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Maintaining a microbe-free environment in healthcare facilities has become
increasingly crucial for minimizing virus transmission, especially in the wake of
recent epidemics like COVID-19. To meet the urgent need for ongoing sterilization,
autonomous ultraviolet disinfection (UV-D) robots have emerged as vital tools.
These robots are gaining popularity due to their automated nature, cost advantages,
and ability to instantly disinfect rooms and workspaces without relying on human
labor. Integrating disinfection robots into medical facilities reduces infection risk,
lowers conventional cleaning costs, and instills greater confidence in patient safety.
However, UV-D robots should complement rather than replace routine manual
cleaning. To optimize the functionality of UV-D robots in medical settings,
additional hospital and device design modifications are necessary to address visibility
challenges. Achieving seamless integration requires more technical advancements
and clinical investigations across various institutions. This mini-review presents an
overview of advanced applications that demand disinfection, highlighting their
limitations and challenges. Despite their potential, little comprehensive research has
been conducted on the sterilizing impact of disinfection robots in the dental
industry. By serving as a starting point for future research, this review aims to bridge
the gaps in knowledge and identify unresolved issues. Our objective is to provide an
extensive guide to UV-D robots, encompassing design requirements, technological
breakthroughs, and in-depth use in healthcare and dentistry facilities. Understanding
the capabilities and limitations of UV-D robots will aid in harnessing their
potential to revolutionize infection control practices in the medical and dental fields.
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Abbreviations

UV-D, ultraviolet disinfectant; UVGI, ultraviolet germicidal irradiation; HAI, healthcare-associated infection;
MRSA, methicillin-resistant Staphylococcus aureus; VRE, vancomycin-resistant Enterococci; UV, ultraviolet;
LPM, low-pressure mercury; SLAM, simultaneous localization and mapping; C diff., clostridioides difficile; VRE,
vancomycin-resistant enterococci; CRE, carbapenem-resistant enterobacterales; MRSA, methicillin-resistant
Staphylococcus aureus; AIDBOT, artificial intelligence disinfection roBOT; OMS robot, oral and maxillofacial
surgery robot; DOF, degrees of freedom; OAW, orthodontic archwire; CARs, catalytic antimicrobial robots, MR-
safe, magnetic resonance safe; 3D, 3-dimensional; TBC, total bacterial count, AI, artificial intelligence; W, watt;
QACs, quaternary ammonium compounds; SARS, severe acute respiratory syndrome.
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1. Introduction

The healthcare and its associated sectors are one of the fastest-

growing industries globally. In a health care facility, microorganisms

persist on an inanimate surface for a longer period causing

transmission of infectious diseases (bacterial, viral and fungal)

through direct or indirect contact (1, 2). Novel techniques are

essential due to increase in the transmission and fatality rate of

viral disease, as one seen during a COVID-19 pandemic that was

known to last for 28 days under controlled laboratory

environments (3, 4). This calls for making the eradication of all

microorganisms on seemingly non infected areas a crucial

component of disinfection. Disinfection is a process that halts the

dissemination of all infectious agents by inactivating them and

preventing their transmission (5). Several hospital settings like

wards and theatres need to be cleansed repeatedly in a single day,

from donning the right attire to disinfecting, which consumes

time using traditional ways. Employees perpetually face a hazard

of developing an infection under these subjective ways. According

to hospital data, even with stricter standards (6) and more

effective cleaning processes, fatal infections are on the rise (7).

These numbers indicate that the existing strategy is insufficient to

shield susceptible individuals from serious, perhaps fatal

infections like SARS-COV-2 (8). The Covid 19 pandemic

stretched the limits and endurance of healthcare facilities and

workers who managed to somehow cope with the challenges.

Perhaps the frequent occurrences of epidemics during the present

millennium which has seen more than 70 epidemics (9), played a

key role in combatting the covid 19 pandemic. The appeal of

using robotic disinfection is gaining traction especially among

Hospital administrations, because of automation, economical

(decreased labour), increased efficacy (wide spectrum of

pathogen), less hazardous residuals and relatively simple

procedure in a medical setting (10). According to a number of

studies, disinfection methods that use UVD irradiation are

superior to those that do not, lowering microbial load in the

environment and possibly lowering risk of contracting a

healthcare-associated infection (HAI) (11–14).

