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In health, commensal bacteria from oral biofilms stimulate polymorphonuclear neutrophil

(PMN) recruitment in gingival sulci and the oral cavity. Oral PMN (oPMN) is short-lived

cells with low prosurvival gene expression. In periodontitis, oPMN accumulates in

higher numbers, has extended lifespan, and sustains nonresolving inflammation. We

hypothesize that short- and long-chain free fatty acids (SCFAs and LCFAs) and lipid

mediator resolvin E1 (RvE1) modulate host ability to control biofilms and resolve

inflammation. Our objective was to measure oPMN surface expression of receptors

FFAR2 (binds bacteria-derived SCFA), FFAR4 (binds LCFA, EPA, and DHA), and ERV1

(binds RvE1) in health and to assess sex differences. We included 20 periodontally

healthy individuals aged 20–80 years (10 males, 10 females), who were asked to

(1) answer a targeted health nutritional questionnaire and (2) provide an oral saline

rinse. oPMN isolated by sequential filtration was labeled with fluorophore-conjugated

antibodies against CD11b, CD14, CD16, CD66b, ERV1, FFAR2, and FFAR4 and

analyzed by flow cytometry. Statistical analyses were the following: two-way ANOVA,

Tukey’s test, and Pearson’s correlation. Oral rinses contained 80% oPMN of which 60%

were ERV1+ and FFAR2+, and 10% FFAR4+, with no sex differences. Females had more

oPMN ERV1 compared to males. Both sexes had higher ERV1 compared to FFAR2

and FFAR4. CD66b+CD16high oPMN expressed less ERV1 and FFAR2 compared to

CD66b+CD16low. There were positive correlations between oPMN ERV1 and FFAR2

expression and between ERV1+ and FFAR2+ oPMN and fish intake. These findings

will help to better understand how oral host and microbiome interactions maintain

periodontal health.

Keywords: oral neutrophils, free fatty acid receptor, FFAR, ERV1, fish intake

INTRODUCTION

In health, commensal bacteria in the gingival biofilm stimulate the recruitment of
polymorphonuclear neutrophils (PMN) in the periodontium, gingival crevicular fluid, and
the oral cavity. Oral PMN (oPMN) are short-lived cells with low prosurvival gene expression.
In periodontitis, oPMN accumulate in higher numbers, have extended lifespan, and sustain
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nonresolving inflammation. It is believed that, like intestinal
bacteria, oral bacteria associated with periodontal health induce
immune tolerance and prevent the host immune system from
being overactivated. It is also likely that noninvading commensal
bacteria in the gingival sulcus maintain the continuous influx
of PMN that contribute to control of subgingival biofilm
composition without collateral tissue damage [1, 2]. Short-chain
fatty acids produced by the gut and oral microbiomes, and
binding to free fatty acid receptor 2 (FFAR2) in leukocytes, may
be positive regulators of the host-biofilm balance [3, 4]. The
shift from inoffensive to pathogenic subgingival biofilms remains
poorly understood but always associates with nonresolving
periodontal inflammation and loss of bone around teeth.

Omega-3 (�-3) binding to FFAR4 and derived specialized
proresolving lipid mediators (SPMs), including resolvin E1
(RvE1) binding to its receptor ERV1, play important roles in
the resolution of inflammation [5, 6]. It was recently reported
that females are more efficient in resolving inflammation
compared to males [7]. We therefore aim to determine the
normal levels, sex differences, and healthy vs. periodontitis
differences in oPMN receptors and lipid ligands of inflammation
resolution in the oral cavity. Further understanding the sex
differences and oPMN changes in patients with periodontitis
will help in mapping the host’s innate immune control over
the oral biofilm to prevent its pathogenic shift that associates
with periodontitis. This is important because periodontitis is a
highly prevalent chronic inflammatory disease characterized by
progressive loss of tooth-supporting structures in almost 50% of
US adults [8]. Severe periodontitis affects 10–15% of the world
population causing significant deterioration of oral health-related
quality of life [9–11]. Further, oral microbiome dysbiosis and
chronic inflammation seen in periodontitis have been associated
with systemic conditions including diabetes and cardiovascular
diseases among others [12–14].

