japanese
women observed an increased abundance of Porphyromonas
gingivalis and Aggregatibacter actinomycetemcomitans during
early and mid-pregnancy, compared to non-pregnant groups
[185]. Candida species were found to be more abundant during
mid and late pregnancy [185]. In contrast, DiGiulio et al.
observed no significant difference between change in bacterial
abundance across and post-pregnancy [157].

Periodontitis is the inflammation of tissues surrounding the
teeth mediated by a dysbiosis of dental microbial biofilms.
Pregnant women are predisposed to developing periodontitis
by the virtue of hormonal changes. It is suggested that women
with periodontitis during pregnancy may be at a heightened risk
for adverse pregnancy outcomes though the exact mechanism
is unknown [186]. Previous studies have identified P. gingivalis
and Fusobacterium nucleatum in the amniotic fluid of pregnant
females at risk for premature delivery [187, 188] as well as in the
placentas of patients with preeclampsia [189, 190]. An abundance
of Campylobacter rectus, F. nucleatum, and P. gingivalis, have
been associated with adverse outcomes for pregnancy specially if
associated with contributing systemic diseases such as diabetes or
hypertension [191]. These periodontal pathogens are suggested
tomediate their systemic effects by hematogenous dissemination.
Increased levels of estrogen and progesterone enhances the
permeability of the dental junctional epithelium facilitating the
dissemination of periodontal pathogens [192]. P. gingivalis and
T. denticola have also been shown to internalize in several types
of host cells [193, 194] resulting in altered immune responses as
well as mediating epigenetic changes.

Bergeyella, a genus of oral bacteria, isolated from amniotic
fluid and the vaginal flora of pregnant women was genetically
similar to the clones isolated from the mother’s oral subgingival
flora, suggesting multiple sources of origin [195]. F. nucleatum
has been detected in a wide variety of placental and fetal
compartments including amniotic fluids, fetal membranes, cord
blood, and neonatal gastric aspirates [179, 196–198].

Syphilis is caused by Treponema palladium and its effect in
pregnancy has been investigated from the early 1900’s. The route
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of transmission for T. palladium is highly debated. Spirochetes
are known to colonize both from the lower genitourinary tract
and the oral cavity. They have also been shown to cross the
placentas as early as 9–10 weeks [199–201]. Maternal syphilis has
been known to result in preterm births, non-immune hydrops
fetalis, spontaneous abortion, and stillbirths [157]. Several
consequences for the surviving fetus include growth restriction,
orofacial defects, anemia, thrombocytopenia, hepatomegaly, and
hydrops fetalis [157, 202–207].

While a direct mechanism for pathogen transmission and
adverse outcomes in pregnancy yet remain to be established,
studies have definitely highlighted an association. Further,
studies are also lacking in several areas of the pregnancy
microbiome such as the virome, fungal diversity as well as
their metabolites. While reported independently, a cross-species
talk and commensalism between different pathogens cannot be
ignored. Often such mutualistic associations between pathogens
in a dynamic landscape such as pregnancy shapes disease
outcomes and thus, must be examined in-depth. Bifidobacteria
are amongst the first colonizers of neonatal gut microbiome
and play a key role in shaping their immunity [208, 209].
Bifidobacteria strains isolated frommaternal breast milk, vaginal,
and fecal samples of mother and child combinations have
been found to be identical, indicative of multiple transmission
routes from the mother to infants [210–212]. Bifidobacteria
also serves as carrier of (pro)phages which is important for
establishing neonatal virome. The SARS-COV-2 virus has been
shown to be associated with enhanced bacterial co-infections
[213]. Additionally, SARS-COV-2 binds to the highly expressed
oral Angiotensin-Converting Enzyme-2 (ACE-2) receptors [214].
ACE-2 is also highly expressed in the placenta, uterus, and the
materno-fetal interface [215, 216]. Fetal ACE-2 plays a key role
in the development of the heart, lungs, and brain [217]. The role
that this interaction plays in pregnancy and fetal development is
yet to be determined.

