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Candida albicans and Staphylococcus aureus account for most invasive fungal and

bacterial bloodstream infections (BSIs), respectively. However, the initial point of invasion

responsible for S. aureus BSIs is often unclear. Recently, C. albicans has been proposed

to mediate S. aureus invasion of immunocompromised hosts during co-colonization

of oral mucosal surfaces. The status of the oral immune system crucially contributes

to this process in two distinct ways: firstly, by allowing invasive C. albicans growth

during dysfunction of extra-epithelial immunity, and secondly following invasion by some

remaining function of intra-epithelial immunity. Immunocompromised individuals at risk

of developing invasive oral C. albicans infections could, therefore, also be at risk of

contracting concordant S. aureus BSIs. Considering the crucial contribution of both

oral immune function and dysfunction, the aim of this review is to provide an overview

of relevant aspects of intra and extra-epithelial oral immunity and discuss predominant

immune deficiencies expected to facilitate C. albicans induced S. aureus BSIs.
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INTRODUCTION

Various niches of the healthy human body are readily colonized by commensal fungi and bacteria.
However, numerous of these microbes are opportunistic pathogens, i.e. they become pathogenic
when the environment allows it. One major opportunistic pathogen colonizing the oral cavity,
gastro- intestinal tract, and vagina of most healthy individuals is Candida albicans [1]. C. albicans
is a polymorphic fungus able to grow as relatively harmless yeast and pseudohyphal cells, as
well as harmful invasive hyphae [2]. Immunocompromised individuals suffering from suppressed
extra epithelial oral immunity are prone to develop oropharyngeal candidiasis (OPC), a local
infection of oral mucosa characterized by epithelium invading hyphae. If intra-epithelial immune
responses are unable to prevent further growth, invading cells can disseminate and result in life
threatening blood stream infections (candidemia) [3, 4]. Candidemia is linked to severe morbidity
and mortality, with the latter reaching up to 71% depending on patient age and/or underlying

https://www.frontiersin.org/journals/oral-health
https://www.frontiersin.org/journals/oral-health#editorial-board
https://www.frontiersin.org/journals/oral-health#editorial-board
https://www.frontiersin.org/journals/oral-health#editorial-board
https://www.frontiersin.org/journals/oral-health#editorial-board
https://doi.org/10.3389/froh.2022.851786
http://crossmark.crossref.org/dialog/?doi=10.3389/froh.2022.851786&domain=pdf&date_stamp=2022-04-07
https://www.frontiersin.org/journals/oral-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/oral-health#articles
https://creativecommons.org/licenses/by/4.0/
mailto:s.brul@uva.nl
https://doi.org/10.3389/froh.2022.851786
https://www.frontiersin.org/articles/10.3389/froh.2022.851786/full


Pasman et al. Oral Candida Facilitated Staphylococcus Dissemination

conditions [5]. Approximately one in five candidemia cases is
known to be polymicrobial [6, 7], with Staphylococcus aureus, a
leading cause of bloodstream infections (BSIs) [7, 8], as one of
the most common co-isolated bacterial species [6]. Interestingly,
a significant number of patients suffering from staphylococcal
BSIs have no reported porte d’entrée [9]. Recent findings suggest
that C. albicans invasion of the oral epithelium creates such
a porte d’entrée and, thereby, facilitates S. aureus BSIs [10–
13]. This process was first hypothesized to be facilitated by
hyphae adhering S. aureus moving along with the growing
hyphae in a hitchhiking like manner [14]. However, recent
research has shown S. aureus to remain situated at the initial
point of adhesion during hyphal growth, rendering the co-
invasion hypothesis up for debate [11]. Even though the specific
mechanisms driving co-invasion and dissemination remain to
be determined, it is apparent that it majorly depends on
hyphal invasion (both mechanically and with aid of the secreted
cytotoxic peptide candidalysin), and the binding of S. aureus
to the hyphal agglutinin like sequence 1 and 3 (Als1 and Als3)
proteins [11–14]. Importantly, several new lines of evidence
also point to a crucial role of the oral immune system in this
process [10, 13]. Whereas low level immune suppression is
crucial for OPC development and S. aureus co-colonization in
murine models, severe immune suppression significantly reduces
S. aureus dissemination [13, 15]. Thus far, this reduction has
been attributed to a significant reduction in local phagocyte
numbers [13]. When present, phagocytes are actively recruited
by C. albicans hyphae, but are unable to engulf them and
internalize hyphae bound S. aureus instead [11]. S. aureus is
notorious for circumventing phagocytic killing and could, thus,
utilize phagocytes as a trojan horse while it is transported to
draining cervical lymph nodes, facilitating further dissemination
to the bloodstream [11, 16]. Thereby, oral immune dysfunction
could induce OPC facilitated S. aureus BSIs without instigating
candidemia and also account for monomicrobial S. aureus BSIs.
Considering the crucial contribution of immune dysfunction,
immunocompromised individuals might not only be at increased
risk of developing OPC but S. aureus BSIs as well. Due to the
fact that immunosuppression affects approximately one in every
16 individuals and is increasing with time, its effect on OPC
induced S. aureus BSIs can be more prominent than anticipated
[17]. In light of importance of the oral immune system in
this process, the aim of this review is to provide a detailed
overview of both extra-epithelial and intra-epithelial interactions
between the oral immune system and C. albicans and S. aureus.
Furthermore, predominant immunosuppressive disorders linked
to these interactions and their relation to increased risk of OPC
induced S. aureus dissemination will be discussed.

EXTRA-EPITHELIAL ORAL IMMUNITY

Extra-epithelial oral immunity encompasses immune factors
present/secreted in saliva and gingival crevicular fluid (GCF).
These immune factors include antimicrobial proteins and
antimicrobial peptides (AMPs), oral polymorphonuclear

leukocytes and factors of the complement system. Extra-
epithelial oral immunity is continuously active to control
commensal colonization and prevent pathogenic (over)growth
(e.g. of C. albicans). Below all relevant aspects of extra-epithelial
oral immunity will be discussed in relation to their general role
in the oral cavity as well as their role in C. albicans and S. aureus
immunity. Possible mechanisms of both organisms to evade
extra-epithelial oral immunity will be covered as well.

Antimicrobial Proteins and Peptides
Inside the oral cavity cells of the epithelium and salivary glands
continuously produce and secrete antimicrobial proteins and
AMPs into saliva and GCF (Figure 1) [18–22]. Predominant
oral antimicrobial proteins include lysozyme, lactoferrin, and
lactoperoxidase and reduce microbial growth by breaking
down peptidoglycan residues, sequestering iron, and oxidating
various microbial substrates, respectively. Oral AMPs include α-
defensins, β-defensins, LL-37, and histatins and likely exert their
antimicrobial efficacy through insertion into cell membranes,
lethally destabilizing the membrane [23]. In addition to their
direct antimicrobial effect, AMPs serve as chemoattractants for
immature dendritic cells, neutrophils, monocytes, and various T-
cells and induce the secretion of pro-inflammatory cytokines and
chemokines [24, 25]. While low levels of AMPs are constitutively
expressed and secreted they can be strongly upregulated
following the activation of pattern recognition receptors (PRRs)
by specific microbial pathogen-associated molecular patterns
(PAMPs) [26–29].