The central hypothesis is that free fatty acids and derived
active mediators (e.g., RvE1) produced by the host and
microbiome modulate hosts’ ability to control biofilm
pathogenicity and resolve inflammation, through FFAR2,
FFAR4, and ERV1. The aim of this pilot study was to measure
oPMN surface expression of receptors FFAR2 (binds bacteria-
derived SCFA), FFAR4 (binds LCFA, EPA, and DHA), and ERV1
(binds RvE1) in health and to assess sex differences in their
expression. The secondary aim was to assess correlations among
oPMN receptors, fish intake, and body mass index.

METHODS

Subjects
Study subjects were screened at Harvard School of Dental
medicine from patients, students, residents, and faculty by
verbal self-reporting of oral health, minimum of 20 teeth
present, no acute conditions (e.g., bacterial, viral, or fungal acute
infections), no chronic oral mucosal conditions (e.g., mucous
membrane pemphigoid, erosive lichen planus, pemphigus), and
no long-term antiinflammatory or antibiotic medications, and
not having eaten, brushed or used a mouth rinse in the past
2 h before sample collection. A total of 20 periodontally healthy

individuals >20 years old (10 men, 10 women) were included
(Figure 1A). Informed consent to participate was obtained from
all participants. The protocol was approved by the Institutional
Review Board of the Harvard Longwood Medical Area (IRB19-
1697). This work complies with the guiding principles for
experimental procedures found in the Declaration of Helsinki of
the World Medical Association.

oPMN Isolation
All oral rinse samples were collected at least 2 h after brushing
or eating to avoid hygiene and dietary interference with the test
results. Participants were asked to rinse three times: the first rinse
(5ml of tap water) was used for the oPMN count, the second
and third rinses (15ml of saline water per rinse) were used for
the isolation of oPMN and their analysis by flow cytometry. A
minimum of 2min was counted between the three rinse samples.

Flow Cytometry
All samples were collected bench-side to minimize the time
from collection to analysis. Rinse samples were immediately
transferred on ice and processed for flow cytometric analysis,
which was run within 2 h of collection to minimize cell activation
and cell death. Since most receptors included in the analysis
are stored in cytoplasmic granules before expression on the
cell surface, and the purpose of the study was to measure
surface expression, cells were run fresh and not fixed. Fixation
can increase granulocyte permeability and result in staining of
both intracellular and surface antigen epitopes [15–18]. oPMN
was isolated from oral rinse samples (rinse two and three) by
sequential filtering through 40-, 20-, and 11-µm filters, kept
on ice (Figure 2A). Cell viability was determined by Trypan
blue exclusion on a hemocytometer (>80% viability across the
sample set).

Spun down samples were concentrated to one million cells
per ml and labeled for the markers of interest. Nonspecific
binding was blocked with 1% BSA and 50µg/ml human
IgG (Invitrogen) and oPMN labeled with 1 µl of each
fluorophore-conjugated antibodies against CD14 (eFluor450),
CD16 (APC), ERV1 (FITC), CD11b, CD66b, FFAR2, and FFAR4
(PE) (eBioscience/ThermoFisher) were analyzed on AttuneNxT
BRV6 within 2 h of collection. Calibration was performed
with antibodies conjugated to magnetic beads (UltraComp
eBeads, eBioscience) and voltage equivalency among experiments
established using peak five rainbow beads (Spherotech). Each
sample was run in duplicate, and data were analyzed using the
Attune NxT Software v3.1 and FlowJo v10.