Figure 3 outlines the most commonly known routes of fetal
infection based on the discussed evidence. Overall, recent studies
collectively lean toward a role for microbes in fetal development.
However, the evidence for the adverse effect of microbes on fetal
development point more toward a role of inflammation in the
same and further studies are needed to understand and clarify
this argument.

PATHOGENS AS EPIGENETIC MODIFIERS

Epigenetics is the study of changes or modification in a gene
function that are transmitted to the daughter cells without
altering the sequence of the respective gene. The epigenetic
modification of a specific chromosome in the gametes or
zygotes results in the differential gene expression in the
somatic cells also known as genomic imprinting [218, 219].
Epigenetic mechanisms are complex and include processes such
as methylation, acetylation, phosphorylation, ubiquitylation, and
sumoylation of DNA or the post-translational modification of
histones. Of these processes, methylation of DNA is the most
well-studied mechanism in which a cytosine base in position

FIGURE 3 | Gestational environment shapes fetal programming. The pregnant

vaginal microbiome is known to consist of more than 170 species and studies

suggest that the vagina might be a source of microbes for the fetus via vertical

transmission in utero or parturition. Maternal microbiome at sites such as the

gut and the oral cavity have also been shown to contribute to the development

of normal fetal microbiome and mucosal immunity. Bacteria, their metabolites

and other by-products have been isolated in the placenta and are also shown

to shape fetal immune development post-birth. Thus, the maternal

microbiome can impact the fetal development via several mechanisms

including altering the maternal inflammation, as well as mediating direct effects

on fetal genetics. Figure created using the BioRender software.

of C5 in CpG dinucleotides (followed by guanine), undergoes
methylation (addition of CH3) [220, 221]. Methylation of
DNA is heritable, and relatively stable as compared to histone
modifications. Recent studies suggest that pathogen mediated
DNA methylation occurs fast and regulates the expression
of host genes involved in immune responses [222, 223].
This is carried out by a group of enzymes known as DNA
methyltransferases that transfer a methyl group from S-adenyl
methionine (SAM) to the fifth carbon in the cytosine base
to modify as 5-methyl cytosine. This results in chromatin
condensations and disrupted interactions between DNA and
the transcription factors. DNA methyltransferases (DNMT1,
DNMT3A, and DNMT3B) are expressed and involved in the
development of the embryo. The expression of these enzymes
is reduced in terminally differentiated cells except for the post-
mitotic neurons in the human brain [224, 225]. The diseases
caused by fetal epigenetic reprogramming are uniquely regulated
and the resulting phenotypes are often delayed (i.e., the effect
during fetal exposure is long lasting). While the reprograming
of fetal genetic material begins during prenatal development, it
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continues through the lifetime of an individual [226]. Though
not fully understood and limited, there is growing evidence to
suggest that microorganisms and their byproducts can mediate
epigenetic changes during prenatal development which can
contribute to future diseases [227, 228].

While the amniotic fluid is generally believed to be sterile,
studies have reported that at least 1% of the women present with
subclinical microbial invasion of the amniotic cavity (MIAC)
[229]. The majority of sub-clinical MIAC is endogenous in
origin. Few of the isolated species are composed of Mycoplasmas
(Ureaplasma spp.) and oral bacteria such as Fusobacterium and
Streptococcus [230]. While a direct role of these microorganisms
on the fetus remains to be explored, studies have shown that they
are capable of mediating epigenetic changes.