Oral epithelial cells (ECs) and cells of the innate immune
system utilize PRRs such as Toll-like receptors (TLR),
Nucleotide-Binding Oligomerization Domain Receptors
(NODs), Protease-Activated Receptors (PARs), C-type lectin
receptors (CLR) and RIG-1-like receptors (RLR) to distinguish
C. albicans yeast from hyphal PAMPs and adapt their immune
response accordingly [30]. Regarding human oral ECs all
TLRs have been found present with TLR5 and 7, however,
lacking on the surface of buccal epithelial cells [31]. Of these
TLRs, TLR2, 4 and 6 have been found to directly affect the
mucosal defense against C. albicans through binding of cell wall
mannans (TLR2/4/6) and chitin (TLR4) [27, 31]. Additionally,
the ephrin type-A receptor 2 (EphA2), has been identified as a
non-traditional epithelial PRR able to recognize C. albicans β-
glucans [32]. The distinction between yeast and hyphae is mainly
accomplished through binding of EC receptor tyrosine kinases
(RTKs) such as the human epidermal growth factor receptor
2 (Her2) and EGF, to the hyphal Als3 and Ssa1 proteins [33].
Recently, EGFR has also been found to constitutively associate
with the EphA2 receptor to form a physical complex that, in
response to Als3, sustains EphA2 activation [34]. Whereas the
cell wall composition of C. albicans yeast cells provokes only
a weak activation of AMP release, cell wall components of
hyphae trigger a more strong and sustained secretion [29, 30].
In response, C. albicans utilizes three mechanisms to reduce
AMP efficacy: (1) secretion of proteins able to bind and/or
degrade AMPs, (2) extrusion of internalized AMPs via efflux
transporters, and (3) downregulation of cellular stress response
pathways resulting in cell wall adaptations and both reduced ROS
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FIGURE 1 | Graphical overview of the intricate interplay between the oral immune system and C. albicans/S. aureus infections. C. albicans first adheres to the oral

epithelium, starts propagating and initiates hyphal growth. Extra-epithelial antimicrobial proteins, AMPs, complement factors and neutrophils limit pathogenic

overgrowth and tissue invasion. Hyphal invasion, induced tissue damage and candidalysin induce a cascade of intra-epithelial immune reactions. Dendritic cells are

able to take up and present pathogenic antigens to naïve T cells in the cervical lymph nodes which, together with IL-1, IL-6 and IL-23, stimulate Th17 differentiation.

Simultaneously, oral EC produce IL-1α, IL-1β and IL-36 to activate other type 17 cells. Together, the activated type 17 cells start producing IL-17, IL-22 and IFN-γ.

IL-17 and IL-22 sequentially trigger the corresponding receptors on oral ECs and stimulate the production/secretion of both AMPs (also by salivary glands) and

chemokines plus aid in the repair of damaged barrier areas. Secreted chemokines attract more neutrophils and macrophages to the site of infection and stimulate

their activation. Neutrophils and macrophages phagocytose and break down C. albicans yeast cells, hyphal fragments and S. aureus cells besides which they

produce various cytokines and chemokines to further stimulate phagocyte attraction and activation. Phagocyte attraction and activation is also stimulated by candidal

and staphylococcal activated NK cells. Neutrophils respond to activation by phagocytosing and killing the threat when possible, producing NETs, secreting granular

components and utilizing ROS. Additionally, neutrophils have been found able to prime/activate T cells and APCs besides which they are able to produce extra

cytokines and chemokines to stimulate Th17 differentiation and further neutrophil attraction/activation. This positive feedback loop continues until the microbial threat

has been eliminated.

production and ATP efflux crucial for AMP killing [35]. Besides
protecting C. albicans cells, secreted AMP inhibiting/degrading
proteins are known to provide protection to concurrently present
bacteria such as S. aureus [36]. Additional to AMP induction,
PAMPs of C. albicans hyphae and produced candidalysin activate
the epidermal growth factor receptor (EGFR) and ephrin type-A
receptor 2 (EphA2) of oral ECs and, thereby, induce the release
of pro-inflammatory cytokines and chemokines which attract
neutrophils to the site of infection [37, 38].

Concerning S. aureus, when reaching sufficient biomass and
virulence, various PAMPs are able to activate PRRs and promote
AMP secretion as well [39–43]. Even though specific research

on oral EC recognition of S. aureus is still lacking, general
recognition of S. aureus occurs via PRRs, including TLRs
(especially TLR2), NOD-2 and TNF-α receptor 1 (TNFR1) which
bind staphylococcal specific PAMPs such as cell surface protein
A, peptidoglycan, LTA, phenol-soluble modulins (PSMs) and
hemolysins [44]. Numerous strains of S. aureus are, however, able
to utilize sensor/regulator systems to sense AMPs and adapt their
transcriptomic profile accordingly [45]. These transcriptomic
shifts can result in the insertion of positively charged D-
alanine and L-lysine into the highly negatively charged cell wall
lipoteichoic acid and phosphatidylglycerol, respectively, both
reducing the affinity of cationic AMPs [45–48]. AMP efficacy
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can also be directly suppressed by S. aureus via the secretion of
the α-defensins inhibiting staphylokinase and LL-37 degrading
aureolysin [46, 47]. Whereas C. albicans is known to induce
oral epithelial cytokine production, S. aureus has not yet been
studied in this context. However, S. aureus is known to induce
the secretion of pro-inflammatory cytokines and chemokines in
nasal, corneal, and vaginal ECs, rendering it likely that oral ECs
could act similarly [49].

A final class of proteins able to prevent extra epithelial
oral microbial pathogenesis is immunoglobulins [50]. A key
mechanism in prevention of pathogenesis is immune exclusion,
primarily facilitated by secretory immunoglobulin A (SIgA),
the major immunoglobulin in saliva [51]. Immune exclusion
encompasses antibody coating of microbes which limits epithelial
contact and invasion of pathogens and antigens [51]. However,
whereas SIgA is indeed able to reduce the adherence ofC. albicans
to human epithelial cells [52], other factors present in saliva, such
as secretory component (SC), actually promote adhesion beyond
the inhibitory effects of SIgA, rendering immune exclusion of
C. albicans unlikely [52, 53]. Even though studies regarding the
effects of S. aureus and SIgA are limited, SIgA has been found
to abundantly bind to the surface of S. aureus but, however,
binding is reduced during biofilm growth [54]. When SIgA
is immobilized onto polyvinyl microtiter plates, adhesion of
S. aureus is not promoted, suggesting SIgA reduces S. aureus
adhesion to at least solid surfaces [55]. Since C. albicans can be
considered a solid surface for colonization of S. aureus SIgA could
impact this interaction. It should be noted that the effect of this
induced immune deficiency on SIgA has not yet been reported
[10, 11, 13]. Therefore, the exact role of SIgA in the immune
exclusion of S. aureus and the possibility of adhesion promoting
salivary proteins and C. albicans remains to be determined.

Neutrophils
Oral polymorphonuclear leukocytes (PMNs), mainly
neutrophils, constantly migrate into the oral cavity and
patrol mucosal surfaces to detect and respond to present
microorganisms [56, 57]. When PAMPs are detected, neutrophils
phagocytose the pathogen (when possible) and release neutrophil
extracellular traps (NETs), reactive oxygen species (ROS),
cytokines, chemokines, and granules containing, amongst
others, the serine proteases elastase, cathepsin G and proteinase
3 (Figures 1, 2) [27, 58–60].

Neutrophils are attracted to the site of infection by locally
secreted cytokines and chemokines where they also directly
respond to candidal cell wall components via both their PRRs
(TLR2, TLR4, TLR9, Dectin-1, Dectin-2, Dectin-3, DC-SIGN,
and MINCLE) and secreted C. albicans Sap proteins [27, 61].
While phagocytosis of C. albicans yeast cells and smaller hyphae
is still feasible, phagocytosis of larger hyphae present during
candidiasis is not possible [62–64]. C. albicans cells that are
phagocytosed can resist neutrophil killing to a certain extent but
are, nevertheless, effectively blocked in their survival, growth, and
escape [65, 66]. Regarding hyphae that cannot be phagocytosed,
NETs majorly contributes to candidal killing. Evidently, C.
albicans hyphae are more prone to trigger NET release compared
to yeast cells [67]. NETs are networks of extracellular fibers

primarily made up of neutrophil DNA and aid in hyphal
killing by trapping C. albicans cells and binding/concentrating
present antimicrobial factors [67, 68]. Oral PMNs release 13
times more NET material compared to circulating PMNs,
rendering NETs particularly important in oral immunity [69].
Additional to phagocytosis and NETs, neutrophils are generally
able to damage/kill fungal cells by releasing ROS which damage
fungal and bacterial DNA, RNA and proteins [70]. However,
neutrophilic killing mechanisms described above have been
mainly studied using non-oral PMNs and planktonic cultures.
C. albicans biofilms actually reduce the release of NETs and
ROS, inhibiting the main antifungal effectors of neutrophils
[71, 72]. Besides aiding in C. albicans killing, neutrophils also
act as immune stimulators by releasing serine proteases such
as elastase or cathepsin G [73]. These proteases act as immune
stimulators by: (1) promoting pro-inflammatory cytokine and
chemokine production [59, 74–76], (2) promoting secretion and
aggregation of thrombocytes [77], (3) activating natural killer
(NK) cells, T-cells and B lymphocytes, (4) increasing NK cell
cytotoxicity and cytokine production [78], and (5) activating
various chemoattractants [78–80].