Questionnaire
A study questionnaire was used to collect relevant medical and
dental information. Subjects were asked for self-reported oral
and medical diagnoses, BMI, medications including baby aspirin,
ω-3 supplements, weekly fish intake, and pregnancy trimester
for pregnant women. All subjects included in the study had
been seeing their primary care physician and dentist at least
yearly for the past 5 years, which increases the reliability of self-
reporting of oral and systemic health status. Food frequency
questionnaires including recall of average weekly fish servings
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FIGURE 1 | Study design. (A) The study cohort enrolment, data acquisition, and analysis workflow at Harvard School of Dental Medicine are illustrated; (B) an

auxiliary microarray data analysis was performed on the GSE43525 dataset.

per week previously validated with biomarkers were found to
correlate strongly with blood ω-3 FA levels and have been
used in epidemiological studies, including the National Health
and Nutrition Examination Surveys (NHANES) [19–24]. The
correlations among receptors of interest, age, BMI, and fish
intake/ω-3 supplements were investigated.

Bioinformatic and Statistical Analyses
Secondary data analysis for differential gene expression (DEG)
was performed for microarray data of periodontally healthy
subjects from GSE43525 [2, 25]. In the original study, PMN
were isolated from venous blood and oral rinse samples obtained
from chronic periodontitis patients and healthy subjects, and
gene expression microarray analysis was performed. In this
study, only samples from periodontally healthy subjects (n =

3, one female and two males) were analyzed by comparing the

gene expression changes in oral vs. blood PMN (Figure 1B).
GEO2R, an R-based web application, was used to compare
two groups of samples to identify genes that are differentially
expressed across phenotypic changes in oPMN compared to
blood PMN in healthy subjects [26]. P-Values were adjusted
using Benjamini and Hochberg false discovery rate [27]. To
assess the three proteins of interest FFAR2 (GPR43), FFAR4
(GPR120), and ERV1 (CMKLR1) in the context of their
interacting network, these were further processed to “built
network”, using the “analyze network” algorithm, one of the
nine network-building algorithms in MetaCore. The p-values
of the resulting network are the possibility of the potential
networks according to the curated human protein interaction
database within the MetaCore from Clarivate Analytics
(https://portal.genego.com/cgi/data_manager.cgi). Groups were
compared by two-way ANOVA, paired t-tests and Tukey’s
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FIGURE 2 | FACS protocol for oPMN immunophenotyping. (A) oPMN were isolated from rinses by sequential filtration (20min), labeled (1 h) and analyzed by

fluorescent-activated cell sorting (FACS) for receptor expression. oPMN: identified as CD14−CD16+CD66b+CD11b+; (B) gating strategy: debris was excluded on

SSC-A vs. FSC-A and doublets were excluded on FSC-A vs. FSC-W; true positivity was determined using unstained control (UC, >98% negative on each channel) for

each sample; percentage cells positive for oPMN markers, CD11b and CD66b were calculated on singlets, which were then plotted on CD16 vs. CD14 to exclude

monocytic myeloid cells (CD14+); the percentage of cells positive for each receptor and the mean fluoresce intensity were measured on oPMN and compared

between groups (males vs. females); ERV1 and FFAR2 were measured in CD16low and CD16high oPMN populations.
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test, and correlations between normally distributed marker
values by Pearson. Analyses were performed in GraphPad
Prism v9.

RESULTS

To investigate the expression of free fatty acids receptors
on oPMN, FFAR2, FFAR4, and ERV1 were quantified in
cells isolated from oral rinses from periodontally healthy
individuals. Isolated cells were immunophenotyped by flow
cytometry as described in Methods. Equal numbers of males
and females were included to assess sex differences in receptor
expression and their relationships with age, BMI, and fish
intake (Supplementary Table S1). All participants answered
a questionnaire on relevant oral and systemic health and
also medications, ω-3 supplements, and weekly fish intake
(Supplementary Table S2). Only one study subject reported
taking ω-3 supplements on a regular basis. Hence, most
supplemented it from the diet: 70% of study participants reported
consuming fish every week with 30% having on average <1
serving of fish per week (n = 6), 25% (n = 5) having one serving
per week, and 45% (n= 9) having two or more servings per week.
There were no significant differences between males and females
for any variable.