Internalization is an important mechanism used by
several pathogens for dissemination and immune evasion.
Internalization of oral pathogens such as P. gingivalis and T.
denticola in dental follicle stem cells has shown to reduce the
secretion of IL-10 and decreased chemotaxis of PMNs [231].
Though not shown in pregnancy, studies have reported that
P. gingivalis [232] as well as their lipopolysaccharides, can
downregulate the expression of DNA methylases DNMT3A and
DNMT1 in epithelial cells [233, 234]. Infection of periodontal
ligament cells with T. denticola increased MMP-2 expression
and altered genes encoding for chromatin modification [235].
DNA methylation in periodontitis is not restricted to the site of
infection. Increased methylation of the promoter regions of TNF
[236] and IL-6 [237] genes have been reported in blood cells, in
patients with periodontitis. Further, F. nucleatum, was found to
translocate to the placenta in pregnant mouse models and cause
adverse outcomes in pregnancy [238]. Independent studies have
also associated F. nucleatum with DNA methylation in colorectal
cancer and modulate autophagy [239–241] highlighting its role
in modulating epigenetics.

C. rectus, another key periodontal pathogen was found to
transverse the fetoplacental unit in pregnant mouse models and
cause growth restriction in the fetus [242].

Using mice infected with C. rectus, Bobetsis et al. reported
DNA hyper-methylations in several regulatory genes in the
fetus [243]. This study identified a significant downregulation
of insulin-like growth factor 2 (IGF2) as a result of increased
methylation of the IGF promoter upon placental infection
with C. rectus. Eleven of the six CpG methylation sites in
IGF2 exhibited hypermethylation upon infection with C. rectus
leading to intra-uterine growth restricted placentas. Studies using
fetal cord blood cells in pre-term infants revealed significantly
increased levels of methylation of pleomorphic adenoma gene 1
(PLAG1) as well as the Paternally expressed gene 3 (PEG3) [244,
245]. PLAG1 encodes a developmentally regulated, SUMOylated
and phosphorylated zinc-finger transcription factor while the
PEG3 genes are important in muscle and neuronal lineage
development. In African populations, maternal HIV infection
was found to be associated with increased methylation of PEG3
gene in the neonates [246]. Metabolites by pathogens have also
been shown to mediate epigenetic effects. Folate produced by
Bifidobacterium and Lactobacilli generate SAM, resulting in DNA
methylations in the host cells [247]. Short chain fatty acids

(SCFAs) are a part of free fatty acids generated by bacteria as their
metabolic by-products. Patients with severe periodontitis exhibit
high SCFA levels in dental biofilms. P. gingivalis derived SCFAs
have been shown to induce reactivation of the Epstein-Barr
virus and Kaposis’s sarcoma associated herpesvirus [248]. This
was associated with an increased host histone acetylations and
transactivation of viral chromatin [248]. Similarly, Aflatoxins,
produced by fungal species commonly found on foods, are also
known to be associated with inducing DNA methylations at 71
CpG sites in infant white blood cells [249] and growth faltering
in the 1st year [250].

Chorioamnionitis (CA) is marked by an infiltration of the
amniotic sac by the maternal neutrophils as a result of infection,
leading to a fetal inflammatory response syndrome [251]. DNA
methylation patterns in chorionic villi, amnion, and chorion of
CA and non-CA patients [244, 252] showed DNA methylation
sites close to the promoter regions of immune-response genes
such as HLA-E, CXCL4, RAB27A, IRX2, and HSD11B2. In
neonatal monocytes, the promoters of innate-immunity genes
IL1B, IL6, IL12B, TNF, and CCR2 exhibit significantly higher
histone-methylation modifications [253, 254]. These monocytes
under CA conditions express significantly lower levels of pro-
inflammatory cytokines IL-1β, IL-6, IL-8 that might predispose
the fetus to sepsis upon secondary infections [72].

The infection of bladder epithelial cells with E. coli in pregnant
women can cause hypermethylation of tumor suppressor gene
cyclin dependent kinase 2A (CDK2NA) and result in epithelial
dysplasia [245, 255]. CDK2NA is also methylated in HPV-16
induced epithelial dysplasia. Though exceedingly rare but a
significant risk factor in pregnancy, the food born pathogen
Listeria monocytogenes is known to cause histone modifications.
Such modifications can lead to transcriptional activation of
MAPK pathways and affect histone modifications in chemokine
genes (C-x-C motif) Cxcl2 [256, 257] predisposing the fetus to
future immune associated diseases.