A mobile UV-D robot that can kill microorganisms was created

by Guettari et al. (11). Dancer and King (12) evaluated the

effectiveness of UV light-based automatic decontaminating

systems. Critical evaluations on UV disinfection were presented by

Abajo et al. (15) and Raeiszadeh et al. (16) who also presented a

wide array of UV decontamination techniques as well as the

effectiveness and security of these UV devices. While Martins

et al. (17) studied the effectiveness of various disinfection

techniques for COVID-19 in diverse circumstances, Chiappa et al.

(18) published a narrative review that illustrated the efficacy of a

range of UV disinfecting systems against various coronavirus

strains. Various studies that discuss applications of UV-D robots

(19–21) to address specific issues encountered during COVID-19

testing, cleaning, and disinfection have also been published.

Nonetheless, the bulk of previously published reviews primarily

centered around traditional ultraviolet germicidal irradiation

(UVGI) systems, with none addressing the autonomous
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capabilities of UV-D robots, particularly in the context of

medical and dental applications. Although, a new era of robot

aid based on artificial intelligence is emerging in dentistry, these

robots are still not entirely utilised in dental investigations.

Conversely, numerous studies have focused on specific robotic

systems within distinct disciplines. For instance, research has

delved into the role of robots in tooth preparation within

prosthodontics (22), as well as the utilization of arch-wire

bending robots in orthodontics (23, 24). Furthermore, significant

advancements have been made in applying robotic guidance to

dental implant placement in oral and maxillofacial surgery (25–

27). The progress in procedures like craniomaxillofacial

osteotomy has been notably swift and comprehensive, likely

attributed to the rapid development of surgical robotic

technologies. In order to thoroughly examine and assess the

present situation of practical usage of UV-D robot in dentistry,

Yajie Li et al. conducted a scoping assessment of 113 studies in

2021. They came to the conclusion that there are still restrictions

and inequalities between robotics research and its use in

dentistry (28). While UV-D robots have been extensively studied

and utilized in the realms of prosthodontics, orthodontics, and

oral surgery (22–27), there remains a notable gap in the

literature with regard to their comprehensive role in the

disinfection process. To the best of our knowledge, numerous

research has been published utilizing disinfectant robot in the

recent literature (29–31) and the authors feel that not only it is

time to review the findings of these studies but also to review the

detailed application of disinfectant robot in dentistry. As a result,

the present review sought in determining the current state of

robotic dental usage, highlight shortcomings, offer perspectives

on their adoption and advancement in the future.

The aim of this review is to emphasize the effective usage of UV-

D in dentistry, with specific objectives to comprehensively

understand the advancements in technology, design requirements,

and applications in healthcare and dental facilities. By

accomplishing these objectives, this review seeks to promote

further scientific investigations in this emerging and innovative field.
2. Description of the instruments and
technology

2.1. UV-D robots

Robotics, is defined as the study of reprogrammable,

multifaceted, versatile, and extensible systems that dynamically

connect sensing to action (28). UV disinfection robots work on

the principle of UVGI using ultraviolet (UV-C) light which has a

wavelength of 254 nm and provides antimicrobial, antifungal and

antiviral properties.
2.2. UV-D robots in disinfection

UV-D Robots are powered by batteries and can kill up to

99.99% of germs. These gadgets are mobile base, have a number
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of Low-pressure Mercury (LPM) lamp, pulsed xenon lamps, and

sensors for motion and are used to supplement hand cleaning

(11, 32). This robot has various functions, including mapping the

area, uses passive infrared sensors to sense its environment,

camera with three-dimensional imaging to detect obstructions,

choice of manual or automatic operation, and an exceptionally

high degree of disinfection. They employ the environment’s map

to provide a high-powered UV dose (33), and rely on

simultaneous localization and mapping (SLAM) (34), to generate

a map of working environment. They can disinfect with UV-C

light of 254 nm wavelength, and it includes 8 UV-C lamps

disinfecting a 360° coverage area (35). A feature of these gadgets

is its sensor that keeps track of environmental factors like

temperature and humidity. Additionally, sensors that detect

movement are employed to instantly shut UV lamps in the event

that any humans are found. Traditional UV-D equipment is

often either left in one spot in room for the duration of the

disinfection cycle or is manually moved by the designated

operator to various locations (5). Various studies have reported

that disinfection can benefit from the incorporation of robotics

in the management of infectious diseases (21, 36). Table 1 and

Figure 1 presents a comparison of UV robots, on the basis of

design specifications.
2.3. Service robots in dentistry

Delivering intensive treatments in problematic positions,

dentists may feel fatigue ultimately resulting in errors in

examining oral cavity and developing subsequent and

comprehensive treatment plan. Also, there is the risk of cross-

contamination due to negligence or improper handling of

apparatus and equipment. Digital medicine and dentistry that are

suitable for robot can help to reduce this and improve oral

health related quality of life comprehensively (37). These robots

are used in combination with 3D mapping for invasive

procedures in dentistry such as tooth preparations, autonomously
TABLE 1 Comparison of UV robots based on design specifications.