Flow cytometric analyses revealed that more than 90% of oral
immune cells were myeloid (CD11b+), and >80% in males and
>75% in females were oPMN (CD66b+) (Figures 2B, 3A,B).
Male oPMN expressed more CD66b compared to female, and
both had high CD11b expression compared to CD16 and CD66b
(Figure 3C). On average, 60% of oPMN expressed ERV1 and
FFAR2 in both males and females, and only 10% expressed
FFAR4 (Figure 3D). ERV1 expression was highest (97 ± 6
× 103 MFI) followed by FFAR2 (52 ± 3 × 103 MFI) and
FFAR4 (33 ± 22 × 103 MFI) in both sexes (Figure 3E). To
compare receptor expression levels between viable (CD16high)
and apoptotic (CD16low) oPMN, the two distinct populations
were assessed and CD16low oPMN was found to express higher
ERV1 and FFAR 2 levels compared to CD16high (Figure 3F).

We next interrogated the relationships among FFAR2, FFAR4,
and ERV1 and also with age, BMI, and fish intake. There
were high correlations between ERV1 and FFAR2 expression
[R = 0.61, 95% CI (0.23, 0.83)], and between the percentage
of FFAR2+ oPMN and fish intake [R = 0.60, 95% CI (0.18,
0.83)] (Figures 4A,H). Further, amoderate correlation was found
between ERV1+ oPMN and fish intake [R = −0.47, 95% CI
(0.03, 0.76)] and moderate inverse correlation between CD11b
and FFAR4+ oPMN [R = 0.60, 95% CI (−0.75, −0.004)]
(Figures 4D,I). No significant correlations were found between
either free fatty acid receptor and CD16 or between FFAR4
and ERV1, FFAR2, or fish intake (Figures 4C,E–G). Similarly,
no significant correlations were found between either receptor
expression and age or BMI (Figures 4J–L).

We further examined the intracellular pathways linking
the three receptors in immune cells by secondary analysis
of a microarray dataset on RNA extracted from oPMN of
three periodontally healthy individuals. Our previous findings

on this full dataset identified the NRF2 antioxidant pathway
downregulated in patients with periodontitis compared to
health [2]. Using MetaCore from Clarivate Analytics, networks
between the three receptors of interest–FFAR2 (GPR43), FFAR4
(GPR120), and ERV1 (CMKLR1) were calculated based on
the “analyze network” algorithm value, and then, the network
maps of their putative protein interactions and related proteins
were predicated accordingly from the database. It was noted
that, compared to blood PMN, oPMN have increased ERV1
expression, which inhibits the PTEN phosphatase that in turn
inhibits the androgen receptor (AR). This contrasts with GPR120
(FFAR4) activating the AR through upregulation of c-Src
(Figure 5A). Given the significantly higher ERV1 expression in
these cells compared to FFAR4, it is reasonable to assume that
the former effect prevails.

DISCUSSION

To the best of our knowledge, this is the first report on
SCFA and LCFA receptors expression in oPMN and their
relationships to fish intake and markers of cell activation. It
is believed that, like intestinal bacteria, oral bacteria associated
with periodontal health induce immune tolerance and prevent
the host immune system from being activated. It is also likely
that noninvading commensal bacteria in the gingival sulcus
maintain the continuous influx of PMN that contributes to the
control of subgingival biofilm composition without collateral
tissue damage [1, 2]. SCFAs produced by the microbiota in
the gut and oral microbiomes, and binding to FFAR2, may be
positive regulators of the host-biofilm balance [6]. The shift
from inoffensive to pathogenic subgingival biofilms remains
poorly understood but always associates with nonresolving
periodontal inflammation and loss of bone around teeth.
�-3 binding to FFAR4 and derived SPMs, including RvE1
binding to ERV1, play important roles in the resolution
of inflammation [3, 4]. Based on our corroborated findings
and known functions of CD16 in PMN [7], we hypothesize
that a positive feedback loop exists between expression of
these two receptors and downstream actions to maintain
oral homeostasis.