It is interesting to note that pathogen mediated DNA
methylation is also an effective mechanism for evading immune
responses. Addition of methyl donor S-adenosylmethionine
(SAM) reduced LPS-mediated inflammatory response in RAW
264.7 macrophages [258]. Similarly, bovine dermal fibroblasts
treated with demethylating, and hyper-acetylating agents
demonstrated altered responses to LPS stimulation [259]. These
studies support the possibility that subclinical chronic infection
with pathogens can mediate subtle epigenetic changes, though
studies are needed to confirm such an effect in pregnancy.

Gestation is a period of genetic reprogramming in the
life of an individual and understanding the role of healthy
maternal microbiome vs. a dysbiotic one in fetal development is
important. Infection with different types of pathogens mediates
different epigenetic effects both transient and stable. Current
understanding of the role of microbes in epigenetic modification
is limited but ever evolving. Given the differences in human
and animal models of infections, further studies are needed to
understand infection and inflammation by specific pathogens in
the context of epigenetics and pregnancy outcomes. Table 1 lists
some key epigenetic modifications by maternal infections and
their associated fetal outcomes.

Frontiers in Oral Health | www.frontiersin.org 9 September 2021 | Volume 2 | Article 735634

https://www.frontiersin.org/journals/oral-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/oral-health#articles


Bhagirath et al. Maternal Infections and Fetal Development

TABLE 1 | Epigenetic modifications on human genes induced by maternal infections and associated fetal adverse outcomes.

Gene Epigenetic modification Associated

micro-organism/maternal

disease

Fetal outcome References

IGF2 Hypermethylation of promoter

region 0

C. rectus Restricted intra-uterine growth [243]

PLAGL1 DNA methylation Chorioamnionitis Pre-term birth,

pheochromocytoma, capillary

hemangioma, transient neonatal

diabetes mellitus

[244, 260–262]

IL1B, IL6, IL12B,

TNF, and CCR2

Histone modification (H3K4me3) Chorioamnionitis Alteration of innate immune

pathways

[253]

CDK2NA Hypermethylation E. coli Epithelial dysplasia [245, 255]

MAPK Histone modification L. monocytogenes Immune dysfunction [256, 257]

CXCL2 Histone Modification L. monocytogenes Immune dysfunction [257]

MATERNAL INFECTIONS, FETAL
NEUROGENESIS AND CRANIOFACIAL
DEFECTS

Craniofacial development involves complex series of events
mediated by cells derived from all three germ layers and the
NCCs. The cranial structures include the brain, eyes, ears, nasal,
and gustatory apparatuses. The facial structures involve the
development of the jaws, teeth, and their associated structures.
While genetics is the primary determinant, multivariant signaling
and temporal organization are required for the normal
development of these structures. Any subtle perturbation in
the events above can cause defects in the development of
craniofacial structures.

Craniofacial birth defects are the commonest birth defects
next only to congenital cardiac defects.

Craniofacial anomalies are typically termed to include cleft
lip and/or palate, defects of the central nervous system, eye,
jaw, and dental defects. In this section we aim to briefly
discuss the studies associating maternal infections and structural
development of key craniofacial defects such as neural tube
defects, cleft lip/palate, and dental anomalies. Table 2 lists key
organisms and the studies associating them with congenital
craniofacial defects in newborns.

Neural Tube Defects (NTDs) and the
Development of the Brain
The research on maternal inflammatory states and infection on
the development of neural tube structures and brain development
are still ongoing. A strong correlation between the maternal
nutritional status, specifically Iron, Magnesium, vitamin B6 and
B12 deficiency and the development of neural tube defects in
newborns has been reported [274, 275]. Helicobacter pylori, an
oral and gastrointestinal pathogen [276], was recently identified
in the maternal vaginal microbiome with yeast as a carrier [277].
MaternalH. pylori infection is correlated to the risk of developing
pre-eclampsia, spontaneous preterm birth, and intrauterine
growth restriction (IUGR) [278]. H. pylori infection is associated
with decreased folate, vitamin B12, and ferritin bioavailability