In contrast to C. albicans hyphae, S. aureus cells can be
readily phagocytosed by neutrophils. Following phagocytosis,
phagosomes containing S. aureus utilize PMN-derived
oxygen-dependent factors such as O2−, hydrogen peroxide
(H2O2), hypochlorous acid (HOCl) and other ROS to kill
the internalized threat (Figure 2) [81, 82]. Oral PMNs have
been shown to be functionally capable of producing and
utilizing ROS (both intracellular and extracellular) for microbial
killing [57]. Additionally, neutrophils utilize PMN-derived
oxygen–independent factors, including, elastase, proteinase-3,
azurocidin, cathepsins, lysozyme, and various AMPs which
are introduced into the phagosome by various granules during
a process known as degranulation (Figure 2) [83–85]. Using
various degranulation markers oral PMNs have been shown
to have upregulated degranulation and increased exocytosis
of granular content compared to peripheral PMNs [57]. The
state of degranulation in oral PMNs has been suggested to be
adjusted in accordance to the number of present oral PMNs
relative to the bacterial load with the expression of degranulation
markers increasing most during periodontitis [57]. Together, the
oxygen-dependent and independent factors elicit highly effective
antibacterial effects. Even though the studies mentioned above
mainly focus on general PMN responses, similar responses are
likely to occur inside the oral cavity. Interestingly, even though
oral PMNs are more prone to adhere and internalize bacteria
compared to circulating PMNs, they show a reduced capacity
for E. coli and, therefore, possibly S. aureus as well [69]. The
reduced killing efficacy of PMNs is limited further by the ability
of S. aureus to inhibit phagocytosis and phagosomal killing
[46, 47]. Importantly, S. aureus is able to prevent oxidative
phagosomal killing by; (1) utilizing two superoxide dismutases
to convert superoxide into hydrogen peroxide and molecular
oxygen, (2) degrading hydrogen peroxide to water and oxygen,
(3) producing the antioxidant carotenoid staphyloxanthin,
(4) repairing oxidative damaged proteins, and (5) by directly
decreasing ROS production [46, 47]. Moreover, AMPs utilized
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FIGURE 2 | Graphical summary regarding (A) the attraction of macrophages and neutrophils toward C. albicans hyphae which sequentially are scavenged for

parts/attached microbes that can be phagocytosed. (B) Once phagocytosed by macrophages, the phagosome containing S. aureus will be fused with a lysosome to

form a phagolysosome that utilizes ROS, RNS, acidity, degrading enzymes and AMPs to eliminate the phagocytosed threat. In response to phagocytosing S. aureus,

macrophages can produce METs and secrete pro-inflammatory cytokines/chemokines which help attract/activate T cells, NK cells, dendritic cells and neutrophils. (C)

Once phagocytosed by neutrophils, granules start fusing with the phagosome during a process deemed degranulation and utilize various kinds of ROS, degrading

enzymes and AMPs to eliminate the phagocytosed threat. In response to phagocytosis/activation, neutrophils can produce NETs and secrete granules plus

pro-inflammatory cytokines/chemokines. (D) S. aureus has developed numerous ways to inhibit phagocytic killing by macrophages and neutrophils rendering it able to

survive the harsh phagosomal/phagolysosomal environment, propagate, and kill the concerning phagocyte. Released staphylococcal cells can, thereafter, be

phagocytosed to repeat the process. This misemployment of phagocytes could aid S. aureus dissemination to various other body sites and initiate lethal infection.

during non-oxidative killing can be impaired by S. aureus, as
discussed earlier, through cell surface alterations and secretion of
AMP inhibiting/degrading proteins. By inhibiting neutrophilic
oxidative and non-oxidative killing mechanisms S. aureus cells
can survive inside the phagosome, propagate, and produce
cytolytic toxins which induce neutrophil osmotic lysis and
necrosis [46, 47]. Subsequentially, viable S. aureus cells are
released into the surrounding environment following which the
process of phagocytosis, survival, staphylococcal propagation
and neutrophil death can be repeated (Figure 2). If this process
occurs outside the original invasion zone, S. aureus cells could
be able to utilize this mechanism as means for dissemination.
Additional to phagocytosis, neutrophils secrete NETs, ROS, pro-
inflammatory cytokines and chemokines in response to S. aureus

[46, 47, 86]. However, S. aureus is a potent neutralizer of NETs
by using nuclease and adenosine synthase to convert them to
deoxyadenosine [46, 87, 88]. Staphylococcal NET neutralization
could provide C. albicanswith protection against this anti-hyphal
immune response. Besides phagocytosis andNET circumvention,
S. aureus is able to inhibit neutrophil chemoattraction, PRR
activation, extravasation, calcium mobilization, and actin
polymerization [47]. Nevertheless, during co-infection with C.
albicans, phagocytes are still actively attracted to the hyphae
regardless of S. aureus, suggesting the chemotactic inhibition of
S. aureus to either be suppressed during pathogenic co-culture
or overruled by hyphal chemoattraction [11]. Finally, neutrophil
secreted serine proteases elastase, proteinase 3, and cathepsin
G are also inhibited by S. aureus [46, 47]. Therefore, S. aureus
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is indeed recognized and phagocytosed by neutrophils but
has the ability to circumvent phagocytosis, survive within
the phagolysosomes, and kill the neutrophil. Moreover S.
aureus is able to reduce extracellular neutrophil responses that
also affect C. albicans, granting both organisms protection
during co-infection.

The Complement System
The complement system is one of the first extra-epithelial
antimicrobial immune responses and is actively present in
human saliva and GCF [89–92]. Following mucosal damage or
gingival inflammation, the complement system initiates fast and
efficiently via a combination of the classical, alternative and lectin
pathways plus indirectly via the coagulation and fibrinolysis
systems [89]. Regarding C. albicans and S. aureus immunity the
complement factors B, C3, C4, C5-C9, and mannan binding
lectin (MBL) are considered the main effectors [89, 93, 94]. C5-
C9 are known to form the membrane attack complex (MAC)
which is characterized as the direct antifungal response of the
complement system by forming pores in the cell surface [89].
Even though studies regarding complement responses to C.
albicans and S. aureus have not yet been performed in relation
to the oral cavity, the oral response is expected to act similarly.

However, even though MACs are considered antifungal,
they are not able to effectively lyse candidal cells, indicating
the complement system to play a more modulatory role
in C. albicans immunity [89]. Immune modulation by the
complement system is facilitated through opsonization of C.
albicans cells with C3 and Mannose-binding lectin (MBL) which
promote phagocytosis by local phagocytes when possible [95, 96].
Furthermore,MBL is able to stimulate ROS production by nearby
neutrophils which are readily attracted to the site of infection
via complement factor C5a, a cleavage product of C5 [97, 98].
However, C. albicans is able to evade the complement system
by masking itself for complement activation, cleaving/blocking
complement proteins and recruiting complement regulators
[28, 89]. While the antifungal mechanisms governed by the
complement system remain modulatory, its direct antibacterial
effects are more prominent.