Features XENEX-Light
Strike

[European
Institute]

TRU-D
[European
Institute]

Founder Mark Tuck Stibich Memphis Tenn Gu

Country origin USA San Diego USA

Year 2014 2020 202

Compactness for use in
confined locations

Absent Absent Pre

Reduction in majority of
microorganisms

Candida auris, C.
diff., VRE and CRE

C. diff., MRSA, VRE,
Ebola and Acinetobacter

C. d
Ebo
Aci

Autonomous Navigation Absent (uses a
separate controller)

Absent Pre
feat

Feasibility of using a cleaning
crew and a robot in the same
area.

Absent Absent Pre

USA, United States of America; MRSA, methicillin-resistant Staphylococcus a

Enterobacteriaceae; C. diff., Clostridioides difficile.
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placing implants, arch wire bending and teeth positioning (5,

28). Although numerous studies as presented in Table 2 show

the relative application of robots in the field of dentistry but very

few studies have discussed the role of UV-D robots in disinfection.
2.4. Will UV-D disinfection robots
complement in the field of dentistry?

Robotic dentistry has revolutionized the practice of dentistry,

transforming both the mindset and approach of healthcare

providers while simultaneously elevating the quality of patient

care. This technological advancement has ushered in a

standardized approach to harnessing robotic capabilities across

various dental tasks. In the medical field, numerous studies have

showcased the advantages of employing UV-D technology for

disinfection purposes, extending to applications like tooth

preparations and dental implant placement in prosthodontics

(22), arch-wire bending robots in orthodontics, and robot-

assisted craniomaxillofacial osteotomy in oral and maxillofacial

surgery (25, 26). Surprisingly, despite these advancements, there

have been no studies that explore the potential of UV-D robots

for disinfecting dental operatories.

Despite the fact that they were developed for certain tasks such

multisensory transportation and altering cells, their uses for

chemical and physical biofilm destruction are still being

researched (53). Hwang and colleagues (48) created catalytic

antimicrobial robots (CARs) that could degrade and eliminate

biofilms on surfaces in a controlled, effective, and precise

manner. These “kill-grade-and-remove” CAR systems could be

applied in dentistry to treat persistent biofilm infections. Thus,

considering all of these changes, it becomes imperative to use a

UV-D robot that is designed specifically to perform disinfection

in dentistry. A new technology must overcome a number of

challenges like acceptability, awareness and compliance when it is

brought into a new environment. The high cost of technical

breakthroughs in medical and dental applications is one such
HELIOS
[The HELIOS]

VIOLET
[Violet, Mc Ginn]

AIDBOT
[AIDBOT, Gebhart]

nner Lyslo Conor McGinn KangGeon Kim

Ireland Korea

0 2020 2021

sent Present Present

iff., MRSA, VRE,
la and
netobacter

C. diff., MRSA, VRE, Ebola
and Acinetobacter, SARS-
COV-2

C. diff., MRSA, VRE, Ebola
and Acinetobacter, SARS-
COV-2

sent (uses scrub
ure)

Present Present (uses a mobile
controller)

sent Present Present

ureus; VRE, vancomycin-resistant Enterococcus; CRE, carbapenem-resistant
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FIGURE 1

Examples of different ultraviolet disinfection (UV-D) robots. (A) Xenex LightStrike-Germ-Zapping Robot. (B) Tru-D Smart UVC robot. (C) Helios UV-C
Disinfection Robot- Surfacide. (D) VIOLET. (E) Artificial Intelligence Disinfection ROBOT (AIDBOT).
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barrier. Additionally, robotic systems are sophisticated and need