to the fetus, and thus, may play a role in the development
of NTDs [274, 279]. Maternal syphilis is associated with the
development of hydrocephalus in the newborns [280] along with
other defects. Viral infections such as maternal varicella-zoster
virus infections have been shown to be associated with fetal
hydrocephalus, porencephaly, hydranencephaly, calcifications,
polymicrogyria, and focal lissencephaly secondary to necrotizing
encephalitis [281, 282]. Similarly, maternal hepatitis B and C
are also associated with adverse neurological development in the
fetus, although more mechanistic studies are needed [283].

Cleft Lip and Palate
Orofacial clefts (OFC) are one of the most widely known and
common craniofacial anomalies in newborns [284]. These are
characterized by the failure of fusion of facial processes seen
overtly as a space or a gap in the upper lip, alveolus, or palate.
OFC can be divided into three categories: cleft lip (CL) only, cleft
palate (CP) only, and cleft lip associated with cleft palate (CLP).
Further, clefting can occur either as isolated (non-syndromic) or
as a part of a syndrome with other symptoms. OFC is caused by
a combination of environmental factors (e.g., maternal illness,
smoking/alcohol consumption, and malnutrition), and genetic
predisposition [285, 286]. Studies have reported an association
between maternal hyperpyrexia, illnesses, and infections with the
occurrence of CLP in the newborns with no gender differences
[287], though the mechanism is poorly understood.

Norman Gregg reported a causal association between
maternal rubella infection and the occurrence of defects such
as OFC in newborns in 1948 [288]. It is now hypothesized
that maternal rubella results in an altered hepatic metabolism
of vitamin A resulting in the manifestations of the congenital
rubella syndrome [289]. A study in Latin-America showed that
maternal exposure to acute (influenza) and chronic (syphilis)
infections were significantly associated with the incidences of
cleft lip cases [263]. The authors hypothesized that the observed
association between influenza and cleft lips could be due to
the vascular disruption during embryonic period caused by
hyperthermia and/or the use of salicylates and may not be
directly an effect of the viral infection [263]. Maternal exposure
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TABLE 2 | Key organisms associated with congenital craniofacial defects in the newborn.

Causative

agent

Organism Defect References

Virus Influenza, Rubella, Cytomegalovirus,

Epstein-Barr, Coxsackie and hepatitis B

viruses

Orofacial clefts (Cleft lip with or without

cleft palate)

[263–265]

Zika virus Brain abnormalities (with or without

microcephaly) Eye abnormalities

Cleft palate

Micrognathia

Hypodontia

Delayed dental eruption

[266, 267]

Bacteria Treponema pallidium (Syphilis) Cleft lip

Hutchinson’s triad

Moons/Mulberry molars

[207, 268]

Chlamydia Neisseria gonorrhea (pelvic

inflammatory disease)

Cleft lip with or without cleft palate. [172, 173, 269]

Fungi Candida albicans C. glabrata (Vulvovaginal

candidiasis)

Chorioretinitis/Cerebral candidiasis [270, 271]

Parasite Toxoplasma gondii Chorioretinitis [272]

Plasmodium spp. Preterm birth

Intrauterine growth restriction

Craniofacial anomalies

[273]

to genitourinary infections has also been associated with cleft
lip in the offspring. This association was stronger if the mother
reported an exposure to Chlamydia [173]. While the mechanisms
involved in the association between chlamydial infection and
OFC are not well-characterized, it has been suggested that the
chlamydial 60 kD heat shock protein (hsp60), a potent inducer of
inflammation, could affect pregnancy outcomes because serum
anti-hsp60 antibodies may interfere with the development of the
embryo [290]. Maternal toxoplasmosis has also been reported
as a causative factor for the development of anophthalmia with
oro-orbital and parasagittal clefts in the newborn [272].