Regarding S. aureus, MAC formation is able to directly
damage and kill the bacterium by successfully puncturing the
bacterial cell surface [90]. The complement system is also capable
to reduce staphylococcal/EC adherence [99]. However, this is
likely overcome during pathogenic candidal growth since the
presence of C. albicans is known to significantly enhance the
presence of S. aureus on the tongue of immunocompromised
mice [10, 11, 13]. Similar to C. albicans, S. aureus has developed
various mechanisms to avoid complement mediated killing,
including the inhibition of MAC formation [100], inhibition
of the classical and lectin pathways [101], and the utilization
of various extracellular proteases which efficiently degrade
crucial complement factors [102]. Since both organisms possess
mechanisms to inhibit the complement system, their inhibitory
potency likely adds up during co-infection.

To summarize, antimicrobial proteins, AMPs, neutrophils,
and complement factors present in saliva and GCF are
able to balance microbial growth to prevent overgrowth and

pathogenesis (Figure 1). Thereby, saliva and GCF play key
roles in maintaining homeostasis in the oral cavity. However,
numerous evasion strategies allow C. albicans and S. aureus
to reduce antimicrobial efficacy and result in disease. Loss of
immune fitness obviously increases the incidence of infections
originating from the oral cavity.When pathogenic hyphal growth
of C. albicans is not limited, hyphae will grow invasively into
the oral epithelium and trigger intra-epithelial immunity. During
invasive hyphal growth S. aureus will translocate into the oral
tissue and contribute to the immune activation as well.

INTRA-EPITHELIAL ORAL IMMUNITY

Once invaded, C. albicans and S. aureus stimulate intra-
epithelial immunity, including the type 17 response, further
attraction/activation of both neutrophils and macrophages
(assisted by Th1 activation), the NK response, and B cell response
(Figure 1). Moreover, intra-epithelial immunity promotes extra-
epithelial immunity by stimulating the production/secretion of
AMPs by salivary glands and epithelial cells.

Type 17 Response
The type 17 response is mainly governed by antigen presenting
cells, such as dendritic cells (DCs) and Langerhans cells
(specialized subset of DCs), which patrol the soft oral tissues
for foreign antigens [103]. Oral mucosa, except for sublingual
mucosa, are relatively non-absorptive, indicating the need
for antigens to penetrate the epithelium in order to induce
downstream immune responses [104]. When DCs encounter
fungal and/or bacterial antigens they are activated and start
sampling the antigen and present it on the cell surface using
major histocompatibility complex (MHC) class II molecules
[105]. Following antigen uptake, DCs also start to mature
and travel to the draining lymph nodes where naïve T-cells
are able to bind DCs and their presented antigens. Following
maturation, DCs produce different cytokines according to the
PRR and molecular activation. Fungal and bacterial activated
DCs produce, amongst others, IL-6 and TGFβ which, together
with MHCII antigen binding and the supporting production of
IL-1β and IL-23, drive naïve T-cells into Th17 differentiation
(Figure 1) [105]. The main goal of differentiated Th17 cells
is to migrate to infected tissues and support local immune
responses by producing IL-17, IL-22 and IFN-γ. Additional IL-
17 is produced by local cells of the innate immune system,
including γδ T cells, mucosa-associated invariant T (MAIT) cells,
NK T cells, innate lymphoid cells (ILCs), T cell receptor αβ+

cells (TCR αβ+), natural Th17 cells (nTh17) and Foxp3+ T
regulatory cell (Treg)–like cells which, together with Th17 cells,
are deemed the type 17 response [106, 107]. Even though cells of
the type 17 response only constitute a small fraction of the oral
cell population (i.e. 1% of the gingival CD4T cell population)
they are indispensable for intra-epithelial immunity [27, 103].
Additional to intra-epithelial immunity, the type 17 response
stimulates extra-epithelial oral immunity through IL-17 induced
production/secretion of AMPs and chemokines [27, 103]. Th17
produced IL-22 plays an intricate role in epithelial repair by
stimulating survival and proliferation of the basal oral epithelium
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to replenish damaged IL-17 receptor-expressing ECs [108].
Moreover, IL-22 is responsible for preventing accumulation
of apoptotic inflammatory cells and preservation of genome
integrity [108]. In summary, even though the type 17 response
does not directly kill fungi or bacteria, it does crucially stimulates
other aspects of oral antifungal/bacterial immunity.

C. albicans is able to activate the type 17 response via hyphal
PAMPs and through candidalysin. Candidalysin activates the
type 17 response by activating oral ECs, as discussed earlier,
into releasing IL-1α/β which stimulate the proliferation of innate
Th17 lymphocytes. Moreover, candidalysin synergistically acts
with IL-17 to promote more oral EC activation and, thus,
creating a positive feedback loop of candidalysin induced type 17
activation [109]. However,C. albicans has developedmechanisms
to sense IL-17 and induce autophagy, resulting in efficient
recycling of nutrients and cellular components, clearance of
aggregates and improved resistance to environmental stresses
such as antifungal drugs [110]. The binding of IL-17 also
increases candidal adhesion and filamentous growth resulting in
the formation of biofilms which are known to be more resistant
to antifungal immune responses and treatments [110, 111].

Whereas C. albicans is able to use the type 17 response
to induce autophagy for emergency survival, S. aureus is able
to reduce T-cell numbers by producing various toxins that
directly kill local T-cells [112]. Moreover, staphylococcal cell
wall components and produced phenol soluble modulins have
been found to suppress T cell proliferation and differentiation
[112, 113]. S. aureus is also able to stimulate the expansion
of T-cell suppressive immune cells such as granulocytic and
monocytic myeloid-derived suppressor cells [112, 113]. Together,
IL-17 triggered biofilm formation of C. albicans could grant S.
aureus protection while generic T cell inhibition of S. aureus
further reduces type 17 response efficacy during co-infection.

Macrophages and Neutrophils
In contrast to neutrophils, macrophages are not present outside
of the oral epithelium and, therefore, only contribute to
intra-epithelial immunity. Oral macrophages react to invaded
microbial threats by phagocytosing and killing them (Figures 1,
2). Similar to neutrophils, macrophages cannot phagocytose
larger intact hyphae but scavenge hyphal cells for associated
microbes that can be phagocytosed [11, 62–64].

The attraction to and recognition of C. albicans cells by
macrophages is stimulated by fungal cell wall glycosylation [63,
64] and involves both PRRs (TLR2, TLR4, TLR9, Dectin-1,
Dectin-2, Dectin-3, DC-SIGN, and MINCLE) and recognition of
secreted C. albicans Sap proteins [27, 61]. Following C. albicans
recognition and/or phagocytosis, macrophages secrete pro-
inflammatory cytokines and chemokines [27]. Together with the
cytokines and chemokines secreted by oral ECs, these molecules
help attract and activate more macrophages and neutrophils
[27]. Macrophages can contribute to C. albicans killing through
phagocytosis and producing macrophage extracellular traps
(METs) [114]. Following phagocytosis C. albicans is, however,
able to alter its transcriptional profile to survive nutrient-depleted
and acidic phagosomes [115]. Furthermore, C. albicans induces
cell wall remodeling to initiate an intraphagocytic yeast to

hyphal transition able to induce pyroptosis, an inflammatory
mediated lytic programmed cell death, as well as rupturing of the
macrophage membrane [115]. METs contribute to the antifungal
response similar to NETs and are likely released beforeC. albicans
is able to induce macrophage pyroptosis [116]. As discussed for
extra-epithelial immunity, neutrophils prevent overgrowth of C.
albicans yeast cells by phagocytosis, prevent/limit hyphal growth
by releasing NETs and ROS, and stimulate further immune
activation by secreting serine proteases.