specialized knowledge to perform well (54). Therefore, the

effectiveness of the outcomes would depend on how well the

staff feed the data into the robotic system.
3. Discussion

3.1. Demonstrated success of UV-D robots
in dentistry

A variety of diseases can be encountered in polluted hospital

environments. Contaminated surfaces provide a risk that cannot

be eradicated with the help of traditional manual methods for

disinfection and cleaning (55). Furthermore, traditional

disinfectants were unavailable during the COVID-19 epidemic,

necessitating the use of innovative disinfectants or disinfection

procedures. To solve these shortcomings, UVC disinfection

machines that move autonomously, or UVC robots, have been

developed (56). Dentistry is evolving into a new era of the robot-

assistance based on artificial intelligence. However, these robots

are still not fully incorporated into studies on dentistry. A first

prototype for remote robotic dentistry was developed over the

course of the past year by a group of senior biomedical

engineering students at South Dakota Mines, of STEM university

in South Dakota, in 2023 in collaboration with a dentist. They

stated that UV-D robots could aid in improving underprivileged

communities access to attain dental treatment. They also pointed
Frontiers in Oral Health 04
out that contemporary dentistry already uses intricate and

meticulous 3D scans of the oral cavity, allowing a surgery like a

filling to be planned out digitally well in advance of any

procedure (57). Another recently conducted research by Linn

et al. in 2023 at Taipei Medical University, Taiwan employed

three distinct implant sizes with 76 drilling sites in partly

edentulous models, comparing the effectiveness of robotic and

human unaided drilling. Algorithms for standardization and

incrementally drilling techniques was used for the robotic

procedure. Following the drilling process, differences between the

implant’s actual position and the intended position were

identified and it was further concluded that the best precision

and dependability for the preoperative plan for small implant

diameters can be provided by a robotic surgical system (58). A

revolutionary method of interactive operative assistance, robot-

assisted dental implant placement provides directions in placing

implants, osteotomy preparation, and implant insertion in

addition to visual navigation.

Van Riet TCT et al. in 2021 conducted a systematic review and

provided a complete, transparent, and evidence-based assessment

of study characteristics with state of progress of robotic initiatives

in dentistry (59). Adel S et al. in 2021, conducted a scoping

review and further 87 studies were added to the systematic

review and stated that there has been significant research in the

previous ten years on surgical robots for diagnosis, and arch wire

bending. Nanorobots and rehabilitative robots hold great promise

and have received a lot of attention in the orthodontic literature

(60). Thus, numerous studies have been published utilizing its
frontiersin.org
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TABLE 2 Application of robots in the field of dentistry.

Author/Year ROBOT Application Mechanism Results
Yeshwante, B
et al. (38)

YOMITM (Neocis, Miami, FL, USA) First robotic computer
navigation system to
receive FDA approval

The navigation system uses
vibrational feedback

Improves clinical precision of implant surgeries
and prepares implant osteotomies with excellent
predictability and precision.

Woo et al. (39) 6-DOF robotic arm Orthognathic surgery Movement of robotic arm in 6
different directions including
translation and rotation

Provides high degree of flexibility and agility,
making them suitable for tasks requiring accuracy,
pace, and consistency.

Ma Q et al. (40) OMS robot Oral and maxillofacial
surgery

A self-contained surgical
system

Assists in surgery providing greater accuracy.

Zhang JT et al.
(41)

Robot with novel stapler for stapling Oral and maxillofacial
surgery

Kinematics control In addition to a novel stapler with one degree of
flexibility to close the incision, this robot has six
degrees of freedom for location and orientations.

Fang G et al.
(42)

MR-safe soft robotic system Head and Neck Cancer MRI-guided

Transoral laser
microsurgery

Laser-based tumour ablation, high-
contrast soft tissue imaging,
comprehensive physiological change
visualization, and thermometry.

Zhang et al. (43) 6-DOF CRS robot Teeth setting in complete
denture (3D)

Scanning of the arch Dental arch curve designing based on the patient’s
jaw arch measurements and view 3D simulated
teeth on a screen and adjust each tooth’s position
with ±0.05 mm accuracy.

Jiang, J et al.
(44)

Robotic system for tooth arrangement
(50 D- DOF)

Teeth-arrangement Robotic arm in 6 different
directions

Manufacturing of the full denture is finished in
about 30 min with ±0.07 mm accuracy.

Alford T.J et al.
(45)

SureSmile OAW bending robot Orthodontics Power function model. Diagnose patients, simulating treatment plans,
and personalize fixed orthodontic equipment.

Burdea et al.
(46)

WidowX 250 Robot Arm 6DOF Oral Medicine and
Radiology

6-DOF robot arm, x-ray
source and film

Dental subtraction radiography

Wu Y et al. (47) Remebot Dental Robot Prosthodontics and Oral
Surgery

3D printing Performs two distal zygomatic implants on
maxilla and two immediately loaded full-arch
fixed implant rehabilitation on the mandible.