Several genes have been identified to be associated with OFCs,
however, in terms of gene-environment interaction, the most
well-studied genes are the interferon regulatory factor-6 (IRF6)
and the poliovirus receptor related-1 (PVRL1). These two gene
families are known to modulate immune responses to infections.
IRF6 belongs to the IRF gene family which are known to regulate
expression of interferons after a viral infection. IRF6 has been
shown to be expressed in the maternal endometrial cells as well
as the trophectoderm of the fetus [291]. Mutations in the IRF6
gene have been shown to result in Van der Woude’s syndrome
characterized by cleft lip/palate [292]. The PVRL1 gene also
known as the Nectin 1 [293] gene is known to serve as one of
the three primary receptors for the alpha herpes virus binding
and entry or the herpes virus entry mediator C (HvecC) [294].
Mutations in the PVRL1 gene have been associated with sporadic
non-syndromic cleft lip/palate in newborns [295, 296]. A recent
study has shown the association of DNA methylation for palate
forming genes and non-syndromic cleft lip/palate in both a
Brazilian cohort as well as a UK cohort suggesting epigenetic
modifiers as contributors to OFC [297]. While an abundance of
mechanistic insights exists in term of the role these genes play
in palate development, further studies are needed to understand

the effect of maternal infections as epigenetic modifiers for
these genes.

Dental Anomalies
Dental development begins around 6 weeks post-fertilization
with the migration of neural crest cells. As described before,
NCCs are highly sensitive to environmental changes and
their migration and differentiation is mediated mainly by
signals from the surrounding tissue [27, 298]. The dentin and
functional ameloblasts for the deciduous and permanent teeth
begin activity around 18 and 32 weeks, respectively. Dental
anomalies can occur as structural (morphogenetic) defects or
a complete absence of a few (oligodontia, hypodontia) or all
teeth (anodontia). The occurrence of dental defects has been
linked to several causative agents including maternal stress,
smoking, alcohol use, hyperpyrexia, and use of antibiotics or
other teratogenic causes [299, 300]. Occurrence of dental defects,
similar to OFCs, can exist both in isolated forms and as a part of
a syndrome. Several studies have reported a correlation between
preterm births and lower birth-weight to be associated with
delayed tooth eruption [301]. Further, studies have also found
that very low birth weight infants are at a higher risk for dental
caries and developmental defects of teeth as compared to full-
term (term) babies [302–304]. No direct associations between
pathogens, epigenetic effects and dental defects have been fully
established so far. Thus, we have included a discussion of reports
regarding maternal infections and associated dental defects.

Maternal rubella can result in tooth agenesis as well as other
morphologic dental abnormalities [305]. Congenital syphilis
results in a syndromic dental morphogenic abnormality known
as Hutchinson’s teeth [268] which is characterized by enamel
hypoplasia described as “screw-driver” shaped incisors as well as
mulberry or moon’s molars [207, 306, 307]. Syndromic dental
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anomalies are dental defects associated with the development
of the jaws such as those in OFCs. Van der Woude’s syndrome
as described before, is also associated with hypodontia [308].
Viral infection with measles, mumps, chickenpox, rubella, and
cytomegalovirus in utero have been shown to result in enamel
hypoplasia and hypocalcification of the teeth in newborns [309].
These defects are mostly observed in the primary dentition. If the
infection persists postnatally, enamel defects are observed in the
permanent dentition as well [310].

While both viral and bacterial infections have been reported
in association with craniofacial defects, few subtle differences
do exist in their mechanisms and outcomes. In terms
of mechanism, bacterial infections activate the complement
pathway and mediate acute inflammatory response. When
located intracellularly, they are eliminated by T-cells through
the activation of pattern recognition receptors eliciting strong
but transient responses. Viral infections often remain subclinical
and mediate subtle changes via activation of chronic low-
grade inflammation and epigenetic modifications. Viruses can
remain latent in host cells and in the carrier commensal
pathogens for a long time. Indeed, viral receptors have been
found on the fetoplacental unit. Viral infection of the placenta
can result in the production of soluble immune factors that
could mediate long-term adverse effects in the fetus including
developmental defects.