In line with their general response, macrophages play
a crucial role in the immune response against S. aureus
infections (Figure 2) [49]. Macrophages recognize S. aureus
through a combination of receptors, including scavenger
receptors, complement receptors and Fc receptors [117].
S. aureus activated macrophages produce various cytokines
and chemokines which attract T cells, NK cells, DCs, more
macrophages, and neutrophils to the site of infection (Figures 1,
2) [118]. When activated, macrophages engulf staphylococcal
cells into a phagosome which, unlike in neutrophils, fuses with
a lysosome to form a bactericidal phagolysosome (Figure 2)
[117]. Following S. aureus interaction, macrophages can either
provoke a pro-inflammatory or an anti-inflammatory response.
The pro-inflammatory response entails active phagocytosis,
the production of intracellular ROS, nitric oxide (NO),
pro-inflammatory cytokines, AMPs (including hepcidin and
calprotectin), and enzymes, as well as acidification of the
phagolysosome, nutrient restriction, and autophagy [49]. Similar
to the antifungal response, macrophages target extracellular
bacteria using macrophage extracellular traps (METs) [114].
In response to recurrent S. aureus infections macrophages are
able to generate a longer term memory by increasing their
pro-inflammatory responsiveness [119]. Importantly, recurrent
S. aureus infections also induce a Th1 memory response
which results in additional IFN-γ production and macrophage
activation [120–122]. In contrast, S. aureus infections involving
mechanisms such as biofilm growth induce an anti-inflammatory
macrophage response, actually impairing phagocytosis [123].
Additionally, S. aureus is able to avoid macrophage killing
by preventing phagolysosome acidification [124], restricting
ROS/RNS production [125], and preventing autophagy by
blocking autophagic flux [126]. Using these mechanisms, S.
aureus is able to survive inside macrophages, proliferate and
ultimately kill the phagocyte, resulting in the release of
viable S. aureus cells which are again internalized by other
macrophages to repeat the process (Figure 2) [124, 127, 128].
When co-phagocytosis of C. albicans and S. aureus occurs, the
survival mechanisms utilized by both organisms could enhance
intracellular survival and macrophage killing.

Even though the intra-epithelial neutrophil response operates
identically to the extra-epithelial response discussed earlier, there
are some additions. Namely, intra-epithelial neutrophils are
able to interact with, activate and act as antigen presenting
cells (APCs) [129]. Moreover, produced NETs activate APCs
and directly prime T cells, highlighting the importance of
neutrophils in both antifungal immunity and immune regulation
[129]. Due to the fact that the intra-epithelial macrophage
and neutrophil responses are stimulated by all aspects of C.
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albicans/S. aureus oral immunity (Figures 1, 2) they can be
considered the main effectors.

Natural Killer Cells
Besides the type 17, macrophage, and neutrophil response, NK
cells also contribute to intra-epithelial C. albicans/S. aureus
immunity. Whereas NK cells constitute approximately 5–20% of
the peripheral blood mononuclear cell population, they comprise
a substantial part of the gingival lymphoid cell population
and elicit both direct and indirect antifungal responses by
phagocytosis and releasing cytotoxic granular content [130, 131].

Direct antifungal responses mainly involve phagocytosis and
the release of granular contents, including the apoptosis such
as granzyme B and the pore-forming molecules granulysin
and perforin [130, 132, 133]. Due to the fact that depletion
of NK cells in immunocompetent mice does not increase C.
albicans susceptibility, NK cells are expected to play a more
immunomodulatory role in C. albicans immunity [133]. Immune
modulation by NK cells is achieved through production of
inflammatory mediators able to attract and activate macrophages
and neutrophils [130, 132, 133]. NK cell cytokine production
is also induced by activated DCs and contributes to sustaining
neutrophil antifungal response [134]. While most NK cell studies
have mainly been focussed on systemic fungal infections, similar
NK cell functions are likely to contribute to mucosal C. albicans
immunity [27].

Regarding antibacterial responses, NK cells elicit both direct
and indirect effects [135]. Direct antibacterial effects are
facilitated by inducing microbial apoptosis through releasing
granular components and various AMPs [135, 136]. Indirect
NK cell responses again mainly include the production of
inflammatory mediators. NK cells, while mainly activated by
type 17 cytokines, are also able to be activated directly by S.
aureus and by staphylococcal products, likely contributing to
the control of staphylococcal infections prior to T cell activation
[137–140]. Interestingly, even though depletion of NK cells does
not influence C. albicans susceptibility, it does increase the
susceptibility to staphylococcal infections [139]. This is partly
attributable to an NK cell induced promotion of S. aureus
phagocytosis by macrophages [139]. Research regarding evasion
strategies ofC. albicans and S. aureus against the NK cell response
is, unfortunately, still lacking.

B Cells
Finally, the B cell response also contributes to intra-epithelial oral
immunity, albeit playing a minor role in C. albicans/S. aureus
immunity [141–144].

While patients suffering from agammaglobulinemia hardly
or do not produce immunoglobulins they do show a normal
functioning antifungal immune response [144]. Nevertheless,
patients undergoing B cell depletion therapy exhibit an
increased susceptibility to fungal infections attributable to
reduced Th1/Th17 responses, whereas bacterial infection rates
remain relatively normal, indicating B cells to contribute to
C. albicans immunity in an immunoglobulin independent
manner [141, 142].

In contrast to antifungal immunity, B-cell-deficient mice do
not show a difference in bacterial infection related mortality and
clearance, indicating B cells to not significantly contribute to S.
aureus immunity [143]. Nevertheless, vaccination of mice with
a sublethal doses of live S. aureus does provoke the production
of specific antibodies against a wide variety of staphylococcal
antigens [145]. Correspondingly, patients suffering from S.
aureus skin and soft tissue infections, prosthetic joint infections,
and pediatric hematogenous osteomyelitis establish a repository
of memory B cells which are able to produce antibodies
against a variety of S. aureus exotoxins [146, 147]. However,
immunoglobulins acting directly on S. aureus have not yet been
identified, which is likely attributable to the fact that B cells are
not able to directly bind S. aureus cells [148].

Altogether, the above mentioned extra-epithelial immune
responses inhibit propagation of invaded C. albicans and S.
aureus while, additionally, stimulating the repair of damaged
tissue. Even though C. albicans and S. aureus have developed
numerous mechanisms to evade these immune responses,
the oral immune system of healthy individuals is capable
of preventing and/or limiting their pathogenicity to maintain
homeostasis. However, in immunocompromised hosts this no
longer holds true, allowing for pathogenic growth of C. albicans
and with it possibly the initiation of S. aureus BSIs.

IMMUNE DYSFUNCTION FACILITATES
OPC INDUCED S. aureus BSIs

To date, in vitro and murine model studies regarding oral
polymicrobial C. albicans/S. aureus infections have established
that; (1) immune suppression is essential for the development
of OPC, (2) OPC increases the presence of S. aureus on the
tongue surface, (3) invasive OPC facilitates infiltration of S.
aureus into the underlying substratum via, amongst others,
the production of candidalysin, (4) severe immune suppression
significantly reduces dissemination of S. aureus [10–13, 15].
Therefore, the role of the oral immune system appears to be
paradoxical: whereas low levels of suppression allow for OPC
development and S. aureus dissemination, severe suppression
significantly reduces the dissemination potency of S. aureus, even
though OPC development is more severe. The immune system
in immunocompromised individuals could, thereby, first allow
invasive candidal growth due to lack of activity while remaining
immune activity sequentially aids in S. aureus dissemination.
However, while immune deficiencies, either congenital (primary)
or acquired (secondary), are known predisposing factors for OPC
and S. aureus BSIs separately, they have not yet been described
with regard to OPC induced staphylococcal BSIs [149–152].
Therefore, predominant immune deficiencies separately known
to increase the risk for OPC as well as S. aureus BSIs will
be discussed.