Metatranscriptomics of the human oral microbiome
during health and disease revealed several metabolic
pathways upregulated in periodontitis vs. health, including
lysine degradation to SCFA butyrate predominantly by
Fusobacterium nucleatum [28]. On the contrary, a more
recent metatranscriptomic study found reduced bacterial
activity of the lysine pathway in periodontitis compared to
health, which indicates a regulatory action of lysine-derived
SCFA [29]. Further, SCFAs butyrate and propionate were
found higher in gingival crevicular fluid of gingivitis patients
compared to periodontally healthy individuals [28]. Mounting
evidence from gut microbiome research indicates a beneficial
regulatory action of SCFA for immune tolerance, inflammation
resolution, and maintenance of gut homeostasis, in part
through the inhibition of the activity of histone deacetylases
[30–32]. Nonetheless, FFAR2-deficient mice (Gpr43−/−) showed
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FIGURE 3 | OPMN expression of free fatty acid receptors. (A) Representative images of male and female oPMN (Giemsa stain). (B) Percentage of oral rinse cells and

positive for CD11b, CD16, and CD66b, and (C) their expression by oPMN (Tukey’s test: p < 0.01, * vs. CD11b; ** vs. CD16). (D) Percentage ERV1+, FFAR2+,

FFAR4+ oPMN and (E) expression levels (Tukey’s test: **p < 0.05 FFAR2 vs. FFAR4 *** females vs. males). (F) ERV1 and FFAR2 levels in CD16high and CD16low

oPMN (p < 0.01 CD16high vs. CD16low; ns males vs. females).

exacerbated or unresolving inflammation in models of colitis,
arthritis, and asthma and increased alveolar bone resorption
[33, 34].

SCFAs such as butyrate produced by the digestive tract
bacterial processing of dietary fiber reduces the development
of inflammatory and metabolic disorders in humans and
improved insulin sensitivity concurrent with increased energy
expenditure in murine diet-induced obesity [33, 35]. Maslowski
et al. showed that SCFAs induce a robust calcium flux in mouse
and human PMN, but not in PMN from Gpr43−/− mice,

which indicates that GPR43 is the sole functional receptor for
SCFAs on PMN [33]. Similarly, resolvin E1 (RvE1), a ligand
for ERV1 (aka ChemR23, CMKLR1) in myeloid cells inhibited
PMN recruitment, stimulated phagocytosis and inhibited
production of proinflammatory mediators in murine models
of inflammatory and metabolic diseases in part through S6
phosphorylation downstream of the PI3K/Akt and Raf/ERK
pathways [36–38]. Importantly, RvE1 induces PMN apoptosis–a
hallmark of inflammation resolution initiation, via caspases 3
and 8 and induction of mitochondrial disfunction by attenuating
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FIGURE 4 | Relationships between oPMN free fatty acid receptors, oPMN activity markers, and fish intake. Correlations between ERV1 and FFAR2 (A), FFAR4 (B),

CD16 (C); between FFAR4 and CD11b (D), CD16 (E) and CD66b (F); and between FFAR4+ (G), FFAR2+ (H) and ERV1+ (I) and fish intake, and age and BMI (J–L)

(Pearson’s, p < 0.05 for A,D,H,I).
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FIGURE 5 | Analysis of the most significantly regulated networks. (A) Relationships among the regulated human proteins in healthy subjects when comparing oral vs.

blood samples. Networks of protein interactions in regulated human proteins [including FFAR2 (GPR43), FFAR4 (GPR120), and ERV1 (CMKLR1)] predicted by

MetaCore from Clarivate Analytics. Blue objects in the membrane represent receptors. Red circles–upregulated expression value. Green both-end arrows are G-alpha