Hwang G et al.
in 2019 (48)

Catalytic antimicrobial robots (CARs) Others Dual catalytic-magnetic
functionality using magnetic
field powered robotic
assemblies.

Create bactericidal free radicals and fighting
persistent biofilm infections

P. Vela-Anton
(49)

Borjibot Pedodontics Torsional movement A sensitive automation system for newborn oral
cognitive training that provides force and
torsional stimuli

Kasimoglu Yv
et al. (50)

Humanoid robots Pedodontics Techno-psychological
distraction technique using
multimodal assessment

A robot with humanoids to help Adolescents with
dental fear of the dentist in children

Sakaeda et al.
(51)

Shapeshifting microrobots Public Health Dentistry Human-centred design
technology and system
integration technology

An automatic teeth cleaning robot that replicated
3D brushing motions over time

Zhao R et al.
(52)

Integrated dental robot system Oral Medicine and
Radiology

Robot technology Diagnosis and maintenance care

FDA, Food and Drug Administration; MRI, magnetic resonance imaging; 3D, three dimensional; D, degree; DOF, degree of freedom.
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applications in dentistry, such as orthodontics, Prosthodontics and

oral surgery, but there are very few studies suggesting its use in

disinfection (59–62).

Boston Dental Clinic, a prominent dental practice in Boston,

Massachusetts, and few clinics in Dubai, UAE, disinfects clinics

with UV-D robots. This self-cleaning technology eliminates

harmful microbes by disinfecting a 360-degree area with eight

UV-C ultraviolet lasers, removing 99.99% of all viruses and

bacteria. They also demonstrated that these UV-D robots are more

effective than manual cleaning methods such as disinfectant spray

and slow spread of COVID-19 thereby protecting frontline

healthcare professionals. To protect individuals around them, the

robots have a panic button and sensor-based security features that

turn off UV lamps whenever a human is in close proximity to

robots that are sanitizing (63). Cimolai (64) offers a
Frontiers in Oral Health 05
comprehensive examination of COVID-19’s environmental

implications and cleaning methods. In light of this, future

investigations should focus on real-world assessments to detect

contagious viruses. Achieving this can be simplified with UV-D

robotic processors (14). These automated UV-D robots are

equipped with graphical processors for object recognition and

visual analysis, enhancing space sterilization efficiency. UV-D

robots excel in identifying potentially contaminated objects, such

as control surfaces and doorknobs, through extended exposure to

UV-C light, ensuring thorough disinfection of these items.

The UVD robot’s irradiation time and speed should be

adjusted to disinfect objects which are highly infested with

pathogenic organisms in accordance with the results of object

detection (65). Even though UV-C dosage for 99.9% COVID-19

disinfection has not been explicitly stated, it is known that under
frontiersin.org
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controlled laboratory circumstances, 100–200 J/m2 is the UV-C

dose required to inactivate 99.9% of related SARS family viruses

(66). First, due to the UV-C light’s (254 nm) harmful effects on

nearby humans as well as possibility of bacteria regeneration or

freshly contaminants at locations after sterilization, the robot’s

operational duration should be monitored closely. UV-C

(222 nm), a recently used wavelength for disinfection, has a

lesser sterilizing efficacy but a less hazardous effect; it can be

used only at certain periods when there are humans nearby (67).

The use of UV robots for disinfection raises a variety of

unaddressed research problems, including better operator plans,

organizing paths for maximizing UV irradiation, creating

effective disinfecting procedures, and technologies to reduce UV

radiation potential hazards. Thus, future hospitals’ design and

inventory must provide for electronic communication between

various work and patient-care systems, including those involving

cleaning and disinfection robots in dental hospitals.
4. Conclusions

The decontamination procedure in healthcare facilities using

UV-D robots is fascinating. These robots hold immense potential

for future innovations, impacting sociological, public, and

healthcare aspects. However, some challenges need addressing,

such as improving hospital and device design for better robot

visibility and movement. Additionally, customized approaches are

required to determine the ideal wavelength and irradiation period

for effectively inactivating specific pathogens on different

surfaces. To fully integrate this innovative technology, further

technical developments and clinical studies across various

hospitals are essential. By leveraging the convergence of robotics

and dentistry, UV-D disinfection in dental hospitals shows

promising benefits and opens up a wide range of opportunities.
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