The vast majority of immune deficiencies related
mucocutaneous candidiasis incidences are attributable to
diabetes mellitus, cancer, human immunodeficiency virus
(HIV) infection, and prescribed corticoids [152–157]. S. aureus
BSIs have been associated with similar immune deficiencies,
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fortifying the notion that immune deficiency induced OPC could
concordantly increase the risk of S. aureus BSI development
[149–151, 158]. Interestingly, once instigated, S. aureus BSIs do
not show a higher mortality rate among immunocompromised
patients, indicating immune deficiencies to only contribute to
BSI onset but not further lethality [159, 160]. Due to the fact that
diabetes mellitus, HIV, cancer, and use of prescribed corticoids
comprise the majority of immune deficiencies linked to both
C. albicans and S. aureus infections separately, their effects on
the oral immune response to both organisms will be discussed.
Additional immune deficiencies, affecting aspects of the oral C.
albicans and S. aureus immune response, are listed in Table 1.

Diabetes Mellitus
The global burden of diabetes is increasing continuously and
is currently responsible for over 1.5 million deaths per year,
ranking it within the top 10 causes of death [211, 212].
Individuals suffering from diabetes are more susceptible to C.
albicans and S. aureus infections due to both a reduced salivary
flow and impaired immune responses, including suppression
of cytokine production, defects in phagocytosis, dysfunction of
immune cells and a decreased complement response [213–215].
Evidently, peripheral blood mononuclear cell (PBMCs) isolated
from diabetic patients have a lowered cytokine production
and take on a more anti-inflammatory phenotype [216–218].
However, macrophages do increase their phagocytosis rate in
response to C. albicans or S. aureus during hyperglycaemia
[216, 217]. Therefore, even though macrophages increase
bacterial phagocytosis, they have a reduced intracellular killing
efficacy and lowered immune stimulatory capacity [218]. Besides
macrophages, neutrophils of diabetic patients are impaired in
their attraction, migration, ROS production, NET formation, and
degranulation [213]. Hyperglycaemia is also known to decrease
the efficacy of NK cells and the complement system by inhibiting
their degranulation capacity and C3/C4 pathway activation,
respectively [213, 218]. Interestingly, under hyperglycaemic
conditions S. aureus is able to deplete serum C3 levels,
reducing complement-mediated killing as well [219]. Altogether,
hyperglycaemia allows for invasive C. albicans and S. aureus
growth due to a reduced salivary flow and impaired extra-
epithelial neutrophil and complement responses. Once invaded,
the reduced intra-epithelial type 17, macrophage, neutrophil, and
NK cell responses could allow for sequential phagocytic uptake,
survival and dissemination of S. aureus. Interestingly, the risk of
developing diabetes is significantly higher amongst individuals
suffering from HIV infections [220].

HIV
Approximately 37.7 million individuals live with HIV/AIDS
worldwide while HIV-related diseases are responsible for about
680,000 deaths each year [221]. HIV especially burdens low-
income countries, ranking it within the top 10 of causes of death
[222]. One of the main causes of HIV induced mortality is a
secondary infection which develops due to a progressive decline
of CD4T cells [223]. The predominantly affected CD4T cell
class during HIV infections is Th17, resulting in both cellular
depletion and dysfunction [224–226]. Four mechanisms are
known to inflict HIV induced T cell decline; (1) direct viral

killing of infected cells, (2) induced apoptosis of infected cells,
(3) killing of infected cells by CD8T cells, and (4) defects in T cell
regeneration together with destruction of CD4T cell progenitors
within the thymus [223]. The decline in CD4T cells will
eventually reach a critical point at which the immune system is no
longer capable of preventing opportunistic pathogenic infections
of, for instance, C. albicans and S. aureus. This is well reflected
by the fact that oral candidiasis induced lesions are commonly
observed during HIV infections and are significantly associated
with a low CD4T cell count [227–231]. Correspondingly,
HIV patients are at an increased risk of developing S. aureus
infections and BSIs which, besides T cell depletion, are also
linked to reduced neutrophil counts (neutropenia) [232–235].
Neutropenia is frequently observed among HIV patients and is
strongly associated with reduced CD4T cell numbers and an
increased viral load [236]. Importantly, neutrophils still present
during HIV infections are known to actually contribute to T
cell dysfunction by suppressing T cell responses [237]. Besides
T cells, macrophages and dendritic cells can also be infected
with HIV. However, macrophages are known to resist HIV
infection much better than CD4T cells besides which they are
less sensitive to cytotoxic killing of the virus, also producing and
releasing relatively low amounts of viral particles when killing
does occur [238]. Taken together, the reduction in extra-epithelial
neutrophils most likely allows for invasive OPC development
which is able to progress due to intra-epithelial CD4T cell
depletion, also reducing extra-epithelial AMP responses and
barrier repair. Following the development of invasive OPC,
S. aureus will co-invade and likely utilize the reduced intra-
epithelial neutrophil count to disseminate. Interestingly, the
immunocompromised state of HIV patients also significantly
increases their risk of developing various types of cancer linked
to C. albicans and S. aureus infections [239, 240].

Cancer
Cancer is currently responsible for 10 million deaths per year,
ranking it as one of the leading causes of mortality [241].
Besides its direct lethal effects, cancer and its treatments also
increase the risk for infection [242, 243]. The increased risk of
infection observed among cancer patients depends on various
risk factors such as the type of cancer (i.e. lymphoma or acute
leukemia versus a solid tumor), reduced cellular functioning
as a result of cytotoxic or immunosuppressive therapies, usage
of indwelling devices (e.g. catheters), the severity/duration of
induced neutropenia, surgery, and gastrointestinal mucositis due
to chemotherapy [243]. Due to the vast variation in cancer types
and treatments it is not possible to summarize their effects on
the aspects of oral immune responses relevant to C. albicans
and S. aureus infections. Nevertheless, studies concerning human
cancers and murine cancer models and have shown various
relevant cancer induced peripheral immune perturbations which
have been extensively reviewed elsewhere [244]. It must be
noted that not every perturbation is yet known to occur in
every cancer type. Known perturbation related cancer types and
mouse models are summarized in detail by Hiam-Galvez et
al. [244]. In brief, cancer is able to induce: (1) expansion of
immature immunosuppressive neutrophils and monocytes due
to aberrant haematopoiesis, (2) a decrease in dendritic cell subsets
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TABLE 1 | Primary, secondary, and drug induced immune deficiencies able to affect the various aspects or oral C. albicans and S. aureus immunity.

Immune component Primary deficiencies Secondary deficiencies Drug induced deficiencies References

Complement system Deficiencies in: C1-C9, mannan-binding

lectin, MASP-2, factor B, factor D, factor

H, factor I, CR1, and CR3,

Diabetes, malnutrition Complement inhibitors [161–165]

Salivary glands

(Saliva)

Ectodermal dysplasia, cystic fibrosis,

and Prader-Willi syndrome

Cancer, ionizing radiation, Sjögren’s

syndrome, systemic lupus

erythematosus, mixed connective tissue

disease, sarcoidosis, amyloidosis,

Crohn’s disease, ulcerative colitis,

diabetes, hyper-and hypothyroidism,

Cushing syndrome, Addison disease,

depression, narcolepsy, Parkinson’s

disease, Bell palsy, Alzheimer’s disease,

Holmes-Adie syndrome, eating

disorders, anorexia nervosa, bulimia,

anemia, atrophic gastritis, dehydration,

alcohol abuse, HIV/AIDS, epidemic

parotitis, Epstein-Barr virus, bacterial

sialadenitis, tuberculosis, hypertension,

fibromyalgia, chronic fatigue syndrome,

burning mouth syndrome, compromised

masticatory performance, surgery,

trauma, gland stones, and sialadenitis

Cannabis, ecstasy, various:

antidepressants, alpha-receptor

antagonists, antipsychotics,

antihistamines, diuretics,

antihypertensive agents, appetite

suppressants, decongestants,

bronchodilators, skeletal muscle

relaxants, antimigraine agents,

opioids/hypnotics, H2

antagonists/proton pump inhibitors,

cytotoxic drugs and anti-HIV drugs,

muscarinic receptor antagonists, alpha

receptor antagonists, beta blockers,

ACE inhibitors, atropinics,

benzodiazepines, retinoids, radioiodine,

and protease inhibitors

[166–170]