GTPases; PTEN, phosphatase and tensin homolog deleted on chromosome 10; orange object cytoplasm is protein kinase (c-Src). Blue objects generic binding

proteins. Red objects in the nucleus represent transcription factors. Green arrows represent activation and red arrow-inhibition and gray arrow-unspecified; (B) a lipid

metabolite positive feedback loop may exist between commensal oral bacteria via FFAR2 and inflammation resolution via ERV1. The expression of FFAR2 in oPMN to

respond to SCFAs from commensal oral bacteria correlates with ERV1 expression to facilitate the effective control of pathogens and to resolve inflammation. SCFA,

short-chain fatty acid; LCFA, long-chain fatty acid; RvE1, resolving E1.

ERK and Akt-mediated apoptosis-suppressing signals [39].
When PMN undergo apoptosis, they lose expression of the
surface receptor CD16 (Fcγ RIIIb). Thus, levels of surface CD16
are good indicators of apoptotic or nonapoptotic PMN [40].
We have previously found that in health, two distinct oPMN

subpopulations exist, which can be differentiated by CD16,
CD55, and CD63 surface expression [1]. This is consistent
with the theory that the oral cavity is in a parainflammatory
state, the intermediary immune state that allows the host to
adequately respond to low-grade noxious agents or tissue
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damage, without clinical signs of inflammation [41, 42].
Therefore, the mechanisms that regulate oPMN function in
health allowing for tolerance of the commensal microbiota and
management of opportunistic pathogens while avoiding tissue
damage may be essential regulators of the parainflammatory
state (Figure 5B).

Our findings also show that ERV1 signaling in PMN can
block the inhibitory actions of PTEN on AR expression, therefore
indirectly potentiating its signaling. The AR is known to regulate
both differentiation and function of PMN inmales, with apparent
beneficial actions for the host, to survive bacterial challenge
[43, 44]. On the flip side, males are less prone to autoimmune
diseases and appear to resolve inflammation less efficiently
compared to females [7]. It has long been thought that the male
sex hormones may modulate the development and function of
immune cells. Males are at higher risk of developing sepsis,
acute respiratory distress, and multiorgan failure after traumatic
hemorrhagic shock and thermal injury, in part because of
immune suppression and abnormal activation of PMN [45].
More recently, Chuang et al. demonstrated an essential role for
the AR in granulopoiesis and host defense against microbial
infection [44]. Notably, the major induction of Stat3 reporter
activity in PMN was driven by AR expression and was only
slightly enhanced by adding androgens [44]. This suggests that
the function of AR in promoting Stat3 activity in PMN may be
independent of androgens.

Limitations of this pilot study include (1) small sample size to
represent all demographic groups, and thus, receptor expression
findings cannot be extrapolated to the entire population, (2)
lack of blood samples to measure ω-3 FA levels and clinical
examinations for validation of the administered questionnaire,
and (3) limited number of samples for bioinformatic analyses,
which prevented oral vs blood comparisons between males and
females. However, our findings helped to generate the hypothesis
that a positive feedback loop may exist between oral host and
microbiome metabolisms potentially mediated by dietary ω-3
FAs. This hypothesis will be tested on a larger cohort in a separate
study that would also aim to confirm the current findings and get
insights into how oPMN FFARs expression changes in subjects
with periodontal diseases.

In conclusion, our findings show that the majority of human
oPMN express the SCFA receptor FFAR2 (GPR43) and LCFA
receptor ERV1, the latter being at higher levels in females
compared to males. Significant positive correlations between
FFAR2 and ERV1 and also between each receptor and fish
intake (ω-3-rich) suggest a possible positive feedback loop
mediated by oral bacteria signaling through oPMN to control
microbiome pathogenicity, resolve inflammation, and maintain
alveolar bone. Further research is needed to get insights into

the mechanisms behind the relationships among SCFA receptors
and LCFA receptors in innate immune cells. This will allow for
a better understanding of host-commensal crosstalk to prevent
pathogenic transformation of the oral microbiome.
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