While maternal infections do result in craniofacial defects in
the fetus as described above, fortunately, the incidence is rare
due to continuous patient monitoring and education. Further
studies are needed to understand the effect the pathogens and

how they mediate fetal development while maintaining infection
at subclinical levels.

DISCUSSION AND FUTURE DIRECTIONS

Materno-fetal health is a global health concern. Studies in animal
models of pregnancy such as the zebrafish, rodents, and large
primates, have significantly advanced our understanding of the
fetal reprogramming in health and disease, however these are not
without limitations. As discussed by Leslie Roberts [311], animal
models of pregnancy must be viewed with some skepticism.
Soncin et al. reported that a mouse model of pregnancy can
only mimic the gene expression patterns of human placenta up
to the first 16 weeks [260]. Structurally, the rodent placenta
is very different from the human placenta. The exchange of
maternal nutrients occurs at the intervillous space in humans,
in contrast, in rodents, it happens at the capillary interface.
Further, the degree of placentation varies significantly between
humans and different animal models [172]. Overall, the choice
of animal model is often limited due to ethical and experimental
considerations but understanding the outcomes when comparing
them to human pregnancy is key. Readers are referred to excellent
reviews on the subject of human and non-human primates as
study models [312–314].

The role of inflammation in adverse outcomes in pregnancy
has been well-documented in the literature. While we have
discussed inflammation and infection as separate sections in this
review, they are deeply interconnected. Though limited, studies

FIGURE 4 | Normal fetal development is a consequence of the overall health of the mother, surrounding environmental factors and the maternal microbiome. Figure

created using the BioRender software.
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have shown isolation of parasites such as plasmodium in the
placenta as well as provided evidence for their transplacental
transfer [273, 315]. Recently, Humann et al. showed that
peptidoglycans from the bacterial cell-wall can cross murine
placenta and result in injury to the fetal brain [316]. Reports
also highlight the role of microbe derived metabolites in the
development of neurodevelopmental disorders [317]. Using
germ-free mouse models of pregnancy, Kimura et al. have
shown that maternal gut microbiota-derived SCFA can cross
the placenta to the developing embryos [318]. Such studies
provide experimental support for previous reports linking
microbial exposure and fetal gastrointestinal dysfunction as well
as the development of neuropsychiatric disorders [317, 319–
321]. While the level of sterility of the environment surrounding
the fetus is debatable, neither the uterine environment nor
the placenta can be considered absolutely sterile. In-fact a
distinct microbiome for both have been demonstrated in several
studies. As observed with the evolutionary studies in animals,
studies in human placenta have suggested mutually learned
responses from subclinical infections such as that seen with
the insertion of env-like syncytin gene [322, 323]. As discussed
before, several bacteria have been shown to internalize to
evade immune responses. Thus, the impact of microbiome
and dysbiosis in shaping fetal development is as important
as the mother’s overall health requires in-depth examination
(Figure 4).

Alterations in maternal inflammatory states, microbiome
and infections can have long-lasting effects depending on the

phase of fetal development. While the evidence regarding
the direct transmission of pathogens from mother to fetus
remains debated, the passage of pathogen-derived and immune
modulator molecules to the fetus is not far-fetched. Pathogen-
derived molecules and toxins are small enough to bypass the
placental barrier. These remain undetected by the immune
system and can induce subclinical responses in both mother
and the fetus. If such molecules are capable of inducing
epigenetic modifications under laboratory conditions, would
it be possible that such modifications could occur in the
fetus or result in adverse effects? Maternal immune responses
are known to shape fetal development. With the emergence
of new pathogens, we will need a deeper understanding of
microbiological immune response mechanisms in pregnancy.
The influence of the microbiota and their genes (or the
microbiome) upon developmental pathways is an emerging field
and the available pool of knowledge is limited, providing a
convincing argument to support it. Future studies are needed
to understand the physiological effects of both symptomatic and
subclinical infections in pregnancy and its outcomes and design
appropriate biomarkers for their detection.
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