Epithelial cells Cancer, ionizing radiation, surgery,

trauma, oral lesions induced by,

bacterial, fungal and viral infections or by

associated dermatological diseases,

recurrent aphthous stomatitis,

inflammatory bowel diseases, and

nutritional deficiencies in B12 and folate

Antimalarials, gold salts, Non-steroidal

anti-inflammatory drugs, ACE inhibitors,

HIV protease inhibitors, antihypertensive

agents, phenothiazines, sulphonamides,

tetracyclines, thiazide diuretics, mTOR

inhibitors, chemotherapy agents,

mycophenolate mofetil, thiol

radical–containing drugs, antipsychotic

medications, spironolactones,

sulphonamides, infliximab, adalimumab,

antimicrobials, anticonvulsants, calcium

channel blockers, calcineurin inhibitors,

and phenytoin

[171–180]

Dendritic cells IRF8 & GATA2 deficiencies, reticular

dysgenesis, WHIM syndrome, bare

lymphocyte syndrome, Wiskott-Aldrich

syndrome, CD40/CD40L deficiency,

Pitt-Hopkins Syndrome, hyper-IgE

syndrome, and IRF7 mutations

Ionizing radiation Aspirin, deoxyspergualin,

mycophenolate mofetil,

N-Acetyl-l-cysteine, vitamin D3 analogs,

antiproliferative agents, corticoid

steroids, Janus kinase inhibitors,

calcineurin inhibitors and mTOR

inhibitors

[181–183]

Type 17 cells Autosomal dominant hyper-IgE

syndrome, STAT-1 mutations,

auto-immune poly endocrine syndrome

type 1, hyper-IgM syndrome, chronic

mucocutaneous candidiasis,

deficiencies in IL-17R, IL-17F, IFN-γ and

IL-12, DiGeorge syndrome, Ataxia

telangiectasia, Wiskott-Aldrich

syndrome, X-linked lymphoproliferative

syndrome, MHC deficiency, and

Cartilage-hair hypoplasia

Diabetes, HIV, cancer, aging,

hypoproteinaemia, diabetes mellitus,

UV-light exposure, viral infections

involving the measles virus,

cytomegalovirus, and influenza virus

Corticoid steroids, Janus kinase

inhibitors, calcineurin inhibitors, TNF-α

inhibitors, IL-1 inhibitors, IL-6 inhibitors,

IL-17 inhibitors, cytotoxic agents,

panlymphocyte depleting agents, mTOR

inhibitors, and antimetabolites

[164, 173,

184–190]

Macrophages Chronic granulomatous disease,

Chédiak–Higashi syndrome, IL12/IFN-γ

defects, cystic fibrosis, Niemann–Pick

disease, Gaucher disease, Krabbe’s

disease, metachromatic leukodystrophy,

and Fabry’s disease

Diabetes, cancer, Whipple’s disease,

atherosclerosis, and malnutrition

Corticoid steroids, Janus kinase

inhibitors, calcineurin inhibitors,

polyclonal antithymocyte Globulins, and

mTOR inhibitors

[173, 188,

191–200]

(Continued)

Frontiers in Oral Health | www.frontiersin.org 10 April 2022 | Volume 3 | Article 851786

https://www.frontiersin.org/journals/oral-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/oral-health#articles


Pasman et al. Oral Candida Facilitated Staphylococcus Dissemination

TABLE 1 | Continued

Immune component Primary deficiencies Secondary deficiencies Drug induced deficiencies References

Neutrophils Severe congenital neutropenia, cyclic

neutropenia, Shwachman-Diamond

syndrome, Chédiak-Higashi syndrome,

leukocyte adhesion deficiency, type 2

Griscelli syndrome, chronic

granulomatous disease, Mendelian

susceptibility to mycobacterial disease,

type 2 Hermansky-Pudlak syndrome,

p14 deficiency, WHIM syndrome, CD40

ligand deficiency, Agammaglobulinemia

with absent B-cells, purine nucleoside

phosphorylase deficiency, autoimmune

lymphoproliferative syndrome, cartilage

hair hypoplasia, glycogen storage

disease Ib, Barth syndrome,

dyskeratosis congenita, reticular

dysgenesis, Cohen syndrome,

Niemann–Pick disease, Gaucher

disease, Krabbe’s disease,

metachromatic leukodystrophy, and

Fabry’s disease

Diabetes, HIV, large granular

lymphocytic leukemia, Protein-calorie

malnutrition, folate/vitamin B12

shortage, and chemotherapy

Phenothiazines, antithyroid medications,

corticoid steroids, Janus kinase

inhibitors, calcineurin inhibitors,

polyclonal antithymocyte globulins and

chloramphenicol

[173, 195,

201–204]

NK cells Absolute, classical and functional NK

cell deficiency, xeroderma pigmentosum,

Bloom’s syndrome, ataxia telangiectasia,

Fanconi’s anemia, bare lymphocyte

syndrome, familial erythrophagocytic

lymphohistiocytosis, Chediak–Higashi

syndrome, Griscelli syndrome,

Papillon-Lefevre, Hermansky-Pudlak,

X-linked lymphoproliferative syndrome,

leukocyte adhesion deficiency, X-linked

hyper-IgM syndrome, paroxysmal

nocturnal haemoglobinuria, von

Hippel–Lindau, autoimmune

lymphoproliferative syndrome,

Wiskott–Aldrich syndrome, IL-12

receptor deficiency, X-linked

agammaglobulinemia, NF-kB essential

modulator deficiency, ectodermal

dysplasia with immunodeficiency,

common variable immunodeficiency, and

chronic mucocutaneous candidiasis

Diabetes, chronic fatigue syndrome,

obesity, and high-dose ionizing radiation

Corticoid steroids, Janus Kinase

inhibitors, calcineurin inhibitors, IL-17

inhibitors, and mTOR inhibitors

[163, 188,

205–210]

and dendritic cell maturation, (3) lymphopenia, (4) reduction
of CD4T cell function, (5) an increase in regulatory T and B
cells able to dampen immune responses, and (6) a suppressed
NK phenotype through a decreased number of activating
receptors and cytotoxic potential as well as increased number
of inhibitory receptor numbers [244]. Interestingly, surgical
resection of the tumor can reverse various of these peripheral
immune perturbations in multiple murine breast and colon
cancer models, suggesting the observed immune effects to indeed
be induced by the tumor itself [245]. Wheter this also holds true
for humans and other cancer types remains to be determined.
Besides the cancer itself, treatments can also affect peripheral
immune responses but remain highly dependent on the type of
treatment and cancer [244]. Treatment induced perturbations,
include neutropenia, lymphodepletion, myeloid cell expansion,
reduced APC function and T cell responses, and increased

numbers of immunosuppressive polymorphonucleocytes and
monocytes [244, 246, 247]. Additionally, various chemotherapies
and radiation therapy affecting the oral cavity can inflict damage
to the epithelial lining of the oral cavity and the salivary glands,
allowing oral infections to instigate more easily [171, 172, 247–
249]. Moreover, high dosage radiation therapies covering the
oral cavity can eliminate small oral mucosal blood vessels and/or
result in severe mucositis with ulceration which both induce
necrosis of oral soft tissues [243]. Radiation may also damage the
serous cells of salivary glands, leading to xerostomia (dry mouth)
which, in relation to neck and head radiation, is significantly
linked to an increased risks of C. albicans and S. aureus infections
[248, 249].

Altogether, no general claim can be made concerning
cancer and treatment induced peripheral immune perturbations.
However, it remains clear that induced immunosuppression,
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damage the oral epithelial barrier, and induced xerostomia can
allow for OPC development and more easy invasion of C.
albicans and S. aureus. Interestingly, corticoids, the remaining
risk factor for C. albicans and S. aureus infections, are commonly
administered to cancer patients for their anti-cancer and anti-
swelling effects [250].

Corticoids
Corticoids, while not considered as direct immunocompromised
conditions, are commonly prescribed immunosuppressants and
are utilized to induce immunosuppression in murine co-
infection models involving C. albicans and S. aureus [12–14,
251]. Whereas the positive feedback loop of the C. albicans/S.
aureus immune response triggers pro-inflammatory effects
(Figure 1), endogenous glucocorticoids play an essential role in
both limiting and resolving inflammation to prevent adverse
effects [252]. Corticoids are derived from the glucocorticoid
family of steroid hormones and are, therefore, able to
dampen immune responses in inflammatory disorders such
as allergies, asthma, and autoimmune diseases, besides which
they are beneficial for other disease such as cancer [173,
223, 250]. Importantly, corticoids are also generally used in
murine models to induce an immunocompromised state. The
immunosuppressive effects of corticoids are mainly facilitated
through binding intracellular glucocorticoid receptors expressed
by the majority of human cell types [223, 253]. Due to
the fact that multiple cell types express these receptors,
corticoids induce multiple anti-inflammatory effects. It is
generally accepted that corticoids reduce the level and function
of CD4T cells besides which they reduce pro-inflammatory
responses of macrophages and monocytes, resulting in a
reduction of: (1) pro-inflammatory cytokine production, (2)
chemotaxis, (3) migration, (4) phagocytosis, (5) oxidative burst
and free radical generation, and (6) nitric oxide secretion
[223, 253–256]. However, various studies regarding corticoid
treatment and neutrophils have also reported upregulation
of pro-inflammatory responses besides which there have
been contradictory studies regarding the inhibition/stimulation
of corticoid induced neutrophil apoptosis, highlighting the
complexity of the corticoid response [256]. This complexity is
further emphasized by Th17 glucocorticoid sensitivity. While
Th17 cells were first considered insensitive to corticoids, Th17
cells in patients suffering from psoriasis and related disorders
are corticoid sensitive, indicating corticoid sensitivity to also
depend on the immunopathology [257]. Nonetheless, the anti-
inflammatory effects of corticoids on lymphocytes, neutrophils,
monocytes/macrophages, and other immune effector cells are
known to increase the susceptibility to invasive candidiasis
[254]. Additionally, prognosis of S. aureus bacteraemia is
negatively affected by the use of corticoid steroids and
other immunosuppressives [258–261]. Even though the relation
between C. albicans/S. aureus infections and corticoid use is
apparent, the mechanism driving this relation remains unclear.

To summarize, the most common immune deficiencies linked
to both C. albicans infections and S. aureus BSIs include diabetes
mellitus, HIV, cancer, and prescribed corticoids. Diabetes induces

immune deficiency through xerostomia and reduced extra-
epithelial neutrophil and complement responses as well as
impaired intra-epithelial type 17, macrophage and neutrophil
responses. The reduction of extra-epithelial neutrophils during
HIV infections likely allows for OPC development which is
able to progress due to reduced intra-epithelial Th17 responses.
S. aureus could co-invade during OPC progression and utilize
the reduction in neutrophil count to disseminate. Regarding
cancer, immune deficiencies arise from various aspects of
the disease and its treatment with induced neutropenia as
the main effector. Finally, use of corticoids induces various
immune deficiencies, including reduced type 17, neutrophil and
macrophage responses. Each of these immune deficiencies are
able to facilitate OPC development and could, thereby, account
for S. aureus BSIs.

CONCLUSION

A strict balance between pathogenic C. albicans growth and
oral immune activation normally inhibits hyphal invasion and
ensures oral homeostasis. When oral immunity is compromised
OPC is able to develop and invade oral mucosal tissue. In
murine models, when S. aureus is additionally present, it
is able to co-invade with C. albicans and utilize phagocytes
present in the tissue to disseminate to draining lymph nodes.
Whether this holds true for human co-infections remains to be
determined. Considering that: (1) C. albicans and S. aureus are
a common member of the human oral microbiome [262], (2)
approximately one in five cases of candidemia are polymicrobial
[6], (3) C. albicans instigated S. aureus BSI, in theory, do
not have to concur with candidemia, and (4) a significant
number of patients suffering from staphylococcal BSIs have no
reported porte d’entrée [9], human S. aureus BSIs could be
facilitated byOPC. Immunocompromised individuals, additional
to developing OPC, could, therefore, also be at risk of contracting
concordant S. aureus BSIs. Considering the crucial contribution
of the oral immune system in this process, the aim of this
review was to provide a detailed overview concerning all relevant
aspects of oral C. albicans and S. aureus immunity (Figure 1) and
to discuss the predominant immune deficiencies able to allow
for OPC induced S. aureus BSIs (Table 1). Based on current
literature it is evident that when the oral epithelium is not
broken due to physical intervention, loss of extra-epithelial oral
immune fitness during immune deficiencies such as diabetes
mellitus, HIV, cancer, and the use of corticoid steroids can
facilitate invasive growth of C. albicans and result in breakage
of the oral epithelial barrier. Through this porte d’entrée, oral
bacteria associated with C. albicans, such as S. aureus, are
granted access to the underlaying substratum. Sequentially,
phagocytes are actively attracted to the site of invasion and
start scavenging C. albicans hyphae while phagocytosing attached
staphylococcal cells. S. aureus cells able to survive phagocytic
killing can proliferate and kill the phagocyte, releasing more
bacteria in the surrounding to repeat the process (Figure 2). In
contrast to OPC development, this staphylococcal dissemination
process is severely hampered by excessive immune suppression.
Ultimately, S. aureus is either granted direct access to the

Frontiers in Oral Health | www.frontiersin.org 12 April 2022 | Volume 3 | Article 851786

https://www.frontiersin.org/journals/oral-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/oral-health#articles


Pasman et al. Oral Candida Facilitated Staphylococcus Dissemination

bloodstream or by surviving inside phagocytes during migration.
Once disseminated, S. aureus (either accompanied by C. albicans
or not) can initiate lethal infections throughout the body.
Due to the fact that various immune dysfunctions are able to
instigate OPC, through loss of oral immune fitness, they are
likely able to also function as facilitator of S. aureus BSIs and
should, therefore, be considered a potent risk factor for OPC
induced S. aureus dissemination. Besides S. aureus, C. albicans
is able to interact with other oral BSI inducing bacteria such
as Staphylococcus epidermidis [263], Enterococcus faecalis [264],
and Streptococcus gordonii [265, 266], the first, second, and
fourth most common co-isolated bacteria during C. albicans
BSIs, respectively [6]. Therefore, the describedmechanism of oral
C. albicans and immune system facilitated bacterial invasion and
dissemination during immunosuppression could be a general
BSI inducing mechanism for bacteria able to directly interact
with C. albicans.

DISCUSSION

Even though candidemia has been found to coincide with
bacterial BSIs in approximately 20% of the cases [6, 7], C.
albicans-induced dissemination of bacteria has not yet been
directly observed in humans. In contrast, studies using murine
and in vitromodels have provided strong evidence to support the
risk of C. albicans induced S. aureus invasion and dissemination
during immunosuppression [10–13, 15]. Moreover, while the

overall structure of the immune system of mice and humans is
similar, discrepancies do exist and have been extensively reviewed
elsewhere [267]. Importantly, numerous in vitro studies used
to investigate immune responses to C. albicans and S. aureus.
While this response is often described as a general response,
it could differ from in vivo oral immune responses. As OPC-
facilitated invasion of S. aureus represents a new porte d’entrée
with potentially life-threatening consequences, future research,
unraveling the role of the oral immune system in, and the
mechanism of, invasion and dissemination of bacteria such as
S. aureus in humans are important next steps in development of
life-saving preventive strategies.
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